Преобразователь DC 4…12 вольт в DC +\-15 вольт | РадиоДом - Сайт радиолюбителей. Инвертор с 12 вольт на 6 вольт
Мощный и необычный универсальный преобразователь на базе LTC3780
Один из пользователей муськи, в комментариях к моим обзорам SEPICов, часто спрашивал, а почему не Линеар? Вот теперь будет Линеар, а точнее преобразователь, где в качестве управляющего ШИМ контроллера применена LTC3780 производства фирмы Linear Technology.
Микросхемы фирмы Linear Technology обычно отличаются двумя вещами, высоким качеством работы и высокой ценой. Но правда есть небольшой плюс, эта фирма бесплатно высылает семплы свой продукции, вот только не всегда и не всем, но попробовать стоит.
Этот преобразователь заинтересовал меня сразу, как только я его увидел. Заказал я его без особой практической цели, просто чтобы изучить самому и показать другим, что он из себя представляет. В процессе обзора я немного расскажу об особенностях данного типа преобразователя и платы в целом.
Для начала доставка. Магазин приятно обрадовал, упаковав его так, будто он стеклянный, замотали от души :)
Но начну свой рассказ я немного не с преобразователя. Вместе с преобразователем я заказал такие вот клеммники. Изначально у меня была одна идея куда их применить, но идея ушла, а клеммники остались. Ну а в связи с тем, что мне их тоже прислали для обзора, то расскажу и о них, хотя в процессе написания обзора у меня пришла идея куда их применить. Клеммы — ссылка на товар в магазине, цена $2.29.
Клеммник пружинный, кроме самого клеммника в комплекте дали две пластмассовые шайбы, лепесток, шайбу Гровера и гайку.
Клеммники имеют стандартную резьбу М4, а также идут комплектом, красный + черный. Пластмассовая шайба выполнена так, что клеммник можно устанавливать на металлические поверхности, не боясь замыкания клеммника на корпус. Шайба довольно толстая, что есть плюс. Все части (ну кроме пластмассовых шайб) имеют покрытие под золото. Не думаю что золото даже рядом лежало, но выглядит красиво.
На вес довольно тяжелые, но при этом правый хвост длиннее черный комплект тяжелее. Общая длина 40мм, диаметр 12.5мм, длина резьбовой части 16мм
Пружина довольно тугая, зажимают просто отлично. Изначально я хотел применить эти клеммники для блока питания, но потом передумал, так как считаю что неправильно ставить не изолированные клеммники в источник. Сейчас думаю применить их в электронной нагрузке (вполне возможно что в будущей), рассчитанной под большие токи.
Про разъемы рассказал, теперь можно спокойно перейти к плате преобразователя. Платка внешне не очень большая, хотя и больше чем плата преобразователя из этого обзора. Размеры платы следующие — длина 77мм, ширина 46мм, высота (полная) 13мм. По высоте плату можно уменьшить на 1.5-2мм уменьшив высоту пайки контактов разъемов и дросселя.
Заявленные характеристики: Входное напряжение: DC5-32V Выходное напряжение: DC1V-30V регулируемое Выходной ток: Длительно 8A, 10A пиковое значение Выходная мощность: длительно 80W, пиковое значение 130W, если мощность более 80W требуется дополнительное охлаждение Выходные пульсации: 50mV Диапазон рабочих температур: -45 ~ + 85 ℃
Качество сборки платы немного расстраивает, разъемы запаяны кривовато, какие то разводы, следы флюса. На работоспособность это особо не влияет, скорее некрасиво. Слева расположен разъем подключения входа питания. Чуть правее находится светодиод аварии, а точнее снижения входного напряжения ниже нормы. В центре платы находятся три подстроечных резистора. Я реально призадумался, когда пытался понять, зачем их три. Оказалось все просто. Первый подстроечный резистор — регулировка порога отключения платы при снижении входного напряжения. Это может быть применено как защитная мера, чтобы запретить работу преобразователя при низком входном напряжении, так как чем ниже входное напряжение, тем тяжелее ему работать. Хотя в интеренете пишут, что это может быть полезно при работе с солнечными батареями. Второй подстроечный резистор — регулировка порога ограничения максимального выходного тока, при достижении этого порога преобразователь переходит в режим СС. Третий подстроечный резистор — регулировка выходного напряжения. Чуть правее стоит светодиод OUT, индикация того, что на выход подано напряжение. Ну и справа еще есть клеммник для подключения нагрузки.
Это фото я приложил по двум причинам. Изначально я его нашел в процессе поиска назначения неизвестного подстроечного резистора. Но на страничке нашлась еще полезная информация, в процессе обзора я ее буду упоминать. На фото обозначено назначение подстроечных резисторов, но кроме этого на фото видна вторая (а точнее первая) версия этой платы. На странице магазина данная информация также имеется, но менее понятна, расскажу. Преобразователь существует в двух вариантах: 1. С радиатором снизу, при этом дроссель намотан проводом красного цвета 2. С радиаторами сверху, обмотка дросселя имеет желтый цвет. Магазин высылает преобразователи случайным образом, но мне кажется, что плата с радиатором снизу лучше, так как радиатор там немного больше размером, хотя переходных отверстий под силовыми элементами нет, потому возможно они одинаковы. Но на плате с радиаторами сверху они приклеены, а у первого типа радиатор привинчен, что возможно надежнее.
Из-за того, что существует версия платы с радиатором снизу, то на нижней стороне платы почти пусто. Присутствуют только контакты дросселя и разъемов.
Вот к качеству пайки этого самого дросселя и особенно разъемов у меня и была претензия, такое чувство что паяли холодным паяльником, если видите такое, то лучше пропаять, на всякий случай.
Как я выше писал, плата имеет в толщину всего 13мм, самые высокие компоненты, это конденсаторы.
Из непривычного мне отмечу наличие предохранителя, но как по мне, то довольно необычного формфактора, что однозначно затрудняет его замену, но также отмечу то, что в ходе тестов он остался жив :) Также рядом находятся контакты для управления подачей напряжения на выход. Я пробовал их замыкать, напряжение на выходе снимается полностью, но это свойство обусловлено схемотехникой данного типа преобразователя.
По входу установлена пара алюминиевых конденсаторов 330мкФ х 50 Вольт, также присутствует и керамический конденсатор, подключенный параллельно им. Дело в том, что преобразователь работает на высокой частоте, около 400кГц и на таких частотах и производитель ШИМ контроллера рекомендует ставить керамический конденсатор.
На выходе все сделано почти также, только конденсаторов здесь уже не два, а три.
Между радиаторами силовых элементов находится дроссель. Отмечу то, что дроссель не двухобмоточный, а просто намотан в два провода. Я обратил на это внимание потому, что есть топология SEPIC преобразователя где применяется один дроссель, но с двумя обмотками вместо двух одинаковых дросселей. На странице магазина написано что:
Inductors using Sendust, 0.8 wound bifilar, heat generating was less.Насчет того, что материал сердечника — Сендаст, я спорить не буду, так как не могу этого проверить. Но вот того что указана бифилярная намотка я поспорю. Дело в том, что бифилярный принцип намотки катушек как раз подразумевает отсутствие индуктивности. Не буду вдаваться в подробности скажу лишь то, что скорее всего это некорректный перевод и изначально это означало что намотка выполнена в два провода, и все. Корректив — бифилярная катушка, это намотка катушки в два близкорасположенных провода, потому да, катушка бифилярная.«Рулит» всем процессом преобразования ШИМ контроллер LTC3780 производства фирмы Linear Technology. Данный ШИМ контроллер не содержит мощных выходных каскадов, для работы ему нужные внешние полевые транзисторы. Видно что отмывка платы явно не очень, на фото контроллер уже частично отмыт.
Вот про этот контроллер, а также про такую хитрую топологию преобразователя я попробую рассказать немного подробнее.
Схему данной платы я не перечерчивал, так как делать это не очень удобно, но скажу что кардинальных отличий от даташита я не обнаружил, потому вполне можно руководствоваться документацией от производителя.
На удивление, при довольно запутанной схеме подключения, схема не так сложна. На схеме можно легко выделить: Контроллер Четыре полевых транзистора Два диода, которые стоят параллельно двум полевым транзисторам из четырех. Шунт сопротивлением 10мОм. Кстати это одно из отличий, на плате применен шунт сопротивлением 7мОм. Элементы «обвязки», цепи временной коррекции обратной связи, собственно обратная связь, цепи питания транзисторов «верхнего плеча».
Чтобы не запутывать читателя, я сделал более понятную блок-схему. По ней я и буду объяснять принцип работы данного типа преобразователей.
Я уже делал обзоры преобразователей разных типов, где описывал принципы их работы, в данном случае перед нами гибрид ужа и ежа понижающего и повышающего преобразователя. Да. Изначально я думал что данный преобразователь работает по типу обычного SEPIC. но все оказалось одновременно и сложнее и проще.
Топология преобразователя похожа на мостовую, но работает несколько по другому. На вид схема симметрична, но есть и отличия, например параллельно двум полевым транзисторам стоят диоды, но слева диод внизу, а справа — вверху.
Для начала следует пояснить, зачем нужны диоды. Для увеличения КПД преобразователь использует схему синхронного выпрямления, но диоды нужны все равно, так как паразитные диоды полевых транзисторов имеют худшие характеристики, а в данной схеме диод это часть топологии. Т.е. сначала открывается диод, а потом его «подхватывает» транзистор.Что такое синхронный выпрямитель. При выпрямлении с использованием диода мы имеем потери на переходе диода, а при больших токах они существенны даже у диодов Шоттки. Для снижения потерь параллельно диоду ставят полевой транзистор, на котором потери меньше. Но просто шунтировать диод можно не всегда. Дело в том, что диод перестает пропускать ток, когда происходит смена полярности, полевой транзистор пропускает ток в обоих полярностях (когда открыт). Потому чтобы не было перетекания тока обратно в источник, когда дроссель отдал всю энергию в нагрузку, ставят схему управления, которая следит за этим процессом и шунт в этом случае играет не последнюю роль.
Но в двухполупериодных схемах синхронное выпрямление можно сделать и проще, надо лишь намотать на трансформатор дополнительную пару обмоток, которые будут открывать транзисторы, например как на схеме ниже.
Как я выше писал, схема похожа на мостовую. изначально я думал, что преобразователь постоянно работает в одном режиме, «накачивая» дроссель открыванием транзисторов S1 и S4, с последующим «сливанием» энергии в нагрузку путем открывания транзисторов S2 и S3. Но все оказалось по другому. Распишу коротко циклы работы согласно даташиту. Формально их четыре, но реально циклы 2 и 3 очень похожи друг на друга, потому опишу три. 1. Входное напряжение больше выходного. Транзистор S3 постоянно открыт, а S4 постоянно закрыт. Транзисторы S1, S2, диод VD1 и дроссель образуют классический понижающий преобразователь под названием StepDown (ШИМ выведен на контакты Buck). 2. Входное напряжение меньше выходного. Схема работы меняется на противоположную (я как то объяснял в одном из обзоров, что все эти схемы образованы одними и темы же компонентами, но по разному включенными). Транзистор S1 полностью открывается, S2 закрывается, а транзисторы S3, S4, диод VD2 и дроссель образуют не менее классический повышающий преобразователь под названием StepUp (ШИМ выведен на контакты Boost). 3. Входное напряжение не сильно отличается от выходного. Самый сложный режим. Я не буду сильно углубляться в дебри, но скажу что в данном режиме ШИМ выведен на все выходы и формально схема занимается постоянной «перекачкой» энергии открывая транзисторы по диагонали, сначала S1 и S4, потом S2 и S4. Разница только во времени открытого состояния, для повышения больше времени открыта пара S1 и S4, для понижения больше времени открыта пара S2 и S4. по крайней мере я так понял работу данного преобразователя.
Из всего вышеперечисленного я могу заключить, что формально эта схема не является SEPIC преобразователем в чистом виде, а является гибридной схемой повышения/понижения, режимы работы которой динамически переключаются в зависимости от разницы напряжений вход/выход.
Упрощенная блок схема для понимания принципа работы. Получается что: понижающий + повышающий + синхронный выпрямитель = LTC3780
Под радиаторами скрываются половинки силовой части преобразователя, пара транзисторов и диод. Диод SS54, хотя по размерам я думаю что это скорее SS34, который слабее. Транзисторы AOD4184A. Это полевые транзисторы которые рассчитаны на напряжение до 40 Вольт, ток до 50 Ампер, имеют сопротивление в открытом состоянии 7-9.5мОм и емкость затвора 1.5нФ. Параметры преобразователя можно улучшить, заменив транзисторы на аналоги с лучшими характеристиками. Да и нормально радиатор установить тогда можно, потому как приклеенный радиатор имеет очень низкую эффективность.
Также на плате расположен стабилизатор 5 Вольт. Рядом с ним находится светодиод «Авария» и соответствующий подстроечный резистор для регулировки порога срабатывания. Правда надпись Fault, «сползла» куда то аж к предохранителю, но она относится к светодиоду.
Команда «авария» берется от ШИМ контроллера. Причем есть переходной момент, когда светят оба светодиода, Авария и Работа.
Также на плате установлен операционный усилитель LM358, который отвечает за работу узла ограничения тока и аварийного отключения преобразователя. На фото видно, что на плате присутствует два шунта по 7мОм каждый. Они соединены не параллельно, а последовательно. Первый отрабатывает токовую защиту ШИМ контроллера, второй работает в паре с операционным усилителем и схемой ограничения максимального тока. Справа виден светодиод, который светит когда на выход подано напряжение.
Схему узла ограничения максимального тока и регулировки тока и напряжения, а также связи между ними. К слову, регулировка напряжения и тока работает очень плавно, а точнее линейно, мне без проблем удавалось выставить напряжение как 1 Вольт, так и 30.
А это часть схемы, отвечающая за регулировку порога срабатывания защиты от работы при пониженном напряжении. Например можно выставить порог в 10 Вольт и при входном напряжении ниже этого порога преобразователь будет отключаться, как только напряжение повысится, то преобразователь возобновит работу. Но так как в схеме нет гистерезиса, то понижение будет плавным, преобразователь будет постоянно балансировать между включено и выключено. Собственно результатом этого является переходной режим, когда светят оба светодиода, Авария и Работа.
На этом пожалуй и все, пора переходить к тестам. Для теста преобразователя был собран небольшой стенд, состоящий из:Регулируемый блок питанияЭлектронная нагрузкаОсциллографМультиметрБесконтактный термометр Ручка и бумажка.
Изначально преобразователь был настроен на выходное напряжение 12 Вольт, а если точнее, то 12,07, я не стал его корректировать.
В даташите заявлено, что микросхема может работать начиная от 5 Вольт, но в том же даташите приведена табличка, дающая информацию о КПД и тепловыделении устройства. Так вот график на этой табличке начинается примерно от 6 Вольт, потому и я тестировал начиная от 6 Вольт.
Первым делом я проверил уровень пульсаций и работоспособность устройства при входном напряжении 6 Вольт, выходном 12 и токах 1.25 Ампера (25% от максимума) и 4.5 Ампера. по даташиту выходной ток в таком режиме декларируется в 5 Ампер, но у меня преобразователь сваливался в защиту, входной ток доходил до 12-13 Ампер. На фото плохо видно (все фото в моих обзорах кликабельны), потому буду пояснять по ходу процесса и указывать на замеченные особенности и недостатки. 1. Входное напряжение 6 Вольт, на выходе 12 Вольт, ток нагрузки 1.25 Ампера, все работает нормально, пульсации правда больше заявленных Output ripple: 50mV и составляют уже около 70-75мВ. 2. Входное напряжение 6 Вольт (на клеммах платы), на выходе 12.48, ток нагрузки 4.5 Ампера. Преобразователь мог выдать 5 Ампер, но лишь кратковременно. А вот пульсации выросли аж до 160мВ.
Немного отвлекусь на точность поддержания выходного напряжения. Выше я написал, что напряжение при токе 4.5 Ампера составило 12.48 Вольта. Напряжение вообще преобразователь держит очень хорошо, но пока он холодный. Дело в том, что на плате установлены не прецизионные резисторы, самые обычные. Прецизионные резисторы отличаются от обычных 5% не только точностью сопротивления, а и уходом его от изменения температуры. ТКС (температурный коэффициент сопротивления) точных резисторов заметно ниже чем у обычных, потому плата после прогрева поднимала напряжение на выходе. Если хотя бы подуть на плату, то напряжение сразу начинало снижаться. Повысить точность можно либо улучшив охлаждение либо заменив резисторы цепи обратной связи на прецизионные. правда останется подстроечный резистор, который также имеет свойство «уходить» от нагрева, но стабилизация все равно будет лучше.
1. Входное напряжение 12 Вольт, выходное 12, ток нагрузки 8 Ампер. Здесь работало все красиво, только пульсации составляли 150мВ. 2. Данный тест было проведен просто ради любопытства. Установил на выходе минимально возможное напряжение, что то около 0.85 Вольта, нагрузил током 6.7 Ампера. Этот тест не попал в сводную таблицу, нагрев был небольшим, работало все отлично. Даже уровень пульсаций вписался в норму.
Пробуем преобразователь в режиме понижения. Вход 30 Вольт, выход 12 Вольт. Сначала ток нагрузки был 8 Ампер, но через несколько минут преобразователь отключил напряжение на выходе (собственно заметил по сигнализации электронной нагрузки). После этого пришлось снизить выходной ток до 6.7 Ампера, в таком режиме все работало нормально. Даже пульсации были всего около 60мВ, что ненамного выше заявленных 50мВ.
1. Понижаем с 12 Вольт до 5, ток нагрузки 8 Ампер. Преобразователь ведет себя отлично. 2. Повышаем с 12 до 30, ток нагрузки 3 ампера. Я бы сказал что преобразователь вел себя отлично, если бы не высокий уровень пульсаций и постепенный уход выходного напряжения от прогрева.
1. Входное напряжение 6 Вольт, выходное 30 Вольт. Сначала поставил ток нагрузки 1.7 Ампера, но преобразователю это не очень понравилось, начался большой нагрев и нестабильная работа. 2. После снижения тока нагрузки до 1.5 Ампера стало все почти нормально, правда нагрев был довольно большим, да и уровень пульсаций оставлял желать лучшего.
Но кроме проблем с уходом напряжения из-за нагрева проявилась еще одна проблемка. На фото эксперимент с понижением напряжения с 30 до 5 Вольт. Видно что выходное напряжение стоит как вкопанное, четко 5 Вольт, ток нагрузки также неизменен и составляет 8 Ампер. Но потребляемый ток на первом фото 1.4 Ампера, а на втором 1.7 Ампера. Проявилось через небольшое время после запуска, услышал посторонний звук от преобразователя (при работающих вентиляторах нагрузки) и сразу обратил внимание на эту особенность. При повышении нагрузки до 7.5 Ампера преобразователь «срывался» в самовозбуждение и начинал потреблять больше. Я без проблем мог выставить на выходе и 8 Ампер, это видно на фото, но как вы понимаете, нагреваться он начинал довольно быстро, так как начинали выделяться «лишние» 9 Ватт. Осциллограмма превращалась в нечто невразумительное (в отдельном виде не сделал, потому только на фото). При снижении тока нагрузки до 5.7 Ампера самовозбуждение пропадало и преобразователь выходил на нормальный режим работы. Можно было спокойно поднять ток до 7 Ампер и он работал абсолютно стабильно.
Все результаты тестов были сведены в таблицу, в которой присутствуют следующие колонки: VT_L — Температура левой пары транзисторов (около входного разъема) Cвх — Температура входных конденсаторов Дроссель — Температура дросселя. VT_R — Температура правой пары транзисторов Cвых — Температура выходных конденсаторов Uвх — Входное напряжение округленно. Iвх — Ток потребления по показаниям БП Uвых — Выходное напряжение по показаниям мультиметра I вых — Выходной ток по показаниям электронной нагрузки (округленно) Рвх — Выходная мощность по показаниям БП Рвых — Выходная мощность по показаниям электронной нагрузки КПД — Расчетный КПД, разница между входной и выходной мощностью
БП на малых токах имеет реально ниже выходной ток чем задано, но при токах более 2 Ампер ведет себя вполне корректно. Собственно поэтому расчет КПД несколько отличается от реального. Если надо более точное измерение, то могу измерить при необходимых параметрах, например измерить КПД при определенном входном напряжении и выходном напряжении и токе нагрузки. В некоторых тестах есть большой нагрев дросселя. Не могу утверждать насчет материала, но порошковые магнитопроводы вообще спокойно работают при температурах до 200 градусов, хотя в процессе тестов у меня было подозрение на перегрев. Вернее поведение преобразователя было похоже на работу с перегретым дросселем выполненном на сердечнике из феррита.
Термограмма платы в самом горячем режиме. При тестах плата просто лежала на столе радиаторами вверх, это далеко не самое оптимальное положение с точки зрения отвода тепла, лучше бы она работала в вертикальном положении радиаторами вверх, но тестировать так было бы неудобно, да и некорректно. Кроме того в таблице видно, что в зависимости от режима работы (повышение/понижение) больше греется левая или правая пара транзисторов.
Теперь можно проанализировать данный преобразователь и определить его плюсы и минусы.Плюсы Преобразователь работает, что уже неплохо. Действительно обеспечивается регулировка выходного напряжения напряжения в диапазоне 1-30 Вольт при входном 6-30 Вольт. Преобразователь довольно мощный, хоть и не дотягивает до заявленных характеристик. Вполне приличный КПД для такого широкого диапазона.
Минусы Качество изготовления могло бы быть и получше. В цепи обратной связи установлены обычные резисторы, а не прецизионные. Из-за этого при нагреве увеличивается выходное напряжение. Хоть КПД устройства и неплох, но из-за плохого отвода тепла от транзисторов возможен перегрев на максимальных режимах. Пульсации, они явно больше заявленных.
Что я думаю по поводу данного преобразователя. Как по мне, то вещь однозначно интересная, хотя частично представляет собой не готовое изделие, а скорее «конструктор». Можно улучшить работу, если доработать охлаждение и заменить несколько резисторов на точные. Как по мне, то самый оптимальный режим при 12 Вольт питании. Т.е. можно подключить 12 Вольт БП и получить на выходе напряжение от 1 до 30 Вольт. правда я не стал бы рекомендовать делать на базе этой платы именно регулируемый БП, так как максимальный ток разный для минимального и максимального напряжений. Не помешало бы ограничение максимальной мощности, как вариант, ограничение максимального входного тока. Выше я писал насчет пульсаций. Пульсации это плохо, но на частоте в 400кГц их можно относительно легко уменьшить при помощи LC фильтра. Преобразователь в тестах показал, что в некоторых режимах действительно кратковременно может отдавать большую выходную мощность, что может быть полезно при работе с нагрузками, которые в штатном режиме потребляют мало, но периодически могут потреблять большой ток.
Для чего можно эффективно использовать такой преобразователь. Заряд аккумуляторов или питание различных устройств от солнечных батарей. Питание различных нагрузок в автомобиле. Например можно спокойно питать небольшой компьютер с 12 Вольт питанием не боясь его отключения во время работы стартера или перенапряжения во время работы двигателя, можно перенастроить и питать ноутбук, а изменить настройку в другую сторону и заряжать планшет.
Т.е. преобразователь может полностью показать себя только там, где требуется определенное выходное напряжение при том, что входное может быть как выше, так и ниже выходного. Если выходное напряжение всегда ниже или выше выходного, то лучше применить преобразователь с фиксированным режимом работы, он будет выгоднее.
На этом все. Я постарался протестировать основные режимы работы преобразователя, но так как диапазон входного напряжения 6-30 Вольт, выходного 1-30, то комбинаций получается очень много. В общему как всегда, жду вопросов, дополнений, исправлений, а также просто комментариев :)
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru
Необходимо решить проблему , как из 12 вольт сделать 6, желательно стабилизированного напряжения, мощностью 40-50 Вт. Лучшим выходом для меня будет конечно покупка готового устройства, если у кого-то найдется такой вариант, или инфо где такое устройстово можно приобрести. Также буду ужасно благодарен за любую информацию по этому поводу, схемы, варианты из чего и как переделать и пр. | ||
Здесь, на форуме, есть тема по преобразователю из 24 в 12, думаю, можно применить схемы оттуда с незначительными переделками. | ||
Искал, но ничего для меня приемлемого и доступного для моего понимания не нашел. К сожалению я не супер-пупер в радиотехнике и электроники, поэтому необходима, как минимум, хорошо описанная схемотехника. А лучше ва-а-ще – готовый дивайс. | ||
А что предполагается запитывать и от чего? | ||
Предпологается запитать галогенавые (велофары) суммарной мощностью 35 Вт. 2 по 10 и 3 по 5 Вт. Напряжения питания этих ламп 6 - вольт, а источник питания, генератор - 12. Вот и предстоит преобразовать 12 в 6 вольт. Перерыл инет ничего путного не нашел . Может стоит переделать преобразователь 24-12, такие есть в продаже, но опять-же надо знать, что переделывать. Применить готовую схему я могу, а вот, что то самому придумать - слабо. | ||
bov: питания этих ламп 6 - вольт, а источник питания, генератор - 12. Вопрос такой - а если переделать генератор? А если нужна будет напруга 12 вольт - сделать преобразователь? на 12 .. . | ||
Попробуйте преобразователи фирмы MW SD-25A-5 вх.-9-18 В вых.- 5 В 5 А цена 223.41грн.илиSD-50A-5 вх.-9-18 В вых.- 5 В 10 А цена 274.95грн. необходимое напряжение получается регулировкой выходат.к. запас по регулированию достаточныйесть опыт применения необходимо соблюсти полярность включения по входуиначе придется менять входной предохранитель | ||
А если подобрать лампы на 12 Вольт подходящей мощности? Все становится проще! | ||
Я тут надыбал преобразователь японческий фирмы Cellstar DC 505 12V-5A, это с 24 на 12В и у меня ряд вопросов: 1. Можно ли переделать данный дивайс с 24-12 на 12-6, насколько это сложно и что в нем придется переделывать? 2. Если можно переделать, то как быть с силой тока, он в первоночальном варианте тянет 5А, и при 12В получается 60Вт, если я правильно считаю.Но при 6В и при 5А получается 30Вт. а мне надо 35Вт, как минимум, потянет или нет? Отвечая на вышеизложенное можно сказать. что условия жеские источник питания 12 В, лампы 6 В. и ничего не поделаешь, варианотов ноль. А за совет по преобразователю МV - спасибо, покопаюсь в инете. | ||
Мне как-то приходилось переводить 12 вольтовый свет на видеокамере на 6 В. Оказалось, также как и 12 В галогеновых ламп, ламп на 6 вольт много разных. И просто выбрали лампу 15 Ватт и аккумулятор использовали 6 вольтовый свинцово-гелевый на 4,5 А-ч. Сейчас уже не помню точно, но и на тех и на других были одинаковые G6,35 цоколи.И, например, ваши 2 лампы по 10 Ватт можно включить последовательно на 12 В генератор. Чем не решение? Также и 2 по 5 Ватт. Только третья лампа остается "неприкаянной", ну и "фиг с ней" | ||
pro-radio.ru
как понизить напряжение с 12 вольт до 6
5 Ответы
Слишком большая нагрузка, я бы не стал электроникой понижать. Возможно лампу накаливания последовательно с мотором включил бы, но лампа должна жрать столько же. Аккумулятор будет дохнуть быстре как минимум в два раза. Лучше купить оригинал! 3 годов назад от Мухаммад Шанхоев Присоединяюсь у мнению Владимира. Но с одним уточнением. Если сделать то, что он предлагает, то можно получить 2 акума на 6 вольт и тогда соединив их параллельно получаем бОльшую ёмкость 3 годов назад от Milaya Нужен исключительно импульсный преобразователь 12 Вольт в 6 Вольт. Я когда то сам паял такой, но сейчас, наверное, проще купить готовый. Все другие решения с помощью гасящих резисторов, нагрузок или линейных стабилизаторов здесь не годятся - слишком большой будет расход энергии (практически такая же мощность будет выделяться в стабилизаторе, что и на нагрузке (мотоцикле) ) . Но ещё лучше - приобрести новый 6 Вольтовый аккумулятор сответствующей ёмкости. 3 годов назад от Котя Либо вскрытие и переделка аккумулятора, не факт что потом получится герметично заделать. Либо step-down преобразователь, у него высокий КПД, малая рассеиваемая мощность, например на LM2596, сам юзаю такие преобразователи, оч. удобно 3 годов назад от Тимур Умеров я предложу самый лошарский, но САМЫЙ ЭФФЕКТИВНЫЙ способ- срезать верхнюю крышку с аккума и обрезать мычку соединяющую банки аккумулятора. это посередине будет. получится две секции по 6 вольт. соедини их ПАРАЛЛЕЛЬНО и полноценный аккумулятор удвоенной ёмкости готов. 3 годов назад от МадамСвязанные вопросы
2 ответов
2 годов назад от Serg2 ответов
5 месяцев назад от Evgeny Belous1 ответ
2 годов назад от Евгений Мудровengangs.ru
Описан преобразователь постоянного напряжения 4...12 вольт в двуполярное 15 вольт и отличается тем, что в нем цепь нагрузки гальванически развязана от цепи управления. Это позволяет получить несколько стабильных вторичных обмоток с любым желаемым напряжением.Частота преобразования устройства уменьшается почти линейно при уменьшении питающего напряжения. Полевой транзистор VT2 выполняет роль стабилизатора тока. От его параметров зависит вся мощность устройства. КПД устройства 72…88 процента. Нестабильность выходного напряжения при напряжении питания 4…12 вольт не более 0,5 процентов, а при изменении температуры окружающего воздуха от -50 до +40°С не более 1,5 процента. Максимальная мощность нагрузки 2 ватт. При налаживании прибора резисторы R1 и R2 устанавливают в положение минимума сопротивления и подключают временные эквиваленты нагрузки Rн. Подают на вход устройства напряжение питания 12 вольт и резистором R1 устанавливают на нагрузке Rн напряжение 15 вольт. Далее питание уменьшают до 4 вольт и резистором R2 добиваются прежнего напряжения. Повторяя этот процесс несколько раз, добиваются стабильного выхода на приборе. Обмотки I и II и магнитопровод трансформатора у обоих вариантов преобразователей одинаковы. Они намотаны на броневом ферритовом сердечнике 1500НМ. Первая обмотка 8 витков провода ПЭЛ диаметром 0,8 мм, вторая — 6 витков провода ПЭЛ диаметром 0,33 мм (третья и четвёртая обмотки каждая по 15 витков провода ПЭЛ диаметром 0,33 мм).Все детали прибора отечественные:C1 - 50 мкФ х 50 вольтC2 - 0,01 мкФC3 - 50 мкФ х 10 вольтC4, C5 - 100 мкФ х 25 вольтVT1 - КТ208МVT2 - КП303АVT3 - КТ819БVD1 - Д814АVD2, VD3, VD4 - Д219А Похожие статьи: |
radiohome.ru
как преобразовать 12 вольт из 6
У меня днепр МТ9 (6 вольтовый), мне не хотелось бы расставаться с ним но свет тускловат да и прибамбасы не навешаеш на него может у кого есть схема умножителя напряжения, буду очень благодарен
manowarтут очень много тонкостей. первое: вывести с генера ~ и подать на умножитель.потребует пары конденсаторов довольно большой ёмкости и пары диодов. второй способ: слепить трансформаторный преобразователь на паре транзюков. оба способа недостойны для существования. проще найти генер на 150 ватт 12 в и не мучатся.
bulletполностью согласен с monowar, лучше уже сразу впихивать 12-ти вольтовый генератор и лучше всего 750 ватт, по тому что один фиг придется с переделкой картера заморачиваться, так лучше уже сразу поставить достойный генератор, да и прибомбасов больше навешать сможешь!!!
EasyRiderУ меня у двоих друзей 6 в генеры стали 12в показывать, правда один из них сначало 27 показывал.Ваще слышал что их както перематывают на 12в
iR0Nдля Matrix:КПД такого преобразоватиеля будет просто несказанно низким, плюс к этому сделать такой преобразователь на большую мощность практически нереально.... Советую забить на эту идею сразуже и начать думать новую идею про замену генератора.
ClownПоищи в интернете книгу Демченко "Мотоцикл в вопросах и ответах".Где-то она была доступна для скачивания.В ней описывается перемотка обмоток 6в генератора на 12в.Совсем не сложно.Один минус - мощность генератора после перемотки останется на прежнем уровне.
EasyRiderhttp://moto.by/oppozit/meh-gen2.html
Barracudaдля EasyRider:Перемотанный генер ходит максимум сезон....
manowarцитата:У меня у двоих друзей 6 в генеры стали 12в показывать, правда один из них сначало 27 показывал.
ну если реле-регулятор выбросить,то на 5000 он у тебя и 50 вольт покажет.....
Clownto Barracuda: Не замечал Почему ты так думаешь ?
motoroad.ru