Стабилизатор напряжения с регулировкой выходного напряжения: Стабилизаторы с регулируемым выходным напряжением: как правильно выбрать
Содержание
Стабилизаторы с регулируемым выходным напряжением: как правильно выбрать
27 декабря 2021
Анализ связанных с электротехническим рынком запросов показывает рост потребительского интереса к сетевым стабилизаторам, и в том числе к моделям с регулируемым выходным напряжением. В нашей статье рассказывается о причинах, провоцирующих увеличение спроса на данные приборы, а также о том, на что обратить внимание при покупке бытового стабилизатора с регулируемым выходным напряжением.
Содержание
Почему растет популярность стабилизаторов?
Ответом будут две равнозначные причины:
1.Проблемы с качеством электроэнергии – характерные для отечественной энергосистемы износ и перегрузка («дефицит мощности») приводят как к резким скачкам и провалам напряжения, так и к его хроническому несоответствию установленным нормам.
Важно!
Даже современная сетевая инфраструктура, например, в новом многоквартирном ЖК, не является стопроцентной гарантией стабильного напряжения – колебания могут возникнуть из-за пикового потребления, человеческого фактора или негативного воздействия со стороны окружающей среды.
2. Требования бытовой техники и электроники к питающему напряжению – чем сложнее и дороже оборудование, тем оно обычно чувствительнее к его отклонениям. Особенно выделяются энергозависимые газовые котлы и устройства с электродвигателями. Так на функционировании большинства холодильников, насосов, котлов, стиральных и посудомоечных машин негативно отразится даже допустимое ГОСТом 10% расхождение между величиной фактического и номинального напряжения. Возможно, данное расхождение и не приведёт к немедленной поломке, но, во-первых, снизит эффективность работы изделия, а во-вторых, ускорит износ элементов его электрической схемы.
Важно!
Надежный стабилизатор стоит недешево, однако такую покупку можно расценивать как заботу о своём бюджете на годы вперед. Дело в том, что цена прибора практически всегда ниже затрат на ремонт или замену техники, вышедшей из строя по вине некачественной электроэнергии.
Чем обычный стабилизатор отличается от стабилизатора с регулируемым выходным напряжением?
Всё просто: в первом случае выходное напряжение стабилизатора фиксировано (220 или 230 В у однофазных моделей), во втором – пользователь может его изменять. Диапазон и шаг настройки зависят от конкретного изделия, например, у инверторных стабилизаторов «Штиль» с мощностями от 2,5 до 3,5 кВА диапазон 220-230 В, а шаг – 1 В.
Важно!
Функция регулировки выходного напряжения позволяет максимально подстроить стабилизатор под требования текущей нагрузки. В условиях нашей страны это особенно важно, так как одна часть представленных на рынке электроприборов имеет номинал в 220 В, а другая – в 230 В.
По каким критериям необходимо выбирать стабилизатор с регулируемым выходным напряжением?
Главный критерий – основные технические характеристики, но следует также обращать внимание на:
- тип корпуса;
- уровень шума;
- индикацию и управление;
- разрешительную и сопроводительную документацию;
- бренд и стоимость.
Критерий 1. Основные технические характеристики
Характеристика | Требование |
Фазность входа | Совпадение с числом фаз питающей сети |
Фазность выхода | Совпадение с фазностью нагрузки (однофазные устройства допустимо подключать к одной из выходных фаз трехфазного стабилизатора) |
Мощность | Превышение максимально возможной (с учётом пусковых токов) мощности нагрузки |
Диапазон входного напряжения | Перекрытие амплитуды характерных для сети колебаний и отклонений |
Диапазон настройки выходного напряжения | Возможность установить значение, соответствующее номинальному напряжению нагрузки |
Погрешность стабилизации | Соответствие допустимому для нагрузки отклонению питающего напряжения |
Быстродействие | Оперативное устранение искажений входного напряжения и исключение их негативных воздействий на нагрузку |
Форма выходного напряжения | Близость к идеальной синусоиде (для ряда нагрузок – совпадение с идеальной синусоидой!) |
Важно!
Характеристики стабилизатора надо изучать и анализировать до его покупки, а не после. Успешно работать будет только устройство, параметры которого в планируемых условиях эксплуатации выполняют все установленные для них требования!
Важно!
В некоторых случаях от стабилизатора потребуется дополнительный функционал в виде «сквозного» ноля или возможности работать в связке с генератором. Кроме того, всегда будут полезны функции фильтрации сетевых помех и автоматического рестарта после аварийного отключения.
Критерий 2. Тип корпуса
Соответствующий конструкции стабилизатора способ установки должен обеспечивать удобное размещение и надежное крепление устройства в предполагаемом месте эксплуатации.
Важно!
Использование стабилизатора в положении отличном от указанного производителем запрещается!
Критерий 3. Уровень шума
Возникающие при функционировании стабилизатора звуковые эффекты не должны нарушать бытовой комфорт в помещении, выбранном для его установки. Отметим, что чаще всего проблемы возникают с электромеханическими и релейными приборами, срабатывание которых может сопровождаться громкими щелчками или специфичным скрежетом (причина – наличие подвижных компонентов в силовой части).
Важно!
Наименьшую шумность (не выше привычного для слуха бытового уровня) имеют инверторные стабилизаторы с конвекционной или комбинированной системой охлаждения.
Критерий 4. Индикация и управление
Основная задача системы индикации – своевременное извещение пользователя об изменениях в состоянии стабилизатора, сети и нагрузки. Необходимый для этого минимум – светодиодная сигнализация. Многие модели также комплектуются дисплеем для отображения цифровой и/или текстовой информации.
Общие требования к средствам индикации:
- яркость, достаточная для лёгкой читаемости;
- способность привлечь внимание, особенно в момент информирования об аварийной ситуации;
- однозначная трактовка подаваемых сигналов;
- русскоязычный интерфейс.
Если говорить об управлении работой стабилизатора, которое включает в себя и регулирование выходного напряжения, то тут главное простота и максимальная эргономичность.
Важно!
Процесс настройки бытового стабилизатора должен быть понятен не только специалистам, но и пользователям, не имеющим электротехнической подготовки!
Критерий 5.
Разрешительная документация
Перед покупкой стабилизатора нужно убедиться, что выбранная модель имеет подтверждающие её безопасность документы. Причём речь идёт не о бумагах, связанных с какой-либо системой добровольной сертификации, а о документах, оформленных по правилам Таможенного Союза. Данные правила устанавливают, что все официально выпущенные на рынок стабилизаторы должны соответствовать двум техническим регламентам:
- ТР ТС 004/2011 «О безопасности низковольтного оборудования»;
- ТР ТС 020/2011 «Электромагнитная совместимость технических средств».
Подтверждение соответствия осуществляется в виде сертификата или декларации, которые оформляются только после прохождения устройством всех требуемых испытаний!
Важно!
Если производитель или продавец отказывается предъявить сертификат или декларацию, то скорее всего документа либо вообще нет, либо он оформлен некорректно. И в первом, и во-втором случае стабилизатор может быть небезопасен!
Критерий 6.
Сопроводительная документация
Для руководства по эксплуатации/паспорта/пользовательской инструкции желательно наличие подробного описания устройства, с разбором:
- всех рабочих режимов;
- индикации;
- порядка подключения, использования и обслуживания;
- аварийных состояний;
- эксплуатационных ограничений;
- мер безопасности.
Важно!
Многие производители выкладывают электронные версии соответствующей их изделиям документации в открытый доступ, что позволяет подробно изучить интересующий стабилизатор до его приобретения.
Критерий 7. Бренд и стоимость
В настоящее время стабилизаторы выпускают десятки компаний и если одни нацелены на постоянное развитие и совершенствование своей техники, то другие в погоне за массовостью и сиюминутной выгодой «заваливают» рынок не самыми качественными изделиями – часто с русскоязычным названием и посредственной китайской начинкой.
При выборе стабилизатора рекомендуется в первую очередь рассматривать продукцию известных брендов, активно работающих именно в «стабилизаторном» направлении. Такие производители обычно проявляют максимальную заботу о качестве и функционале своих приборов, а также не бояться инвестировать в развитие технологий стабилизации электрической энергии. Отметим, что у крупных компаний лучше выстроена и система гарантийного/постгарантийного обслуживания.
В вопросе цены следует помнить пословицу: Хорошо дешево не бывает! Например, стоимость современных инверторных стабилизаторов несколько выше среднерыночной, но тем не менее она полностью оправдывается их эффективностью и надежностью. Изделия из нижнего ценового сегмента, наоборот, имеют существенные недостатки, осложняющие их использование с чувствительными нагрузками. Кроме того, занижая цену, производители стабилизаторов неминуемо жертвуют их качеством.
Где купить стабилизатор с регулируемым выходным напряжением?
Предлагаем воспользоваться нашим официальным интернет-магазином производителя «Штиль». Выпускаемые под одноимённым брендом инверторные стабилизаторы имеют лучшие в своём классе характеристики и уже не первый год пользуются заслуженной популярностью на рынке.
Важно!
Стабилизаторы «Штиль» – полностью российский продукт, адаптированный под свойственные отечественной энергосистеме проблемы с качеством электроэнергии.
Среди представленных в нашем интернет-магазине моделей присутствуют и бытовые стабилизаторы серии «ИнСтаб» с регулируемым выходным напряжением.
- однофазные настенные и напольные/стоечные модели с выходной мощностью от 2,5 до 20 кВА, у которых выходное напряжение регулируется в диапазоне 220-230 В с шагом в 1 В;
- трехфазные и 3 в 1 (три фазы в одну) модели напольного/стоечного исполнения с выходной мощностью от 6 до 20 кВА имеют возможность настройки выходного напряжения в диапазоне 220-240 В с шагом 5 В.
Отметим, что каждому прибору сопутствует подробное описание, содержащие технические характеристики, внешний вид, рекомендуемую область применения, сведенья о комплектации, а также доступную к свободному скачиванию разрешительную и техническую документацию.
Благодаря онлайн-чату ответы на все связанные со стабилизаторами «Штиль» вопросы можно получить прямо на сайте (при необходимости связаться со специалистами компании можно и позвонив по бесплатному номеру телефона). Оплата заказа и оформление доставки (в любой регион России) осуществляется без перехода по каким-либо сторонним ссылкам. Возможно приобретение устройства в кредит!
Стабилизатор напряжения с регулировкой — выходное напряжение
Простому обывателю при вводе запроса по стабилизаторам в поисковике сразу бросятся в глаза хвалебные или ругательные отзывы о производителях, куча брендов зарубежных стран. А также то, как в активных обсуждениях на многочисленных форумах опытные сподвижники продукции, представляясь в образе обычного пользователя, пытаются давать доверчивым читателям «правильные» советы к приобретению дорогого и ненужного им товара.
Такой массовой неразберихе соответствует жестокая конкуренция, не терпящая в бизнесе просиживания штанов с ожиданием завальных заказов, и активный поиск мечущихся в выборе теоретически неподкованных клиентов. У последних сразу же возникает мысль, что все регуляторы однотипные, и лишь отличаются по стоимости, габаритам и внешнему дизайну устройства. Однако картина в корне обманчива.
Основными различиями в стабилизаторах являются:
- функциональная начинка;
- рабочий диапазон,
- качество,
- тип исполнения.
Об одной функциональной особенности и пойдёт речь в этой статье.
Что такое стабилизатор напряжения с регулировкой?
Полвека назад для регулировки напряжения использовались автотрансформаторы с ручным управлением. Нужно было неустанно отслеживать показатели на стрелочном циферблате либо светящейся линейке прибора, и, по мере необходимости, самостоятельно выставлять номинальное значение. Сегодня такую коррекцию стабилизаторы с плавной регулировкой осуществляют абсолютно автоматически. Мы к этому еще вернёмся, а пока вспомним о простейших аналогах и том, с чего всё начиналось.
ЛАТРы и последующая их эволюция
Помните, в советские времена широко использовались лабораторные стенды с автотрансформаторами – ЛАТРами с ручной регулировкой? Основным применением их было – лабораторные задания в рамках школьного курса по физике и вузовской телемеханики, где требовалось получить на выходе точную величину нестандартных параметров. Из категории экспериментальных ЛАТРы незаметно перекочевали в образ бытовой техники.
Одно время их можно было видеть при телевизорах, в настоящее же время их использование стало очень многообразным – от разных технологических процессов (в птицеводстве, ремонтных мастерских, стоматологии и т. п.) до устройств на 110 В. На ЛАТРе довольно просто устанавливается и не такой показатель сети.
Существуют ЛАТРы с рабочими пределами 0–250 В, и, более того, до 300 В. Чем больше порог, тем больше дополнительной мощности у прибора, позволяющей с низких значений подниматься до высоких нагрузок. Нужно понимать, что лабораторному автотрансформатору вручную задаётся такой режим, который нужен. Тем самым устанавливается дополнительный диапазон входного напряжения – так называемая дельта.
К примеру, до удалённой розетки из-за сетевого падения доходят только 200 В. При установке ЛАТРа, поворотом ручки управления можно получить на выходе 220 В. «Дельта» в этом случае будет равна 20 В. При дальнейшем падении напряжения до 180 В, ЛАТР добавит лишь выставленную «дельту» в 20 В, и на выходе можно будет получить не более, чем 180+20=200 В.
Для удобства и наблюдения аппараты позже стали выпускаться с жидкокристаллическим дисплеем, позволяющим регулировать технические показатели прибора уже с более высокой точностью. Теперь, если требуется плавная стабилизация напряжения в 220 В, рекомендуется применение таких устройств, как:
- стабилизатор с регулировкой выходного напряжения;
- стабилизатор с регулировкой выходного тока.
Приборы с такими названиями нередко встречаются в электрических схемах. Возникают вопросы: какая разница между ними и как они работают?
Экскурс в теорию
Напряжение сети, предназначенное для электропитания, может иметь значительные колебания, ухудшающие работу различной техники. В сетях переменного тока встречаются перепады двух видов: краткосрочные и многочасовые. И те и другие изменения негативно сказываются на работе техники. Есть устройства, которые вообще не способны работать без стабилизации параметров, к ним относятся лампы бегущей волны, электронные вольтметры, осциллографы и т. д.
Стабилизаторы с регулировкой напряжения – это аппараты с функцией поддерживания напряжения на нагрузке с нужной точностью при изменении сопротивления нагрузки и параметров сети в заданном диапазоне.
Стабилизаторы с регулировкой тока при тех же изменениях поддерживают в нагрузке с необходимой точностью величину заданного тока. Стабилизаторы одновременно с главными своими функциями осуществляют также сглаживание пульсаций.
Основные параметры
Качеством работы регуляторов в основном служат такие технические показатели, как:
- Стабилизирующий коэффициент, вытекающий из отношения изменений напряжения на входе и выходе
- Показатель нестабильности
- Внутреннее сопротивление
- Коэффициент выравнивания всплесков
Коэффициент полезного действия определяется для всех типов стабилизаторов по отношению входной и выходной активных мощностей равен
Функции приборов
Диапазон входного напряжения
Наряду с точностью стабилизации, является важнейшей его характеристикой. Этот диапазон делится на две категории:
- рабочий с обеспечением заявленной величины стабилизации, к примеру, 220±5%;
- предельный с сохранением работоспособности при напряжении на выходе, отличающемся от заявленного значения в большей или меньшей степени до 15-18%.
При выходе параметров за рамки предельного, устройство отключает питание, оставаясь в сети для контроля и возможности введения техники вновь в работу при возвращении сети электроснабжения в заданный диапазон.
Системный контроль параметров
В случае выхода корректора из строя или резкого подъёма входного напряжения такая система отключает приборы от нормализатора и предотвращает их выход из строя.
Регулировка выходного напряжения
Некоторые модели имеют возможность регулирования выходного напряжения в пределах 210–230 В, что помогает решить одновременно несколько задач:
- возможность установить на выходе стабилизатора западные стандарты напряжения 230 В для импортного электрооборудования. Без такой функции стабилизатор постоянно будет выходить за заданный для подобных приборов нижний диапазон напряжения, что может вызвать сбой в их работе;
- для ламп накаливания лучшим решением будет установка напряжения примерно 210 В, что существенно продлит срок их службы. На силу светового потока ламп это никак не повлияет – пределы останутся такими же, какие заявлены изготовителем.
Еще раз кратко об отличиях
Известны три вида стабилизаторов с регулировкой выходного напряжения: понижающие, повышающие и всеядные. Наиболее интересными являются последние. Независимо от входного, на выходе можно получить необходимое значение напряжения.
Всеядный импульсник как будто не замечает, какое напряжение на входе – ниже или выше требуемого. Аппарат автоматически переключает режимы с повышением или понижением напряжения и удерживает заданное значение на выходе. Помимо этого, такое устройство почти не нагревается.
Пока всё понятно. А как быть со стабилизатором с регулировкой выходного тока? Не станем открывать Америку, если скажем, что такой аппарат нормализует ток. Внешне это устройство напоминает импульсный стабилизатор. Если в паспорте прибора указано значение выходного тока, то именно такой ток и будет. Выходное же напряжение можно изменять в зависимости от нужного значения для потребителя.
Не углубляясь слишком в теорию, просто заметим, что напряжение не требуется регулировать, аппарат сам сделает все исходя из нужд потребителя. С отличиями вроде бы разобрались.
Часто при подключении нагрузки стоит задача, выполнить контроль именно значения тока. Стабилизатором с регулировкой тока, чтобы такая техника не сгорела, ограничивается ток. Следует понимать, что у регуляторов устанавливается пороговое значение тока. После определённого предела приборы начнут нагреваться, и придётся покупать более мощное устройство. Понятно, что при росте тепловыделения, КПД уменьшается.
А насколько это всё нужно-то?
Выбор между регуляторами определяется тем, какой требуется инструмент для облегчения работы или решения определенного круга задач.
Стабилизаторы с регулировкой тока, в отличие от устройств с регулировкой напряжения, нормализуют выходной ток, при этом корректируя напряжение на выходе так, чтобы ток для нагрузки в любой момент оставался одинаковый. Именно в этом заключается основное отличие аппаратов. Путать их между собой не следует, чтобы это не привело к выходу из строя техники.
https://www.youtube.com/watch?v=P0DhWYMO3_A
Понимание того, как работает регулятор напряжения
Скачать PDF
Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений входного напряжения или условий нагрузки. Регуляторы напряжения бывают двух типов: линейные и импульсные.
В линейном регуляторе используется активное (BJT или MOSFET) проходное устройство (последовательное или шунтовое), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным эталонным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.
Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой МОП-транзистор или биполярный транзисторный транзистор. Отфильтрованное выходное напряжение переключателя питания подается обратно в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от входного напряжения или изменений тока нагрузки.
Какие существуют топологии импульсных регуляторов?
Существует три распространенные топологии: buck (понижающая), boost (повышающая) и buck-boost (повышающая/понижающая). Другие топологии включают обратноходовую, SEPIC, Cuk, двухтактную, прямую, полномостовую и полумостовую топологии.
Как частота коммутации влияет на конструкцию регулятора?
Более высокие частоты переключения означают, что регулятор напряжения может использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие потери при переключении и больший шум в цепи.
Какие потери возникают в импульсном регуляторе?
Потери возникают из-за мощности, необходимой для включения и выключения MOSFET, которые связаны с драйвером затвора MOSFET. Кроме того, потери мощности в МОП-транзисторах происходят из-за того, что для переключения из состояния проводимости в состояние непроводимости требуется конечное время. Потери также связаны с энергией, необходимой для зарядки и разрядки емкости затвора MOSFET между пороговым напряжением и напряжением затвора.
Каковы обычные области применения линейных и импульсных регуляторов?
Рассеиваемая мощность линейного стабилизатора прямо пропорциональна его выходному току при заданном входном и выходном напряжении, поэтому типичный КПД может составлять 50% или даже ниже. Используя оптимальные компоненты, импульсный регулятор может достигать КПД в диапазоне 90%. Однако выходной шум линейного стабилизатора намного ниже, чем у импульсного стабилизатора с такими же требованиями к выходному напряжению и току. Как правило, импульсный регулятор может работать с более высокими токовыми нагрузками, чем линейный стабилизатор.
Как импульсный стабилизатор управляет своим выходом?
Импульсные стабилизаторы требуют средств для изменения их выходного напряжения в ответ на изменения входного и выходного напряжения. Один из подходов заключается в использовании ШИМ, который управляет входом соответствующего выключателя питания, который управляет временем включения и выключения (рабочим циклом). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выход имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл для поддержания постоянного выходного напряжения.
Какие конструктивные характеристики важны для микросхемы регулятора напряжения?
К основным параметрам относятся входное напряжение, выходное напряжение и выходной ток. В зависимости от приложения могут быть важны и другие параметры, такие как пульсации выходного напряжения, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами для линейного стабилизатора являются падение напряжения, PSRR (коэффициент ослабления источника питания) и выходной шум.
использованная литература
Загрузить инструменты проектирования управления питанием
Типы регуляторов напряжения и принцип работы | Артикул
СКАЧАТЬ PDF
Получайте ценные ресурсы прямо на свой почтовый ящик — рассылка раз в месяц
Подписаться
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Регулятор напряжения представляет собой схему, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение от источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного тока в постоянный, некоторые из них также могут выполнять преобразование мощности переменного тока в переменный или переменный в постоянный. В этой статье речь пойдет о регуляторах напряжения постоянного/постоянного тока.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные стабилизаторы работают с низким КПД, а импульсные стабилизаторы — с высоким КПД. В высокоэффективных импульсных стабилизаторах большая часть входной мощности передается на выход без рассеяния.
Линейные регуляторы
В линейном регуляторе напряжения используется активное проходное устройство (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сводя ошибку к нулю.
Линейные регуляторы представляют собой понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих стабилизаторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны, имеют низкий уровень шума и пульсации выходного напряжения.
Для работы линейных регуляторов, таких как MP2018, требуется только входной и выходной конденсатор (см. рис. 1) . Их простота и надежность делают их интуитивными и простыми устройствами для инженеров, и часто они очень рентабельны.
Рис. 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора, как правило, более сложная для проектирования, чем линейный регулятор, и требует выбора номиналов внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательной компоновки схемы.
Импульсные регуляторы могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейные регуляторы.
Преимущества импульсных стабилизаторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения V IN / V OUT . Они могут достигать эффективности более 95% в зависимости от требований приложения. В отличие от линейных стабилизаторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. ВЧ920 является примером импульсного регулятора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. фиг. 2) .
Рис. 2. Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в некоторых случаях рассеивают большое количество энергии. Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а КПД ограничен 3 В/5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низким V IN / V OUT дифференциалы.
Важно учитывать предполагаемое рассеивание мощности линейного регулятора при применении, поскольку использование более высоких входных напряжений приводит к высокому рассеиванию мощности, что может привести к перегреву и повреждению компонентов.
Другим ограничением линейных стабилизаторов напряжения является то, что они могут выполнять только понижающее (понижающее) преобразование, в отличие от импульсных стабилизаторов, которые также обеспечивают повышающее (повышающее) и повышающе-понижающее преобразование.
Импульсные стабилизаторы очень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важен для данного приложения, так как шум может влиять на работу и характеристики схемы, а также на характеристики электромагнитных помех.
Топологии импульсных регуляторов: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто полагаются на топологии с малым падением напряжения (LDO). Импульсные стабилизаторы бывают трех распространенных топологий: понижающие преобразователи, повышающие преобразователи и повышающе-понижающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий для линейных регуляторов является регулятор с малым падением напряжения (LDO). Линейные стабилизаторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Однако регулятор LDO предназначен для работы с очень небольшой разницей напряжений между входными и выходными клеммами, иногда всего 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи (также называемые понижающими преобразователями) потребляют более высокое входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) потребляют более низкое входное напряжение и производят более высокое выходное напряжение.
Понижающе-повышающие преобразователи
Понижающе-повышающий преобразователь представляет собой одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выходного напряжения в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного Напряжение.
Управление регулятором напряжения
Четыре основных компонента линейного регулятора — проходной транзистор, усилитель ошибки, источник опорного напряжения и резисторная цепь обратной связи. Один из входов усилителя ошибки устанавливается двумя резисторами (R1 и R2) для контроля выходного напряжения в процентах. Другой вход представляет собой стабильное опорное напряжение (V REF ). Если замеренное выходное напряжение изменяется относительно V REF , усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (V OUT ).
Для работы линейных регуляторов обычно требуется только внешний входной и выходной конденсатор, что упрощает их реализацию.
С другой стороны, импульсный регулятор требует больше компонентов для создания цепи. Силовой каскад переключается между V IN и землей для создания пакетов заряда для доставки на выход. Подобно линейному регулятору, имеется операционный усилитель, который считывает выходное напряжение постоянного тока из сети обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Применение линейных и импульсных регуляторов
Линейные регуляторы часто используются в приложениях, которые чувствительны к стоимости, шуму, слабому току или ограниченному пространству. Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, может использоваться линейный регулятор, поскольку в них нет переключающего элемента, который может создавать нежелательные шумы и мешать работе устройства.
Кроме того, если разработчики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеиваемой мощности, и они могут положиться на линейный регулятор.
Импульсные регуляторы выгодны для более общих применений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. рис. 3) . Например, если приложение требует большого понижающего решения, лучше подойдет импульсный регулятор, так как линейный регулятор может создавать рассеивание высокой мощности, которое может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с IC пользователя.
Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от применения.
Ток покоя важен, когда эффективность в режиме малой нагрузки или в режиме ожидания является приоритетом. При рассмотрении частоты коммутации в качестве параметра максимизация частоты коммутации приводит к меньшим системным решениям.
Кроме того, тепловое сопротивление имеет решающее значение для отвода тепла от устройства и рассеивания его по системе. Если в состав контроллера входит внутренний МОП-транзистор, то все потери (кондуктивные и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи — еще один важный параметр, который необходимо проверить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на опорные параметры напряжения. Это ограничивает более низкое выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы правильно выбрать регулятор напряжения, разработчик должен сначала понять его ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например, эффективность, производительность, стоимость) и любые дополнительные ключевые функции, такие как индикация исправности (PG) или включение управления.
После того как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее заданным требованиям. Таблица параметрического поиска является ценным инструментом для проектировщиков, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам вашего приложения.
Каждое устройство MPS поставляется с техническим описанием, в котором указано, какие внешние детали необходимы, и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции. Техническое описание можно использовать для расчета значений компонентов, таких как выходная емкость, выходная индуктивность, сопротивление обратной связи и других ключевых компонентов системы. Кроме того, вы можете использовать инструменты моделирования, такие как DC/DC Designer или программное обеспечение MPSmart, обращаться к примечаниям по применению или обращаться к местному FAE с вопросами.
MPS предлагает широкий выбор эффективных, компактных линейных и импульсных регуляторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.