Так что же все-таки получается после выпрямления? 12 вольт выпрямитель напряжения
Так что же все-таки получается после выпрямления?
Очень много вопросов задают по статье как получить из переменного напряжения постоянное. Напомню, что мы получали постоянное напряжение с помощью типичной схемы, которая используется во всей электронике:
Да, та статья получилась чуток сыровата, но суть преобразования переменного тока в постоянный вроде бы объяснил. Но все равно, очень много вопросов идут в личку именно по этой статье. И тут приходится снова начинать писать по полчаса ответ каждому любопытному читателю. Поэтому я решил для всех вас накарябать статейку и помочь разобраться, что есть что.
Ну что же, придется возвращаться к истокам 😉 Вместо транса я возьму ЛАТР, который мне будет выдавать переменный ток:
Выставляем на ЛАТРе с помощью цифрового осциллографа напряжение амплитудой в 10 Вольт:
Как мы можем увидеть в нижнем левом углу, частота нашего сигнала 50 Герц, то бишь есть частота сети. Длина одного кубика по вертикали равна 2 Вольтам.
Далее берем 4 кремниевых диода
И спаиваем из них диодный мост вот по такой схеме:
Подаем напряжение с ЛАТРа на диодный мост, а с других концов цепляем щуп осцила
Тыкаем щупом осцила в эти красные кружочки на схеме. Землю на один кружочек, сигнальный на другой.
Смотрим, что получилось на экране
Да все дело в том, что сопротивление щупа осциллографа обладает очень высоким входным сопротивлением, или иначе простыми словами: мы подцепили очень-очень высокоомный резистор к выходу диодного моста. Поэтому диодный мост в холостом режиме, то есть в режиме без нагрузки, не функционирует.
Для того, чтобы проверить диодный мост на работоспособность, нам надо его нагрузить. Это может быть резистор в несколько десятков или сотен Ом, лампочка, либо какая-нибудь электронная безделушка. В моем случае я взял лампочку накаливания на 12 Вольт от поворотника мотоцикла:
Цепляем ее к диодному мосту
Тыкаем щуп осцила в эти точки и смотрим осциллограмму
Как мы видим, напряжение с ЛАТРа чуть просело. Все зависит, конечно, от подключаемой нагрузки и мощности самого ЛАТРа. Про это я писал еще в статье Работа трансформатора
Теперь тыкаем щупом в эти точки
Классика жанра! 😉 Превращаем отрицательную полуволну в положительную и получаем «горки» с частотой в 100 Герц ;-). Но ваш внимательный глаз ничего не заметил? Хотя если даже мы и выпрямили напряжение с помощью диодного моста, то почему амплитуда каждой полуволны стала еще чуть меньше? Дело все в том, что на P-N переходе диода в прямом смещении падает напряжение в 0,6-0,7 Вольт. Именно поэтому оно и вычитается с амплитуды напряжения, которое надо выпрямить.
Давайте теперь к диодному мосту запаяем конденсатор емкостью в 5000 мкФ и не будем цеплять никакую нагрузку
Тыкаем щупом сюда
Получили вот такую осциллограмму постоянного тока. Она в 1,41 раз больше, чем действующее (среднеквадратичное) значение сигнала с ЛАТРа (о действующем напряжении чуть ниже)
А теперь цепляем лампочку
Осциллограмма кардинально изменилась.
Как мы видим, напряжение просело и у нас получилась осциллограмма постоянного напряжения с небольшими пульсациями. Вот эти маленькие «холмики» и есть пульсации, в отличите от «гор» сразу после диодного моста с лампочкой-нагрузкой. Физический смысл здесь такой: конденсатор не успевает разряжаться на нагрузке, как снова приходит новая «горка» и снова заряжает конденсатор.
Правило диодного выпрямителя с конденсатором очень простое: чем больше емкость конденсатора и чем больше сопротивление нагрузки, тем меньше по амплитуде будут пульсации, и наоборот.
Но почему у нас просело напряжение? Ведь было уже 10 Вольт постоянки на кондере без нагрузки?
А как цепанули лампочку стало намного меньше…
В чем же проблема? А проблема именно в законе сохранения энергии…
Итак, давайте еще раз вспомним: что такое среднеквадратичное значение напряжения?
Допустим у нас есть лампочка накаливания. Я ее подцепил к источнику постоянного тока и она у меня загорелась с какой-то яркостью. Потом я цепляю эту лампу к источнику переменного тока и добиваюсь такого же свечения лампы. Форма сигнала постоянного и переменного напряжения разные, а мощность, выдаваемая в нагрузку, в данном случае лампочку, одинаковая. Можно сказать, что среднеквадратичное значение переменного тока равняется значению постоянного тока.
То есть если у нас лампочка на 12 Вольт, я могу подать на нее 12 Вольт с блока питания или 12 Вольт с ЛАТРа. Лампочка будет светить с такой же яркостью. Мультиметр в режиме измерения переменного тока показывает именно среднеквадратичное значение напряжения.
Итак, чему же равняется среднеквадратичное значение вот этого сигнала?
А давайте замеряем. Для этого я беру мой любимый прибор токоизмерительные клещи, в который встроен целый мультиметр с True RMS и начинаю замерять среднеквадратичное значение
Мультик показал 7,18 Вольт. Это и есть среднеквадратичное значение этого сигнала.
Для синусоидальных сигналов оно легко вычисляется по формуле:
где
Umax — максимальная амплитуда
UД — действующее (среднеквадратичное) значение напряжения.
Если считать по формуле, то получим 10/√2=7,07 Вольт. Сходится с небольшой погрешностью.
Как мы подцепили нагрузку, у нас сразу просела амплитуда напряжения с ЛАТРа, а следовательно, и среднеквадратичное значение напряжения
6, 68 Вольт. Хотя по формуле получается 9/1,41=6,38. Спишем на погрешности измерения).
Но чему же равняется среднеквадратичное значение напряжения после диодного моста с включенной нагрузкой-лампочкой?
Для определения среднеквадратичного значения такого сигнала:
нам понадобится формула и табличка.
Вот формула:
где Ka — это коэффициент амплитуды
Umax — максимальная амплитуда сигнала
U — действующее (среднеквадратичное) значение сигнала
А вот и табличка:
Теперь ищем по табличке наш пульсирующий сигнал с выпрямителя. Как мы видим, его коэффициент амплитуды равен 1,41 или, если быть точнее, √2. То есть точно такой же, как и у синусоидального сигнала.
Вычисляем по формуле и получаем:
После того, как мы поставили конденсатор, у нас почти получилась осциллограмма постоянного тока с значением в примерно в 6 Вольт, если полностью усреднить нашу кривую, то есть пренебречь небольшими пульсациями. Можно даже сказать, что это значение постоянного тока будет равняться среднеквадратичному значению переменного тока номиналом в 6 Вольт. Не забываем, что 0,6-0,7 Вольт у нас падают на диодах.
Итак, какие выводы делаем из всего вышесказанного и показанного?
Среднеквадратичное значение напряжения на выходе диодного выпрямителя чуточку меньше, чем до диодного моста. По 0,6-0,7 Вольт падает на диодах. Если бы мы поставили диоды Шоттки, то выиграли бы 0,3-0,4 Вольта, так как падения на Шоттках 0,2-0,3 Вольта.Так что, схема двухполупериодного выпрямителя очень даже ничего с энергетической точки зрения, поэтому-то она и является базовой схемой в электронике.
www.ruselectronic.com
Схема простого, регулируемого (плавно) блока питания на 0—12 вольт.
Тема: как сделать простой, регулируемый плавно, блок питания своими руками.
Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.
Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.
Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.
Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор — его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.
Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.
Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).
Проще говоря — выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1.2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.
P.S. Эту электрическую схему простого регулируемого блока питания я когда-то давно (когда сам начинал заниматься электроникой) собрал для себя. Он меня не разу не подводил, я им проверял устройства, запитывал самодельные схемы, заряжал различные аккумуляторы и т.д. При желании этот блок питания можно доработать и снабдить дополнительными функциональными элементами, такими как внутренний вольтметр, амперметр, защиты от перегрузки и т.д.
electrohobby.ru
Практические примеры | Электрознайка. Домашний Электромастер.
♦Динистор и тиристор в цепях постоянного тока.
♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод), это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод), это тринистор, или в обиходе его называют просто тиристор.
♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр, то есть величину напряжения пробоя тиристора;Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U < Uпр), если подать импульс напряжения положительной полярности между управляющим электродом и катодом.
♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.Тиристор можно закрыть:
- — если уменьшить напряжение между анодом и катодом до U = 0;
- — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд.
- — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).
Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.
Работа динистора и тиристора в цепях постоянного тока.
Рассмотрим несколько практических примеров.Первый пример применения динистора, это релаксационный генератор звуковых сигналов.
В качестве динистора используем КН102А-Б.
♦ Работает генератор следующим образом.При нажатии кнопки Кн, через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2.♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом, не более, например телефонный капсюль ТК-67-Н.Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).
♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт, что не всегда возможно и удобно.
Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.
Устройство работает следующим образом.♦ В исходном состоянии тиристор закрыт и лампочка не горит.Нажмем на кнопку Кн в течении 1 – 2 секунды. Контакты кнопки размыкаются, цепь катода тиристора разрывается.
В этот момент конденсатор С заряжается от источника питания через резистор R1. Напряжение на конденсаторе достигает величины U источника питания.Отпускаем кнопку Кн.В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.В цепи управляющего электрода потечет ток, тиристор «откроется».Загорается лампочка по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.В таком состоянии схема будет находиться сколько угодно долго.В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн. При этом основная цепь питания лампочки обрывается. Тиристор «закрывается». Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).
Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208.
♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог.
Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3.Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.
Аналог тиристора имеет два управляющих входа.Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).
Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.
Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод.
♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд), будут зависеть от свойств применяемых транзисторов.
♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2. А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4.
Если в схеме генератора звуковых частот (рис 1), вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5).
Напряжение питания такой схемы составит от 5 до 15 вольт. Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.
Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.
Потом можно заменить его на постоянный резистор.
Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.
♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6).
Если ток в нагрузке превысит 1 ампер, сработает защита.
Стабилизатор состоит из:
- — управляющего элемента– стабилитрона КС510, который определяет напряжение выхода;
- — исполнительного элемента–транзисторов КТ817А, КТ808А, исполняющих роль регулятора напряжения;
- — в качестве датчика перегрузки используется резистор R4;
- — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503.
♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1. Резистором R1 задается ток стабилизации стабилитрона КС510, величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт.Резистор R5 задает начальный режим стабилизации выходного напряжения.
Резистор R4 = 1,0 Ом, включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.
В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4. При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта.Это есть напряжение перехода анод — катод открытого аналога тиристора.
Одновременно загорается светодиод Д1, сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта.Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн, сбросив блокировку защиты.На выходе стабилизатора вновь будет напряжение 9 вольт, а светодиод погаснет.Настройкой резистора R3, можно подобрать ток срабатывания защиты от 1 ампера и более. Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.
/span
domasniyelektromaster.ru
Выпрямитель для зарядки аккумулятора | Электрознайка. Домашний Электромастер.
Каждый автолюбитель мечтает иметь в своем распоряжении выпрямитель для зарядки аккумулятора. Без сомнения, это очень нужная и удобная вещь. Попробуем рассчитать и изготовить выпрямитель для зарядки аккумулятора на 12 вольт. Обычный аккумулятор для легковой автомашины имеет параметры:
- напряжение в обычном состоянии 12 вольт;
- емкость аккумулятора 35 — 60 ампер часов.
Соответственно ток заряда составляет 0,1 от емкости аккумулятора, или 3,5 — 6 ампер. Схема выпрямителя для зарядки аккумулятора изображена на рисунке.
Прежде всего нужно определить параметры выпрямительного устройства. Вторичная обмотка выпрямителя для зарядки аккумулятора должна быть рассчитана на напряжение: U2 = Uак + Uo + Uд где: — U2 — напряжение на вторичной обмотке в вольтах; — Uак — напряжение аккумулятора равно 12 вольт; — Uo — падение напряжения на обмотках под нагрузкой равно около 1,5 вольт; — Uд — падение напряжения на диодах под нагрузкой равно около 2 вольт.
Всего напряжение: U2 = 12,0 + 1,5 + 2,0 = 15,5 вольт.
Примем с запасом на колебание напряжения в сети: U2 = 17 вольт.
Ток заряда аккумулятора примем I2 = 5 ампер.
Максимальная мощность во вторичной цепи составит: P2 = I2 х U2 = 5 ампер х 17 вольт = 85 ватт. Мощность трансформатора в первичной цепи (мощность, которая будет потребляться от сети) с учетом КПД трансформатора, составит: P1 = P2 / η = 85 / 0,9 = 94 ватт. где: — Р1 — мощность в первичной цепи; — Р2 — мощность во вторичной цепи; -η = 0,9 — коэффициент полезного действия трансформатора, КПД.
Примем Р1 = 100 ватт.
Рассчитаем стальной сердечник Ш — образного магнитопровода, от площади поперечного сечения которого зависит передаваемая мощность. S = 1,2√ P где: — S площадь сечения сердечника в см.кв.; — Р = 100 ватт мощность первичной цепи трансформатора.S = 1,2√ P = 1,2 х √100 = 1,2 х 10 = 12 см.кв. Сечение центрального стрежня, на котором будет располагаться каркас с обмоткой S = 12 см.кв.
Определим количество витков, приходящихся на 1 один вольт, в первичной и вторичной обмотках, по формуле: n = 50 / S = 50 / 12 = 4,17 витка.
Возьмем n = 4,2 витка на 1 вольт.
Тогда количество витков в первичной обмотке будет: n1 = U1 · n = 220 вольт · 4,2 = 924 витка.
Количество витков во вторичной обмотке:n2 = U2 · n = 17 вольт · 4,2 = 71,4 витка.
Возьмем 72 витка.
Определим ток в первичной обмотке:I1 = P1 / U1 = 100 ватт / 220 вольт = 0,45 ампер.
Ток во вторичной обмотке:I2 = P2 / U2 = 85 / 17 = 5 ампер.
Диаметр провода определим по формуле:d = 0,8 √I.
Диаметр провода в первичной обмотке:d1=0,8 √I1 = 0,8 √ 0,45 = 0,8 · 0,67 = 0,54 мм.
Диаметр провода во вторичной обмотке:d2 = 0,8√ I2 = 0,8 5 = 0,8 · 2,25 = 1,8 мм.
Провод вторичной обмотки может быть как с эмалевой, так и с хлопчатобумажной изоляцией. Сначала на каркас наматывается первичная обмотка. Затем два слоя лакоткани или миткалевой ленты. Затем наматывается вторичная обмотка. Пример намотки каркаса трансформатора можно посмотреть в статье: «Как намотать трансформатор на Ш — образном сердечнике»
Вторичная обмотка наматывается с отводами. Первый отвод делается от 52 витка, затем от 56 витка, от 61, от 66 и последний 72 виток.
Вывод делается петелькой, не разрезая провода. затем с петельки счищается изоляция и к ней припаивается отводящий провод.
Регулировка зарядного тока выпрямителя производится ступенчато, переключением отводов от вторичной обмотки. Выбирается переключатель с мощными контактами.
Если такого переключателя нет, то можно применить два тумблера на три положения рассчитанных на ток до 10 ампер (продаются в авто-магазине). Переключая их, можно последовательно выдавать на выход выпрямителя, напряжение 12 — 17 вольт.
Положение тумблеров на выходные напряжения 12 — 13 — 14,5 — 16 — 17 вольт.
Диоды должны быть рассчитаны, с запасом, на ток 10 ампер и стоять каждый на отдельном радиаторе, а все радиаторы изолированы друг от друга.
Радиатор может быть один, а диоды установлены на нем через изолированные прокладки.
Площадь радиатора на один диод около 20 см.кв., если один радиатор, то его площадь 80 — 100 см.кв. Зарядный ток выпрямителя можно контролировать встроенным амперметром на ток до 5 -8 ампер.
Можно использовать данный трансформатор, как понижающий, для питания аварийной лампы на 12 вольт от отвода 52 витка. (смотрите схему). Если нужно питать лампочку на 24 или на 36 вольт, то делается дополнительная обмотка, из расчета на каждый 1 вольт 4,2 витка.
Эта дополнительная обмотка включается последовательно с основной (смотреть верхнюю схему). Нужно только сфазировать основную и дополнительную обмотки (начало — конец), чтобы общее напряжение сложилось. Между точками: (0 – 1) — 12 вольт; (0 -2) — 24 вольта; между (0 – 3) — 36 вольт. Например. Для общего напряжения в 24 вольта нужно к основной обмотке добавить 28 витков, а для общего напряжения 36 вольт, еще 48 витков провода диаметром 1,0 миллиметр.
Возможный вариант внешнего вида корпуса выпрямителя для зарядки аккумулятора, изображен на рисунке.
Далее посмотрите новую статью: «Зарядное устройство на тиристорах для зарядки аккумулятора».
domasniyelektromaster.ru
Регулятор напряжения 12 вольт – схемы и способы изготовления своими руками
Стабильность напряжения – это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах.
Особенности регулировки
Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:
- постоянное или переменное напряжение надо регулировать;
- какова максимальная величина тока в нагрузке;
- величина разности потенциалов перед регулятором;
- параметры напряжения на нагрузке в диапазоне регулирования.
Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.
Схема с переменным резистором.
Элементарная схема регулятора
Схема с переменным резистором
Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.
Индуктивный регулятор
Другим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.
Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.
Регулирование со стабилизацией
Для получения заданных параметров напряжения или тока нагрузки применяются стабилизаторы. В них выходное напряжение или ток сравниваются с эталонным значением, и при минимальном заданном изменении выполняется автоматическая компенсация регулятора управлением соответствующего полупроводникового прибора. Существует огромное количество разнообразных схем различных стабилизаторов. Наиболее простыми в использовании являются интегральные микросхемы.
Внешний вид и схема подключения микросхемы – стабилизатора 12 В
Такие готовые стабилизаторы очень удобны для питания светодиодов как в автомобилях, так и в системах освещения. При питании от сети 220 вольт необходим понижающий трансформатор с выпрямителем, подключаемый к входу. Поскольку во многих случаях параметры нагрузки весьма специфичны, делаются специальные стабилизаторы напряжения и тока. Они могут работать как в непрерывном, так и в импульсном режиме. Но это уже совсем другая история…
lampagid.ru
Выпрямитель 100 Ампер / 12 Вольт
Общие технические данные(высокочастотный инверторный выпрямитель)
Наименование выпрямителя: | UNIV-100A/12В |
Напряжение питающей сети: | однофазное; 220В ±10%; 50Гц |
Номинальный выходной ток: | 100А |
Номинальное выходное напряжение: | 12В |
Диапазон регулировки выходного тока: | 0...100А |
Диапазон регулировки выходного напряжения: | 0...12В |
Дискретность (шаг) регулировки тока/напряжения: | 0.1А / 0.1В |
Выходная мощность выпрямителя: | 1200 Вт |
Точность отображения параметров на дисплее: | ±1% ±1 разряд |
Режим стабилизации выходного тока: | Да |
Режим стабилизации выходного напряжения: | Да |
Точность стабилизации выходного тока: | ≤ 1% |
Точность стабилизации выходного напряжения: | ≤ 1% |
Коэффициент мощности, не менее: | 0.89 |
Отклонение поддерживаемого параметра: | Не более 1% |
Сопротивление изоляции: | Более 4.5МОм |
Система охлаждения выпрямителя: | Принудительное воздушное |
Эффективность (КПД) в номинальном режиме: | ≥ 90% |
Встроенные функции защиты: | Защита от к.з., защита от перегрузки по току, напряжению, защита от перегрева |
Рабочее положение выпрямителя: | Горизонтальное |
Климатическое исполнение (по ГОСТ15150) : | УХЛ4 |
Степень защиты корпуса: | IP32 |
Ресурс работы, не менее: | 20000 часов |
Срок службы, не менее: | 10 лет |
Температура эксплуатации: | - 15°/+50° С (защита от перегрева) |
Температура хранения: | - 30°/+60° С |
Относительная влажность воздуха: | < 80 % |
Гарантийный срок эксплуатации: | 2 года |
Высокочастотный инверторный источник тока (выпрямитель) UNIV-100А/12В с функциями стабилизации, поддержания и регулировки выходного тока и напряжения, установки защиты от перенапряжения
Возможное оснащение: выносной пульт д/у, блок реверса, включение по внешнему контакту (“сухой контакт”), различные интерфейсы: "токовая петля" 4-20мА, 0-5мА, 0-10мА, RS-232. RS-485.
Область применения: питание гальванических ванн, проведение процессов электролиза, электротехнические испытания, питание установок для электрохимической очистки воды, электропитание испытательных стендов, зарядка аккумуляторов, питание нагревателей, электромагнитов, светового оборудования и др.
Гарантийный срок эксплуатации: 2 года (24 месяца)
Габаритные размеры: 250 х 150 х 360 мм
Масса выпрямителя: 12.2 кг
impgold.ru
Выпрямитель напряжения 12 вольт своими руками. Диодный мост
Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.
Как работает диодный мост
Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.
Поэтому необходимо немного изменить соединение. Однако этот выпрямительный модуль скрывает один обман. Обратите внимание на дроссели общественного освещения. Щелкните значок столбца. большой дроссель. Статьи о выпрямителях все равно будут так много! На этот раз мы публикуем ссылку и дизайн выпрямителя с так называемыми «Все статьи» в столбце: для просмотра всех статей в этом разделе. Но прежде он обратился к нам с этим письмом: Дополнительный выпрямитель для измельчителя траффика.
Это уже очень опасно. В результате коэффициент фильтрации обычно составляет 90%. Почему этот тип выпрямителя? Это устройство с дросселем, проходящим через весь сварочный ток. Может быть, еще немного. сварки легированных и различных материалов или тонких листов. Далее следует описание каждого компонента. молчит. так что г-н Томан попытался подготовить такое руководство. конечно, за счет мобильности. Согласно различным форумам, этот тип всегда заинтересован, и, к сожалению, ответы на эти вопросы иногда вводят в заблуждение.
Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические с большой емкостью.
Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.
Выпрямитель имеет значительно лучшие сварочные свойства. На следующем рисунке показана схема подключения выпрямителя. Этот тип выпрямителя предназначен в первую очередь для промышленной сферы и предполагается. что в интересах объективности было бы целесообразно опубликовать инструкции по строительству выпрямителя с реактором с полным дросселем. Выпрямитель 130А с «большим» дросселем. Необходимо использовать только неповрежденные держатели электродов и предписанные защитные перчатки. У устройства также есть одна неисправность: сварка создает пики напряжения с амплитудой в сотни вольт и энергией более 70 Дж.
Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.
Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.
Это действительно отличный дизайн. Судите сами. что в некотором роде свойства коммерческих инверторов перевешивают. устойчиво и приятно эластично. таких как хардкорный ремонт, если не вашей собственной энергией. В некоторых отношениях сборка с высококачественными компонентами может опережать коммерческие инверторы. вследствие травмы или травмы. которые мы сейчас представляем читателям. Превосходные свойства сварки будут особенно выделяться в незначительной и конкретной работе. Все работы будут нановидными для более высокого класса тепла. для указанного поперечного сечения железа и индуктивности около 2-3 мГн составляет около 60, от этого зависит поперечное сечение обмотки. потому что алюминиевая обмотка с необходимым большим поперечным сечением просто не подходит для скелета.
Применение диодных мостов
В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком явля
sibay-rb.ru