Алюминиевые сплавы в РФ (деформируемые = под мехобработку). Подробная классификация, физические свойства, коррозионные свойства, механические свойства, круглый и профильный алюминиевый прокат, плоский алюминиевый прокат. Предел прочности алюминиевых сплавов
Пределы прочности алюминиевых сплавов - Справочник химика 21
ЖЕЛЕЗНЫЕ СПЛАВЫ, обладают высокими значениями прочности, пластичности, хорошей свариваемостью, износостойкостью и др. полезными св-вами, к-рые можно изменять в широких пределах легированием, термической и др. видами обработки. По нек-рым характеристикам (жаропрочности, корроз. стойкости и др.) уступают никелевым, титановым, кобальтовым и алюминиевым сплавам, однако более дешевы. См. также Инвар, Ковар, Пермендюр, Сталь, Фехраль, Хромаль, Чугун, Элинвар. [c.201]
Соотношение между истинными и вычисленными значениями снижения предела прочности алюминиевых сплавов, испытанных в промышленной атмосфере (IV) и в атмосфере [c.284]
Вследствие образования газовой пористости предел прочности алюминиевого сплава АЛ снижается с 25 до 15 кгс/мм [23]. Влияние водорода на пористость алюминиевых сплавов и их механические свойства отражено в работах [12, 24—25]. Образование пор объясняется изменением растворимости водорода при затвердевании металла и выделением молекулярного водорода. [c.411]
В общем можно заключить, что толстослойное анодирование для исследованных соотношений толщин анодной пленки и самого металла влияет на предел прочности алюминиевых сплавов весьма незначительно. После некоторого подъема, соответствующего толщинам пленок до 25 мк, с дальнейшим ростом толщины пленки наблюдается постепенное снижение предела прочности. Относительное удлинение и сужение снижается более ощутимо. Так, например, у пленок толщиной 60—78 мк относительное удлинение составляет в среднем 50% от исходной величины (т. е. без анодной пленки), а сужение — около 25—30%. Таким образом, наличие анодной пленки как бы уменьшает пластичность образца (делает его более хрупким). Однако изменение механических характеристик относится именно к анодированному образцу или детали, а не к самому алюминиевому сплаву, так как при снятии анодной пленки сплав показывает свои первоначальные механические свойства. [c.95]
Интересно отметить, что контакт различных металлов существенно влияет на коррозионно-усталостную прочность алюминиевых сплавов. Как видно из рис. II.б, медь больше других металлов снижает коррозионную усталость алюминиевых сплавов, контакт со сталью 45 сказывается значительно меньше, а цинк повышает предел коррозионной усталости. [c.61]
Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы. Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала. Без заметной потери прочности алюминиевые сплавы можно эксплуатировать при температурах до 180°С. Правда, некоторые из них выдерживают нагрев до 320—350°С, но при этом становятся хрупкими. Температурный предел эксплуатации титановых сплавов — 550—600°С, молибденовых—860, а титано-молибденовых — 1500°С [c.222]
Лакокрасочные покрытия повышают сопротивление алюминиевых сплавов коррозионной усталости. С увеличением нагар-товки и толщины пленки, полученной при анодировании, циклическая прочность дюралюминия проходит через максимум. Наличие на повер.хности металла коррозионных поражений существенно снижает коррозионно-усталостную прочность алюминиевых сплавов. В области пластических деформаций происходит снижение потенциала дюралюминия на 0,1 в. В связи с этим электрохимическая защита дюралюминия лакирующим слоем алюминия обеспечивается только в пределах упругой деформации [183]. [c.90]
Незначительное изменение ударной вязкости дк>р-алюминия при сохранении наряду с этим высоких значений предела упругости и предела пропорциональности обусловливает возможность применения его вместо дефицитных медных сплавов для изготовления аппаратуры, работающей в условиях глубокого холода. Необходимо также добавить, что все сплавы алюминия, как и чистый металл, являются пластичными при низких температурах и хорошо обрабатываются. Наиболее интенсивно возрастают при понижении температуры прочность и твердость сплавов алюминия, слабее повышаются предел текучести и относительное удлинение. Увеличение разности между пределами прочности и текучести с понижением температуры до —270 °С гарантирует некоторый запас пластичности алюминиевых сплавов. [c.142]
Механические свойства литейных алюминиевых сплавов могут быть существенно улучшены модифицированием в жидком состоянии. Так, модифицирование силумина с содержанием 13% кремния приводит к повышению предела прочности от 140 до 180 МН/м и удлинения от 3 до 8%. При более высоких требованиях к прочностным свойствам применяют специальные силумины с добавками меди, марганца, магния, с термической обработкой закалкой с последующим старением. Однако механические свойства литых сплавов значительно уступают термически упрочняемым сплавам. Поэтому применение литых сплавов для нагруженных деталей целесообразно лишь в случае сложной формы изделия или выигрыша в весе, в остальных случаях предпочтительнее применение кованых, более прочных сплавов. [c.53]
Большинство испытанных алюминиевых сплавов после пятилетней экспозиции в погруженном состоянии хорошо сохранило свои механические свойства, тогда как образцы из стали 20 за этот же период снизили предел прочности с 420 до 200 МН/м и относительное удлинение с 33 до 23%. Однако такие алюминиевые сплавы, как Д16-АТ, Д16-Т, АК-6, В92-Т, АВ-Т, В91, не следует применять в конструкциях морских нефтепромысловых сооружений из-за значительной потери прочности или склонности подвергаться расслаивающей коррозии в морокой воде. [c.204]
Оценивая коррозионную стойкость алюминиевых сплавов по изменению предела прочности И. Л. Розенфельдом с сотрудниками было установлено, что в морской атмосфере он снижался у сплава А2 на 3—31% и у сплава Д1 —на 8—56%. Предел прочности алюминия, находящегося в контакте с металлами, обладающими более положительным потенциалом, снижался еще в большей степени. [c.73]
Наиболее распространенной термообработкой алюминиевых сплавов с целью повышения стойкости к КР (особенно в случае склонных к КР сплавов серий 2000 и 7000) является перестаривание. По мере того как выделения становятся менее когерентными и постепенно снижается прочность, стойкость к КР часто возрастает весьма существенно. В результате достаточно высокую стойкость можно приобрести ценой умеренного понижения прочности. Например, перестаривание сплава 7075 в течение 10 ч при 435 К уменьшает предел текучести лишь примерно на 7 %, тогда как время до разрушения гладких образцов возрастает очень резко [2]. Рис. 25 иллюстрирует это в терминах механики разрушения при продолжительности обработки свыше 10 ч вязкость разрушения Ктс очень быстро возрастает, тогда как максимальная скорость роста трещины при КР (соответствующая плато, или области II [c.89]
Обширные исследования влияния дефектов на усталостную прочность сварных соединений низколегированных конструкционных сталей с пределом прочности 440...640 МПа и алюминиевых сплавов проведены Харрисоном [356, 357). Им предложено еще на стадии проектирования конструкции относить ее к одному из пяти классов V, IV, X, У, Z, отличающихся ступенчатым снижением уровня требований к качеству изготовления. Обоснованием к такому подходу послужило простое соображение, что применительно к сварной конструкции, работающей при циклических нагрузках, нет смысла настаивать на ремонте мелких внутренних дефектов, если рядом расположен угловой шов, определяющий усталостную прочность данной конструкции. [c.386]
Существует условный предел усталости, т. е. напряжение, при котором соединения не разрушаются в течение достаточно длительного времени. Реальные клееные конструкции практически не выдерживают более 10 —10 циклов нагружения. По разным данным [9, 29—31], независимо от вида клея коэффициент усталости клеевых соединений металлов составляет 0,15— 0,20. Расчетные значения прочности соединений стали на эпоксидных клеях (сдвиг при кручении) на базе 10 циклов, составляет 8—10 МПа, причем действие воды снижает это значение примерно на 25% [9, 29, 40]. Данные по усталостной прочности соединений алюминиевого сплава и стали на различных клеях, различающихся теплостойкостью, были приведены в табл. II. 11—II. 14. [c.54]
Предел прочности при сдвиге клеевых соединений алюминиевого сплава [c.160]
Влияние фретинг-коррозии на усталостную прочность проявляется в возникновении точечной коррозии, уменьшении поперечного сечения и появлении усталостных трещин. В частности, значительно снижается предел прочности алюминиевых сплавов. [c.105]
Анодирование существенно повышает коррозионную стойкость алюминиевых сплавов. Так, предел прочности образцов сплава В95 за 30 сут. испытаний в морской воде с 0,1% перекиси водорода снизился в результате коррозии с 600 до 270 МН/м . Предел прочности анодированного сплава за 130 сут. снизился лишь до 520 МН/м2. Анодирование является также хорошей защитой алюминия и его сплавов от почвенной коррозии в песке и торфе. Глубина проникновения коррозии на анодированном сплаве типа AШg во влажной почве не превосходила 0,005 мм, а на неанодированном — 0,40 мм [10]. [c.63]
В. С. Борисов и С. А. Вишенков [387] нашли, что химическое никелирование без термообработки не влияет на усталостную прочность стали. Термообработанные никель-фосфорные покрытия, осажденные из кислых растворов, значительно снижают усталостную прочность (на 41—42%). При толщине 35 мк никелевое покрытие снижает усталостную прочность стали в такой же мере, как и хромовое покрытие толщиной 200 мк. Осадки, полученные из щелочных растворов, в меньшей степени снижают усталостную прочность, чем осажденные из кислых растворов. При толщине покрытия 35 мк снижение усталостной прочности стали ЗОХГСА составило 16,5%, что сравнимо со снижением предела усталости для стали с хромовыми покрытиями такой же толщины. С увеличением толщины никелевого покрытия усталостная прочность стали снижается. Усталостная прочность алюминиевого сплава Д1Т после химического никелирования не изменилась, а чистого алюминия возросла на 38% (при толшине покрытия 30 мк). [c.113]
Титан и его сплавы хорошо сопротивляются знакопеременным и циклическим нагрузкам. Для титана соотношение между пределами выносливости и прочност -равно 0,85, тогда как это соотношение у сталей соот ветствует 0,5, а у алюминиевых сплавов 0,3. Учитыва высокую выносливость и коррозионную стойкость, тита новые сплавы особенно выгодно применять в условиях требующих сопротивления коррозионной усталости. Пр1 температуре ниже нуля предел усталости титановы сплавов повышается, при этом улучшаются и другимеханические свойства. Титан не склонен к хладолом кости. [c.66]
Испытания на усталостную прочность в усиленно-аэрируемом буровом растворе гладких образцов из стали 40ХН, алюминиевого сплава Д16Т и технически чистого титана ВТ1-0 показали, что титан имеет в 3 раза больший предел выносливости при базе 10 млн. циклов, чем сталь или алюминиевый сплав [38]. Г. К. Шрейбером и С. С. Тененбаум при исследовании усталостной прочности титановых сплавов установлено, что наибольшей усталостной прочностью и долговечностью на воздухе и буровом растворе обладают сплавы ВТ14 и АТ6, которым свойственно и наибольшее сопротивление хрупкому разрушению. [c.108]
Введение марганца в бинарные сплавы А1 — Mg дает положительный эффект, усиливая образование выделений р. Добавки марганца и хрома стабилизируют структуру деформированных зерен [133] и повышают прочность [134]. Введение 0,2—0,4 % В1 способствуют стабилизации сплава, приводя к образованию частиц В12Мдз [135]. Было показано, что добавки меди и циркония также повышают стойкость к КР [136]. При хорошей стабилизации сплавы серии 5000 могут довольно успешно эксплуатироваться во влажных морских средах [2], хотя, по имеющимся данным, при высоком содержании магния повышение прочности все же сопровождается слабым понижением стойкости к КР [134]. В некоторых новых сплавах, например С519, характеризуемых, помимо высокого предела текучести (свыше 200 МПа), хорошей вязкостью и свариваемостью, наибольшая чувствительность к КР наблюдается в направлении толщины материала [134] (см. рис. 23). Подобным образом ведут себя и многие другие алюминиевые сплавы. [c.84]
Это была первая попытка применения в качестве конструкционного материала в авиации высокопрочного сплава системы А1—7п—М . Отметим три иаиболее важных фактора, связанные с этим ранним случаем разрушения, поскольку они ответственны за большую часть разрушений от КР высокопрочных алюминиевых сплавов и в настоящее время. Очевидность этого подтверждается опытом, накопленкым Воздушными силами США. Этими факторами являются освоение новых сплавов с более высокими пределом прочности и пределом текучести, остаточные и рабочие напряжения в сплаве и выдержка во влажном Боздухе От первых дней применения высокопрочных алюминиевых сплавов в конструкции Цеппелина до полета Аполлона на Луну основные случаи их [c.160]
ДУРАЛЮМИНЫ, сплавы на основе А1, содержащие 1,4— 13% Си, 0,4—2,8% Мд, 0,2—1,0% Мп, иногда 0,5—6,0% 5 , 5—7% 2п, 0,8—1,8% Ре, 0,02—0,35% Т1 п др. Наиб, прочные (предел прочности а до 600 МПа) и паим. коррозионностойкие из всех алюминиевых сплавов. Склонны к межкристаллитной коррозии. Листовой Д. в целях. защиты от коррозии плакируют алюминием. Не обладают хорошей свариваемостью. Применяются гл. обр. п авиастроении для и,зготовления нек-рых деталей турбореактивных двигателей. [c.198]
ЛАТУНИ, сплавы Сн с 2п (до 50%). Сплав с 3—12% 7п наз. томпак, с 14—21% — полутомпак, с 40% — мунц-ме-талл. Как и чистая медь, обладают высокой пластичностью, но превосходят медь но прочности (предел прочности ав до 450 МПа). При содержании 2п до 20% устойчивы к атмосферной коррозии, при более высоком содержании склонны к коррозионному растрескиванию. Т. н. сложные (легированные) Л. отличаются повыш. прочностью (ав до 650 МПа) и коррозионной стойкостью. Оловянная Л. (адмиралтейская, или морская, Л.), содержащая 1,0—1,5 Зп, и алюминиевая Л. (0,4—2,5% Л1 по цвету напоминает золото) устойчивы в морской воде никелевая Л. (12—16,5% N1) устойчива в морской воде, неокисляющих к-тах (НС1, НгЗО/,, НзРО ) и р-рах их солей. Л.— конструкц. материал, обычно не требующий спец. защиты от коррозии. Простые Л. примен. для изготовления трубок и тонкостенных делий сложной формы, сложные — в судостроении (трубЗ для конденсации пара, шестерни, зубчатые колеса и т. п.) никелевая Л., кроме того,- в хим. машиностроении, алюминиевая (15% 2п, 0,5% Л1) — для изготовления знаков отличия и ювелирных изделий. [c.297]
МАГНИЕВЫЕ СПЛАВЫ, обладают малой плотностью (1,35—2,0 г/см ), относительно высокой уд. прочностью, хорошея устойчивостью к удару н впбрац. нагрузкам. Корроз. стойкость большинства М. с. значительно ниже, чe ( чистого Мд в атмосферных условиях наиб, прочные М. с. уступают но корроз. стойкости алюминиевым сплавам. Наиб, распространены сплавы на основе систем Mg — А1 (до 9% ), содержа-гцпе обычно до 3,2% 2п, до 0,7% Мп, до 1,1% 2г Мя — 2п (до 8%), содержащие обычно 0,3—1,1% 2г, 0,5—1,2% Ьа. По прочности эти сплавы (предел прочности Ов до 350 МПа, отд. марок — до 420 МПа) значительно превосходят чис-1 ып Мя, ио требуют защиты от коррозии. Разработана группа сплавов, содержащих до 4% А1, до 0,7% Мп, до 3% 7 п, к-рые но корроз. св-вам близки к Мя они устойчивы в обыч-гк)й и морской воде, р-рах щелочей, плавиковой и хромовой к-тах, бензине, керосине, ацетоне. Разработаны спец. М. с. жаропрочные (выдерживают нагрев до 350 °С, кратковременно — до 400 °С), содержащие обычно 1,9—4% Ый, 0,1 — 1% Тт, иногда 1,5—2,5% N1, 0,1—0,7% 2п сверхлегкие (5—15% Ы, 5—6% А1. 0,6—1.2% Тт, 0,15-0,5% Мн, иногда 3—5% Се, 3—5% СА), к-рые наименее коррозионностойки и.з всех М. с. [c.308]
Полиамидный клей-расплав марки В-26 представляет собой стеклообразный материал, обладающий высокой адгезией к различным материалам. Так, прп склеивании пластин из алюминиевого сплава разру-шающее напряжение при сдвиге достигает 5 МПа (50 кгс/см ), а при склеивании кожи и трехслойной кирзы прочность при расслаивании составляет 800— 950 Н/2,5 см (80—95 кгс/2,5 см). Этот клей получают путем модификации полиамида марки П-548 (ТУ 6-05-1032—73) канифолью в присутствии адипиновой кислоты. Температура размягчения клея находится в пределах 90—105 С, а показатель текучести расплава при 150°С составляет 25—30 г/10 мин. [c.24]
Примечание. Предел прочности при сдвиге и прочность при неравномерном отрыве клеевых соединений определяются иа образцах алюминиевого сплава Д-16АТ (ГОСТ 12592—67), анодированного в серной кислоте с наполнением хромпиком или в хромовой кислоте, размерами по ГОСТ 14759—69 и ОСТ1 90016—71 соответственно. [c.159]
Предел прочности прн сдбиГе клеевых соединений определяют по ГОСТ 14759—69 на ровных с хорошо пригнанными поверхностями образцах нз алюминиевого сплава Д-16АТ и Д-19АТ, протравленных по методу Пнклннга нлн анодированных в хромовой кислоте. [c.161]
Малый вес имеют тонкостенные баллоны из углеродистой или легированной стали с оплеткой их высокоуглеродистой проволокой. Еще легче оплетенные баллоны со стенками из алюминиевых или алюминемагниевых сплавов (оо 7% М5). К ним относятся, например, транспортные баллоны на рабочее давление 200 ат, обмотанные рояльной проволокой диаметром 0,8 мм, имеющей предел прочности около 220 кг1мм . [c.112]
chem21.info
Механические свойства алюминиевых сплавов
Прочность на смятие алюминиевых сплавов
Прочность на смятие алюминия также трудно определять, испытывать и связывать с обычными прочностными свойствами, как и для других металлов. Смятие часто является важным критерием для конструкций с применением соединений на заклепках и болтах и поэтому «прочность на смятие» является широко признанной характеристикой. Прочность на смятие весьма произвольно определяют как давление (на единицу эффективной площади смятия), прилагаемое шпилькой в круглом отверстии. Это отверстие предварительно раздают на 2 % от исходного диаметра (рисунок 1). Эта прочность для большинства алюминиевых сплавов составляет 1,8 от прочности при растяжении (временного сопротивления) (рисунок 2).
Рисунок 1
Рисунок 2
Прочность на срез алюминиевых сплавов
Схема нагружения при испытании на срез приведена на рисунке 3. Для деформируемых алюминиевых сплавов отношение прочности на срез к прочности при растяжении различается в зависимости от химического состава и метода изготовления от 0,5 до 0,75 (см. рисунок 2). В случае отсутствия данных по прочности на срез ее обычно принимают 0,55 от прочности при растяжении.
Рисунок 3
Заклепки из марок алюминия и сплавов Al—Mn (серия 3ххх) изготовляют методами холодной деформации с достижением прочности на срез до 200 МПа. Заклепки из термически упрочняемых сплавов изготовляют в отожженном состоянии, затем сразу подвергают закалке и естественному старению с достижением прочности на срез до 260 МПа.
Сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора — является приблизительным индикатором состояния сплава и поэтому широко применяется при контроле продукции. Для алюминиевых сплавов применяют методы Бринелля (стальной шарик), Викерса (алмазная пирамидка) и Шора (падающий алмазный конус). Твердость по Бринеллю изменяется от 20 единиц для чистого алюминия до 175 единиц для термически упрочненного сплава 7075 (см. рисунок 2). По показаниям твердости, как правило, не вычисляют их прочность при растяжении, как это обычно делают для сталей, так как для алюминиевых сплавов соотношение этих двух характеристик далеко от постоянного.
Испытания пластичности алюминиевых сплавов
Относительное удлинение образца при испытании на растяжение является полезной информацией, но ее не достаточно для полного представления о пластических свойствах сплава. Поэтому для различных видов продукции в зависимости от ее назначения применяют различные дополнительные технологические испытания.
Для оценки способности металла к последующей формовке часто применяют простые испытания на загиб. Полоса из изделия изгибают на 90° или 180° на оправках заданного диаметра. Применяя последовательно уменьшающиеся диаметры оправок можно получить минимальный радиус загиба, при котором не возникают трещины. Для труб критерием может быть степень ее сплющивания.
Для оценки пластичности листов, например, для глубокой штамповки, часто применяют испытание по Эриксену, при котором полусферический пуансон заданных размеров вдавливается в образец листа, установленный в специальной матрице, с образованием чашеобразной лунки (рисунок 4). Глубина полученной лунки (до образования трещины) определяется по показаниям соответствующих шкал испытательного прибора. Эта глубина является индикатором пригодности металла, например, к глубокой штамповке.
Рисунок 4
Ценность этого испытания заключается в том, оно способно выявлять такие дефекты металла как крупнозернистая структура и чрезмерная анизотропия свойств. При крупном зерне получается сильно шероховатая поверхность лунки или раннее разрушение из-за местного утонения. Анизотропия свойств оказывает влияние на форму разрушения в лунке – при отсутствии анизотропии оно распространяется по окружности.
Ссылка: TALAT 1501
aluminium-guide.ru
Механические свойства стали и алюминиевых сплавов. Прочность и деформативность
Свойства и качество сталей оценивают рядом технических характеристик, основными из которых являются механические свойства и химический состав, регламентируемые соответствующими ГОСТами и ТУ.
К основным показателям механических свойств относят: прочность, упругость и пластичность, склонность к хрупкому разрушению.
Прочность — сопротивляемость внешним силовым воздействиям.
Упругость —свойство восстанавливать первоначальное состояние после снятия нагрузки.
Пластичность — свойство получать остаточные деформации после снятия нагрузки.
Хрупкость — разрушение материала при малых деформациях в пределах упругой работы.
Прочность, упругость и пластичность стали определяют испытанием на растяжение специальных образцов. Полученная при этом диаграмма показывает зависимость между напряжениями и деформацией.
Важнейшими показателями механических свойств стали являются предел текучести — (Ry), временное сопротивление (предел прочности — Ru) и относительное удлинение (ε). Предел текучести и временное сопротивление характеризуют прочность стали, относительное удлинение — пластические свойства стали.
1 — чистый алюминий; 2 — АМгб; 3 — ABT1; 4 — Д16Т; 5 — сталь марки ВСтЗ
До достижения стандартным образцом из малоуглеродистой стали напряжений, равных пределу текучести, материал работает практически упруго. Затем в нем развиваются большие деформации при постоянном напряжении. В результате образуется площадка текучести (горизонтальный участок диаграммы на рисунке выше). Когда относительное удлинение достигает 2,5%, текучесть материала прекращается, и он снова может оказывать сопротивление деформациям. Эту стадию работы стали называют cmadueit самоупрочнения, в ней материал работает как упругопластический. У других сталей переход в пластическую стадию происходит постепенно (нет площадки текучести). Пределом текучести для них считают напряжение, при котором остаточная деформация достигает 0,2%, т. е. σу = σ0,2.
Предельную сопротивляемость материала, характеризующую его прочность, определяют наибольшим условным напряжением в процессе разрушения (отношение разрушающей нагрузки к первоначальной площади сечения образца). Это напряжение называют временным сопротивлением (пределом прочности).
Наибольшее напряжение в материале, при котором начинается отклонение от прямолинейной зависимости между напряжениями и деформациями, называют пределам пропорциональности σеt.
Склонность стали к переходу в хрупкое состояние, ее чувствительность к различным повреждениям определяют испытаниями на ударную вязкость.
Механические характеристики стали зависят от температуры, при которой они работают. При нагревании стали до t = 250 °С свойства ее меняются слабо, однако при дальнейшем повышении температуры сталь становится хрупкой. Отрицательные температуры повышают хрупкость стали, что особенно важно учитывать при строительстве в районах Крайнего Севера. Малоуглеродистые стали становятся хрупкими при температурах ниже минус 45 °С, низколегированные — при температурах ниже минус 60 °С.
Химический состав стали. Такой состав характеризуется процентным содержанием в ней различных добавок и примесей. Углерод повышает предел текучести и прочности стали, однако снижает пластичность и свариваемость. В связи с этим в строительстве применяют только малоуглеродистые стали. Специальное введение в сталь различных примесей (легирующих добавок) улучшает некоторые свойства стали.
Кремний (обозначается буквой С) раскисляет сталь, поэтому его количество возрастает от кипящей к спокойной стали. Он увеличивает прочность стали, однако несколько ухудшает свариваемость, стойкость против коррозии и значительно снижает ударную вязкость. Вредное влияние кремния компенсируется повышенным содержанием марганца. Марганец (Г) — увеличивает прочность стали, незначительно снижая ее пластичность. Медь (Д) — несколько повышает прочность стали и увеличивает стойкость ее против коррозии, но способствует старению стали. Алюминий (Ю) —хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость. Значительно повышает механические свойства введение в сталь таких легирующих добавок, как никель (Н), хром (X), ванадий (Ф), вольфрам (В) и др. Однако применение этих добавок в сталях, используемых в инженерных конструкциях, ограничивается их дефицитностью и высокой стоимостью.
Некоторые примеси являются вредными для сталей. Так, фосфор резко уменьшает пластичность и ударную вязкость стали, делает ее хрупкой при низких температурах. Сера несколько снижает прочность стали и, главное, способствует образованию трещин при сварке. Кислород, водород и азот, попадая в расплавленный металл из воздуха, ухудшают структуру стали, увеличивая ее хрупкость.
В зависимости от механических свойств (σu, σу), все стали условно делят на три группы — обычной, повышенной и высокой прочности. Для сталей обычной прочности используют малоуглеродистые стали, для сталей повышенной и высокой прочности — низколегированные и среднелегированные.
В зависимости от предъявляемых требований по испытаниям на ударную вязкость, малоуглеродистая сталь разделена на шесть категорий, для каждой из которых нормируются химический состав, значения временного сопротивления, относительного удлинения и требования к испытанию на холодный загиб.
Для гидротехнических сооружений, мостов и других особо ответственных конструкций предназначены малоуглеродистые стали марки М16С и марки 16Д.
Стали повышенной и высокой прочности (низколегированные и среднелегированные) поставляются по ГОСТам и специальным техническим условиям. Наименование марок легированных сталей в определенной мере отражает их химический состав. Первые две цифры показывают среднее содержание углерода в сотых долях процента, следующие далее буквы русского алфавита обозначают легирующие добавки. Цифра после буквы показывает содержание добавки в процентах с округлением до целых значений. Если количество легирующих добавок 0,3-1%, то цифра не ставится. Содержание добавки менее 0,3% не отмечается. Все стали повышенной и высокой прочности поставляются с гарантией механических свойств и химического состава. В зависимости от нормируемых свойств согласно ГОСТу стали подразделяются на 15 категорий.
Примеры обозначения: сталь 14Г2 имеет среднее содержание углерода 0,14%, марганца (Г) до 2%; сталь 15ХСНД— углерода 0,15%, хрома (X), кремния (С), никеля (Н) и меди (Д) 0,3-1% каждого.
В целях экономии металла прокат из углеродистой стали марок СтЗ, СтЗГСпс и низколегированной стали марок 09Г2,09Г2С и 14Г2 поставляют по 2 группам прочности (например, ВСтЗсп5-1 и ВСтЗсп5-2). Отличаются такие стали различным браковочным уровнем предела текучести и временного сопротивления, и в связи с этим расчетными сопротивлениями. Более высокие расчетные характеристики имеют стали, отнесенные ко второй группе прочности.
Выбор марки стали определяет надежность и стоимость конструкции, удобство изготовления, длительность нормальной ее эксплуатации, количество, объем и стоимость работ по содержанию конструкции, в том числе и по защите от коррозии.
Марку стали, если по условиям эксплуатации конструкций не выдвигается специальных требований, выбирают на основании вариантного проектирования и технико-экономического анализа.
Прочность материала характеризуется небольшим напряжением, при достижении которого начинается процесс разрушения образца. Это напряжение называют временным сопротивлением или пределом прочности.
При увеличении прочности стали заметно уменьшается площадка текучести, а для некоторых сталей характерно полное ее отсутствие. Это свойство снижает надежность стали, увеличивая ее склонность к хрупкому разрушению.
Для растяжения, сжатия и изгиба при работе в упругой стадии расчетные сопротивления Ry, определяют по нормативному значению по формуле:
Ry=Ryn/γm
где Ryn — нормативное значение, МПа; γm — коэффициент надежности по материалу (1,025-1,15).
ros-pipe.ru
Алюминиевые сплавы в РФ (деформируемые = под мехобработку). Подробная классификация, физические свойства, коррозионные свойства, механические свойства, круглый и профильный алюминиевый прокат, плоский алюминиевый прокат
Деформируемые алюминиевые сплавы в РФ («по ГОСТ » и ИСО 209-1) и пр. русскоязычных местах. Алюминиевый прокат.
Классификация алюминиевых сплавов.
Алюминиевые сплавы условно делятся на литейные (для производства отливок) и деформируемые (для производства проката и поковок). Далее будут рассматриваться только деформируемые сплавы и прокат на их основе. Под алюминиевым прокатом подразумевают прокат из алюминиевых сплавов и технического алюминия (А8 – А5, АД0, АД1). Химический состав деформируемых сплавов общего применения приведен в ГОСТ 4784-97 и ГОСТ 1131.
Деформируемые сплавы разделяют по способу упрочнения: упрочняемые давлением (деформацией) и термоупрочняемые.
Другая классификация основана на ключевых свойствах: сплавы низкой, средней или высокой прочности, повышенной пластичности, жаропрочные, ковочные и т.д.
В таблице систематизированы наиболее распространенные деформируемые сплавы с краткой характеристикой основных свойств присущих для каждой системы. Маркировка дана по ГОСТ 4784-97 и международной классификации ИСО 209-1.
Характеристика сплавов | Маркировка | Система легирования | Примечания | |
СПЛАВЫ УПРОЧНЯЕМЫЕ ДАВЛЕНИЕМ (ТЕРМОНЕУПРОЧНЯЕМЫЕ) | ||||
Сплавы низкой прочности и высокой пластичности, свариваемые, коррозионносойкие | АД0 | 1050А | Техн. алюминий без легирования | Также АД, А5, А6, А7 |
АД1 | 1230 | |||
АМц | 3003 | Al – Mn | Также ММ (3005) | |
Д12 | 3004 | |||
Сплавы средней прочности и высокой пластичности, свариваемые, коррозионносойкие | АМг2 | 5251 | Al – Mg (Магналии) | Также АМг0.5, АМг1, АМг1.5, АМг2.5, АМг4 и т.д. |
АМг3 | 5754 | |||
АМг5 | 5056 | |||
АМг6 | — | |||
ТЕРМОУПРОЧНЯЕМЫЕ СПЛАВЫ | ||||
Сплавы средней прочности и высокой пластичности свариваемые | АД31 | 6063 | Al-Mg-Si (Авиали) | Также АВ (6151) |
АД33 | 6061 | |||
АД35 | 6082 | |||
Сплавы нормальной прочности | Д1 | 2017 | Al-Cu-Mg (Дюрали) | Также В65, Д19, ВАД1 |
Д16 | 2024 | |||
Д18 | 2117 | |||
Свариваемые сплавы нормальной прочности | 1915 | 7005 | Al-Zn-Mg | — |
1925 | — | |||
Высокопрочные сплавы | В95 | — | Al-Zn-Mg-Cu | Также В93 |
Жаропрочные сплавы | АК4-1 | — | Al-Cu-Mg-Ni-Fe | Также АК4 |
1201 | 2219 | Al-Cu-Mn | Также Д20 | |
Ковочные сплавы | АК6 | — | Al-Cu-Mg-Si | — |
АК8 | 2014 |
Состояния поставки Сплавы, упрочняемые давлением, упрочняются только холодной деформацией (холодная прокатка или волочение). Деформационное упрочнение приводит к увеличению прочности и твердости, но уменьшает пластичность. Восстановление пластичности достигается рекристаллизационным отжигом. Прокат из этой группы сплавов имеет следующие состояния поставки, указываемые в маркировке полуфабриката:
- не имеет обозначения — после прессования или горячей прокатки без термообработки
- М — отожженное
- Н4 — четвертьнагартованное
- Н2 — полунагартованное
- Н3 — нагартованное на 3/4
- Н — нагартованное
Полуфабрикаты из термоупрочняемых сплавов упрочняются путем специальной термообработки. Она заключается в закалке с определенной температуры и последующей выдержкой в течение некоторого времени при другой температуре (старение). Происходящее при этом изменение структуры сплава, увеличивает прочность, твердость без потери пластичности. Существует несколько вариантов термообработки. Наиболее распространены следующие состояния поставки термоупрочняемых сплавов, отражаемые в маркировке проката:
- не имеет обозначения — после прессования или горячей прокатки без термообработки
- М — отожженное
- Т — закаленное и естественно состаренное (на максимальную прочность)
- Т1 — закаленное и искусственно состаренное (на максимальную прочность)
Для некоторых сплавов производится термомеханическое упрочнение, когда нагартовка осуществляется после закалки. В этом случае в маркировке присутствует ТН или Т1Н. Другим режимам старения соответствуют состояния Т2, Т3, Т5. Обычно им соответствует меньшая прочность, но большая коррозионная стойкость или вязкость разрушения.
Приведенная маркировка состояний соответствует российским ГОСТам.
Физические свойства алюминиевых сплавов.
Плотность алюминиевых сплавов незначительно отличается от плотности чистого алюминия (2.7г/см3). Она изменяется от 2.65 г/см3 для сплава АМг6 до 2.85 г/см3 для сплава В95.
Легирование практически не влияет на величину модуля упругости и модуля сдвига. Например, модуль упругости упрочненного дуралюминия Д16Т практически равен модулю упругости чистого алюминия А5 (Е=7100 кгс/мм2). Однако, за счет того, что предел текучести сплавов в несколько раз превышает предел текучести чистого алюминия, алюминиевые сплавы уже могут использоваться в качестве конструкционного материала с разным уровнем нагрузок (в зависимости от марки сплава и его состояния).
За счет малой плотности удельные значения предела прочности, предела текучести и модуля упругости (соответствующие величины, поделенные на величину плотности) для прочных алюминиевых сплавов сопоставимы с соответствующими значениями удельных величин для стали и титановых сплавов. Это позволяет высокопрочным алюминиевым сплавам конкурировать со сталью и титаном, но только до температур не превышающих 200°С .
Большинство алюминиевых сплавов имеют худшую электро- и теплопроводность, коррозионную стойкость и свариваемость по сравнению с чистым алюминием.
Ниже в таблице приведены значения твердости, тепло- и электропроводности для нескольких сплавов в различных состояниях. Поскольку значения твердости коррелируют с величинами предела текучести и предела прочности, то эта таблица дает представление о порядке и этих величин.
Из таблицы видно, что сплавы с большей степенью легирования имеют заметно меньшую электро- и теплопроводность, эти величины также существенно зависят от состояния сплава (М, Н2, Т или Т1):
марка | твердость, НВ | электропроводность в % по отношению к меди | теплопроводностьв кал/оС | ||||||
М | Н2 | Н,Т(Т1) | М | Н2 | Н, Т(Т1) | М | Н2 | Н, Т(Т1) | |
А8 — АД0 | 25 | 35 | 60 | 0.52 | |||||
АМц | 30 | 40 | 55 | 50 | 40 | 0.45 | 0.38 | ||
АМг2 | 45 | 60 | 35 | 30 | 0.34 | 0.30 | |||
АМг5 | 70 | 30 | 0.28 | ||||||
АД31 | 80 | 55 | 55 | 0.45 | |||||
Д16 | 45 | 105 | 45 | 30 | 0.42 | 0.28 | |||
В95 | 150 | 30 | 0.28 |
Из таблицы видно, что только сплав АД31 сочетает высокую прочность и высокую электропроводность. Поэтому «мягкие» электротехнические шины производятся из АД0, а «твердые» — из АД31 (ГОСТ 15176-89). Электропроводность этих шин составляет (в мкОм*м):
- 0,029 – из АД0 (без термообработки, сразу после прессования)
- 0,031 – из АД31 (без термообработки, сразу после прессования)
- 0.035 – из АД31Т (после закалки и естественного старения)
Теплопроводность многих сплавов (АМг5, Д16Т, В95Т1) вдвое ниже, чем у чистого алюминия, но все равно она выше, чем у сталей.
Коррозионные свойства.
Наилучшие коррозионные свойства имеют сплавы АМц, АМг, АД31, а худшие – высоко-прочные сплавы Д16, В95, АК. Кроме того коррозионные свойства термоупрочняемых сплавов существенно зависят от режима закалки и старения. Например сплав Д16 обычно применяется в естественно-состаренном состоянии (Т). Однако свыше 80оС его коррозионные свойства значительно ухудшаются и для использования при больших температурах часто применяют искусственное старение, хотя ему соответствует меньшая прочность и пластичность (чем после естественного старения). Многие прочные термоупрочняемые сплавы подвержены коррозии под напряжением и расслаивающей коррозии.
Свариваемость.
Хорошо свариваются всеми видами сварки сплавы АМц и АМг. При сварке нагартованного проката в зоне сварочного шва происходит отжиг, поэтому прочность шва соответствует прочности основного материала в отожженном состоянии.
Из термоупрочняемых сплавов хорошо свариваются авиали, сплав 1915. Сплав 1915 относится к самозакаливающимся, поэтому сварной шов со временем приобретает прочность основного материала. Большинство других сплавов свариваются только точечной сваркой.
Механические свойства.
Прочность сплавов АМц и АМг возрастает (а пластичность уменьшается) с увеличением степени легирования. Высокая коррозионная стойкость и свариваемость определяет их применение в конструкциях малой нагруженности. Сплавы АМг5 и АМг6 могут использоваться в средненагруженных конструкциях. Эти сплавы упрочняются только холодной деформацией, поэтому свойства изделий из этих сплавов определяются состоянием полуфабриката, из которого они были изготовлены.
Термоупрочняемые сплавы позволяют производить упрочнение деталей после их изготовления если исходный полуфабрикат не подвергался термоупрочняющей обработке.
Наибольшую прочность после упрочняющей термообработки (закалка и старение) имеют сплавы Д16, В95, АК6, АК8, АК4-1 (из доступных в свободной продаже).
Самым распространенным сплавом является Д16. При комнатной температуре он уступает многим сплавам по статической прочности, но имеет наилучшие показатели конструкционной прочности (трещиностойкость). Обычно применяется в естественно состаренном состоянии (Т). Но свыше 80°С начинает ухудшаться его коррозионная стойкость. Для использования сплава при температурах 120-250°С изделия из него подвергают искусственному старению. Оно обеспечивает лучшую коррозионную стойкость и больший предел текучести по сравнению с естественно-состаренным состоянием.
С ростом температуры прочностные свойства сплавов меняются в разной степени, что определяет их разную применимость в зависимости от температурного диапазона.
Из этих сплавов до 120°С наибольшие пределы прочности и текучести имеет В95Т1. Выше этой температуры он уже уступает сплаву Д16Т. Однако, следует учитывать, что В95Т1 имеет значительно худшую конструкционную прочность, т.е. малую трещиностойкость, по сравнению с Д16. Кроме того В95 в состоянии Т1 подвержен коррозии под напряжением. Это ограничивает его применение в изделиях, работающих на растяжение. Улучшение коррозионных свойств и существенное улучшение трещиностойкости достигается в изделиях обработанных по режимам Т2 или Т3.
При температурах 150-250°С большую прочность имеют Д19, АК6, АК8. При больших температурах (250-300°С ) целесообразно применение других сплавов — АК4-1, Д20, 1201. Сплавы Д20 и 1201 имеют самый широкий температурный диапазон применения (от криогенных -250°С до +300°С ) в условиях высоких нагрузок.
Сплавы АК6 и АК8 пластичны при высоких температурах, что позволяет использовать их для изготовления поковок и штамповок. Сплав АК8 характеризуется большей анизотропией механических свойств, у него меньше трещиностойкость, но он сваривается лучше, чем АК6.
Перечисленные высокопрочные сплавыт плохо свариваются и имеют низкую коррозионную стойкость. К свариваемым термоупрочняемым сплавам с нормальной прочностью относится сплав 1915. Это самозакаливающийся сплав (допускает закалку со скоростью естественного охлаждения), что позволяет обеспечить высокую прочность сварного шва. Сплав 1925, не отличаясь от него по механическим свойствам, сваривается хуже. Сплавы 1915 и 1925 имеют большую прочность, чем АМг6 и не уступают ему по характеристикам сварного шва.
Хорошо свариваются, имеют высокую коррозионную стойкость сплавы средней прочности — авиали (АВ, АД35, АД31,АД33).
АЛЮМИНИЕВЫЙ ПРОКАТ.
Из алюминия и его сплавов производятся все виды проката – фольга, листы, ленты, плиты, прутки, трубы, проволока. Следует иметь в виду, что для многих термоупрочняемых сплавов имеет место «пресс-эффект» — механические свойства прессованных изделий выше, чем у горячекатаных (т.е. круги имеют лучшие показатели прочности, чем листы).
Прутки, профили, трубы
Прутки из термоупрочняемых сплавов поставляются в состоянии «без термообработки» или в упрочненном состоянии (закалка с последующим естественным или искусственным старением). Прутки из термически неупрочняемых сплавов производятся прессованием и поставляются в состоянии «без термообработки».
Общее представление о механических свойствах алюминиевых сплавов дает гистограмма, на которой представлены гарантированные показатели для прессованных прутков при нормальных температурах:
Из всего приведенного многообразия в свободной продаже всегда имеются прутки из Д16, причем круги диаметром до 100 мм включительно обычно поставляются в естественно состаренном состоянии (Д16Т). Фактические значения (по сертификатам качества) для них составляют: предел текучести σ0.2 = (37-45), предел прочности при разрыве σв = (52-56), относительное удлинение δ=(11-17%). Обрабатываемость прутков из Д16Т очень хорошая, у прутков Д16 (без термообработки) обрабатываемость заметно хуже. Их твердость соответственно 105 НВ и 50 НВ. Как уже отмечалось, деталь, изготовленная из Д16 может быть упрочнена закалкой и естественным старением. Максимальная прочность после закалки достигается на 4-е сутки.
Поскольку дуралюминиевый сплав Д16 не отличается хорошими коррозионными свойствами, желательна дополнительная защита изделий из него анодированием или нанесением лако-красочных покрытий. При эксплуатации при температурах выше 80-100°С проявляется склонность к межкристаллитной коррозии.
Необходимость дополнительной защиты от коррозии относится и к другим высокопрочным сплавам (Д1, В95, АК).
Прутки из АМц и АМгобладают высокой коррозионной стойкостью, допускают возможность дополнительного формообразования горячей ковкой (в интервале 510-380оС).
Разнообразные профили широко представлены из сплава АД31 с различными вариантами термообработки. Применяются для конструкций невысокой и средней прочности, а также для изделий декоративного назначения.
Прутки, трубы и профили из АД31 имеют высокую общую коррозионную стойкость, не склонны к коррозии под напряжением. Сплав хорошо сваривается точечной, роликовой и аргонно-дуговой сваркой. Коррозионная стойкость сварного шва такая же, как у основного материала. Для повышения прочности сварного шва необходима специальная термообработка.
Уголки производятся в основном из АД31, Д16 и АМг2.
Трубы производятся из большинства сплавов, представленных на рисунке. Они поставляются в состояниях без термообработки (прессованные), закаленные и состаренные, а также отожженные и нагартованные. Параметры их механических свойств примерно соответствуют, приведенным на гистограмме. При выборе материала труб кроме прочностных характеристик учитывается его коррозионная стойкость и свариваемость. Наиболее доступны трубы из АД31.
Плоский алюминиевый прокат.
Листы общего назаначения производятся по ГОСТ 21631-76, ленты — по ГОСТ 13726-97, плиты по ГОСТ 17232-99.
Листы из сплавов с пониженной или низкой коррозионной устойчивостью (АМг6, 1105, Д1, Д16, ВД1, В95) плакируются. Химический состав плакирующего сплава обычно соответствует марке АД1, а толщина слоя составляет 2 – 4% от номинальной толщины листа.
Плакирующий слой обеспечивает электрохимическую защиту основного металла от коррозии. Это означает, что коррозионная защита металла обеспечивается даже при наличии механических повреждений защитного слоя (царапины).
Маркировка листов включает в себя: обозначение марки сплава + состояние поставки + вид плакировки (если она присутствует). Примеры маркировки:
- А5 — лист марки А5 без плакировки и термообработки
- А5Н2 — лист марки А5 без плакировки, полунагартованный
- АМг5М — лист марки Амг5 без плакировки, отожженный
- Д16АТ — лист марки Д16 с нормальной плакировкой, закаленный и естественно состаренный.
На гистограмме приведены основные характеристики механических свойств листов в различных состояниях поставки для наиболее используемых марок. Состояние «без термообработки» не показано. В большинстве случаеввеличины предела текучести и предела прочности такого проката близки ксоответствующим значениям дляотожженного состояния, а пластичность ниже. Плиты выпускаются в состоянии «без термообработки».
Из рисунка видно, что выпускаемый ассортимент листов дает широкие возможности для выбора материала по прочности, пределу текучести и пластичности с учетом коррозионной стойкости и свариваемости.Для ответственных конструкций из прочных сплавов обязательно учитывается трещиностойкость и характеристики сопротивления усталости.
Листы из технического алюминия (АД0, АД1, А5-А7).
Нагартованные и полунагартованные листы используются для изготовления ненагружен-ных конструкций, резервуаров (в т. ч. для криогенных температур), требующих обеспечения высокой коррозионной стойкости и допускающих применение сварки. Они используются также для изготовления вентиляционных коробов, теплоотражающих экранов (отражательная способность алюминиевых листов достигает 80%), изоляции теплотрасс.
Листы в мягком состоянии используются для уплотнения неразъемных соединений. Высокая пластичность отожженных листов позволяет производить изделия глубокой вытяжкой.
Технический алюминий отличается высокой коррозионной устойчивостью во многих средах (см. страницу «Свойства алюминия»). Однако, за счет разного содержания примесей в перечисленных марках, их антикоррозионные свойства в некоторых средах всё-таки различаются.
Алюминий сваривается всеми методами. Технический алюминий и его сварные соединения обладают высокой коррозионной стойкостью к межкристаллитной, расслаивающей коррозии и не склонны к коррозионному растрескиванию.
Кроме листов, изготавливаемых по ГОСТ21631-76, в свободной продаже имеются листы, произведенные по Евростандарту, с маркировкой 1050А. По химическому составу они соответствуют марке АД0. Фактические параметры (по сертификатам качества) механических свойств составляют (для листов 1050АН24): предел текучести σ0.2 = (10.5-14), предел прочности при разрыве σв=(11.5-14.5), относительное удлинение δ=(5-10%), что соответствует полунагартованному состоянию (ближе к нагартованному). Листы с маркировкой 1050АН0 или 1050АН111 соответствуют отожженному состоянию.
Листы (и ленты) из сплава 1105.
Из-за пониженной коррозионной стойкости изготавливается плакированным. Широко применяется для изоляции теплотрасс, для изготовления малонагруженных деталей, не требующих высоких коррозионных свойств.
Листы из сплава АМц.
Листы из сплава АМц хорошо деформируются в холодном и горячем состояниях. Из-за невысокой прочности (низкого предела текучести) используются для изготовления только малонагруженных конструкций. Высокая пластичность отожженных листов позволяет производить из них малонагруженные изделия глубокой вытяжкой.
По коррозионной стойкости АМц практически не уступает техническому алюминию. Хорошо свариваются аргонно-дуговой, газовой и контактной сваркой. Коррозионная стойкость сварного шва такая же, как у основного металла.
Листы из сплавов АМг.
Чем больше содержание магния в сплавах этой группы, тем они прочнее , но менее пластичны.
Механические свойства.
Наиболее распостранены листы из сплавов АМг2 (состояния М, Н2, Н) и АМг3 (состояния М и Н2), в том числе рифленые. Сплавы АМг1, АМг2, АМг3, АМг4 хорошо деформируются и в горячем и в холодном состоянии. Листы обладают удовлетворительной штампуемостью. Нагартовка заметно снижает штампуемость листов. Листы этих марок применяются для конструкций средней нагруженности.
Листы из АМг6 и АМг6 вупрочненном состоянии не поставляются. Применяются для конструкций повышенной нагруженности.
Коррозионная стойкость. Сплавы АМг отличаются высокой коррозионной стойкостью в растворах кислот и щелочей. Сплавы АМг1, АМг2, АМг3, АМг4 имеют высокую коррозионную стойкость к основным видам коррозии как в отожженном так и в нагартованном состонии.
Сплавы АМг5, АМг6 склонны к коррозии под напряжением и межкристаллитной коррозии. Для защиты от коррозии листы и плиты из этих сплавов плакируются, а заклепки из АМг5п ставят только анодированными.
Свариваемость.
Все сплавы АМг хорошо свариваются аргоннодуговой сваркой, но характеристики сварного шва зависят от содержания магния. С ростом его содержания уменьшается коэффициент трещинообразования, возрастает пористость сварных соединений.
Сварка нагартованных листов устраняет нагартовку в зоне термичес-кого влияния сварного соединения, механические свойства в этой зоне соответствуют свойствам в отожженном состоянии. Поэтому сварные соединения нагартованных листов АМг имеют меньшую прочность по сравнению с основным материалом.
Сварные соединения АМг1, АМг2, АМг3 обладают высокой стойкостью против коррозии. Для обеспечения коррозионной стойкости сварного шва АМг5 и АМг6 требуется специальная термообработка.
Листы и плиты из Д1, Д16, В95.
Высокопрочные сплавы Д1, Д16, В95 имеют низкую устойчивость к коррозии. Поскольку листы из них используются в конструкционных целях, то для коррозинной защиты они плакируются слоем технического алюминия. Следует помнить, что технологические нагревы плакированных листов из сплавов, содержащих медь (например Д1, Д16), не должны даже кратковременно превышать 500°С .
Наиболее распространены листы из дуралюминия Д16. Фактические значения механических параметров для листов из Д16АТ (по сертификатам качества) составляют: предел текучести σ0.2 = (28-32), предел прочности при разрыве σв= (42-45), относительное удлинение δ=(26-23%).
Сплавы этой группы свариваются точечной сваркой, но не свариваются плавлением. Поэтому основной способ их соединения — заклепки. Для заклепок используется проволока из Д18Т и В65Т1. Сопротивление срезу для них соответственно 200 и 260 МПа.
Из толстолистового проката доступны плиты из Д16 и В95. Плиты поставляются в состоянии «без термообработки», но возможно термоупрочнение уже готовых деталей после их изготовления. Прокаливаемость Д16 допускает термоупрочнение деталей сечением до 100-120 мм. Для В95 этот показатель составляет 50-70 мм.
Листы и плиты из В95 имеют большую (по сравнению с Д16) прочность при работе на сжатие.
- Вы сейчас здесь: Алюминиевые сплавы в РФ (деформируемые = под мехобработку). Подробная классификация, физические свойства, коррозионные свойства, механические свойства, круглый и профильный алюминиевый прокат, плоский алюминиевый прокат
Оценка статьи:
e4-cem.ru
Деформируемые алюминиевые сплавы в РФ ("по ГОСТ " и ИСО 209-1) и пр. русскоязычных местах. Алюминиевый прокат.Классификация алюминиевых сплавов. Алюминиевые сплавы условно делятся на литейные (для производства отливок) и деформируемые (для производства проката и поковок). Далее будут рассматриваться только деформируемые сплавы и прокат на их основе. Под алюминиевым прокатом подразумевают прокат из алюминиевых сплавов и технического алюминия (А8 – А5, АД0, АД1). Химический состав деформируемых сплавов общего применения приведен в ГОСТ 4784-97 и ГОСТ 1131. Деформируемые сплавы разделяют по способу упрочнения: упрочняемые давлением (деформацией) и термоупрочняемые. Другая классификация основана на ключевых свойствах: сплавы низкой, средней или высокой прочности, повышенной пластичности, жаропрочные, ковочные и т.д. В таблице систематизированы наиболее распространенные деформируемые сплавы с краткой характеристикой основных свойств присущих для каждой системы. Маркировка дана по ГОСТ 4784-97 и международной классификации ИСО 209-1.
Состояния поставки Сплавы, упрочняемые давлением, упрочняются только холодной деформацией (холодная прокатка или волочение). Деформационное упрочнение приводит к увеличению прочности и твердости, но уменьшает пластичность. Восстановление пластичности достигается рекристаллизационным отжигом. Прокат из этой группы сплавов имеет следующие состояния поставки, указываемые в маркировке полуфабриката:
Полуфабрикаты из термоупрочняемых сплавов упрочняются путем специальной термообработки. Она заключается в закалке с определенной температуры и последующей выдержкой в течение некоторого времени при другой температуре (старение). Происходящее при этом изменение структуры сплава, увеличивает прочность, твердость без потери пластичности. Существует несколько вариантов термообработки. Наиболее распространены следующие состояния поставки термоупрочняемых сплавов, отражаемые в маркировке проката:
Для некоторых сплавов производится термомеханическое упрочнение, когда нагартовка осуществляется после закалки. В этом случае в маркировке присутствует ТН или Т1Н. Другим режимам старения соответствуют состояния Т2, Т3, Т5. Обычно им соответствует меньшая прочность, но большая коррозионная стойкость или вязкость разрушения. Приведенная маркировка состояний соответствует российским ГОСТам. Физические свойства алюминиевых сплавов. Плотность алюминиевых сплавов незначительно отличается от плотности чистого алюминия (2.7г/см3). Она изменяется от 2.65 г/см3 для сплава АМг6 до 2.85 г/см3 для сплава В95. Легирование практически не влияет на величину модуля упругости и модуля сдвига. Например, модуль упругости упрочненного дуралюминия Д16Т практически равен модулю упругости чистого алюминия А5 (Е=7100 кгс/мм2). Однако, за счет того, что предел текучести сплавов в несколько раз превышает предел текучести чистого алюминия, алюминиевые сплавы уже могут использоваться в качестве конструкционного материала с разным уровнем нагрузок (в зависимости от марки сплава и его состояния). За счет малой плотности удельные значения предела прочности, предела текучести и модуля упругости (соответствующие величины, поделенные на величину плотности) для прочных алюминиевых сплавов сопоставимы с соответствующими значениями удельных величин для стали и титановых сплавов. Это позволяет высокопрочным алюминиевым сплавам конкурировать со сталью и титаном, но только до температур не превышающих 200°С . Большинство алюминиевых сплавов имеют худшую электро- и теплопроводность, коррозионную стойкость и свариваемость по сравнению с чистым алюминием. Ниже в таблице приведены значения твердости, тепло- и электропроводности для нескольких сплавов в различных состояниях. Поскольку значения твердости коррелируют с величинами предела текучести и предела прочности, то эта таблица дает представление о порядке и этих величин. Из таблицы видно, что сплавы с большей степенью легирования имеют заметно меньшую электро- и теплопроводность, эти величины также существенно зависят от состояния сплава (М, Н2, Т или Т1):
Из таблицы видно, что только сплав АД31 сочетает высокую прочность и высокую электропроводность. Поэтому «мягкие» электротехнические шины производятся из АД0, а «твердые» - из АД31 (ГОСТ 15176-89). Электропроводность этих шин составляет (в мкОм*м):
Теплопроводность многих сплавов (АМг5, Д16Т, В95Т1) вдвое ниже, чем у чистого алюминия, но все равно она выше, чем у сталей. Коррозионные свойства. Наилучшие коррозионные свойства имеют сплавы АМц, АМг, АД31, а худшие – высоко-прочные сплавы Д16, В95, АК. Кроме того коррозионные свойства термоупрочняемых сплавов существенно зависят от режима закалки и старения. Например сплав Д16 обычно применяется в естественно-состаренном состоянии (Т). Однако свыше 80оС его коррозионные свойства значительно ухудшаются и для использования при больших температурах часто применяют искусственное старение, хотя ему соответствует меньшая прочность и пластичность (чем после естественного старения). Многие прочные термоупрочняемые сплавы подвержены коррозии под напряжением и расслаивающей коррозии. Свариваемость. Хорошо свариваются всеми видами сварки сплавы АМц и АМг. При сварке нагартованного проката в зоне сварочного шва происходит отжиг, поэтому прочность шва соответствует прочности основного материала в отожженном состоянии. Из термоупрочняемых сплавов хорошо свариваются авиали, сплав 1915. Сплав 1915 относится к самозакаливающимся, поэтому сварной шов со временем приобретает прочность основного материала. Большинство других сплавов свариваются только точечной сваркой. Механические свойства. Прочность сплавов АМц и АМг возрастает (а пластичность уменьшается) с увеличением степени легирования. Высокая коррозионная стойкость и свариваемость определяет их применение в конструкциях малой нагруженности. Сплавы АМг5 и АМг6 могут использоваться в средненагруженных конструкциях. Эти сплавы упрочняются только холодной деформацией, поэтому свойства изделий из этих сплавов определяются состоянием полуфабриката, из которого они были изготовлены. Термоупрочняемые сплавы позволяют производить упрочнение деталей после их изготовления если исходный полуфабрикат не подвергался термоупрочняющей обработке. Наибольшую прочность после упрочняющей термообработки (закалка и старение) имеют сплавы Д16, В95, АК6, АК8, АК4-1 (из доступных в свободной продаже). Самым распространенным сплавом является Д16. При комнатной температуре он уступает многим сплавам по статической прочности, но имеет наилучшие показатели конструкционной прочности (трещиностойкость). Обычно применяется в естественно состаренном состоянии (Т). Но свыше 80°С начинает ухудшаться его коррозионная стойкость. Для использования сплава при температурах 120-250°С изделия из него подвергают искусственному старению. Оно обеспечивает лучшую коррозионную стойкость и больший предел текучести по сравнению с естественно-состаренным состоянием. С ростом температуры прочностные свойства сплавов меняются в разной степени, что определяет их разную применимость в зависимости от температурного диапазона. Из этих сплавов до 120°С наибольшие пределы прочности и текучести имеет В95Т1. Выше этой температуры он уже уступает сплаву Д16Т. Однако, следует учитывать, что В95Т1 имеет значительно худшую конструкционную прочность, т.е. малую трещиностойкость, по сравнению с Д16. Кроме того В95 в состоянии Т1 подвержен коррозии под напряжением. Это ограничивает его применение в изделиях, работающих на растяжение. Улучшение коррозионных свойств и существенное улучшение трещиностойкости достигается в изделиях обработанных по режимам Т2 или Т3. При температурах 150-250°С большую прочность имеют Д19, АК6, АК8. При больших температурах (250-300°С ) целесообразно применение других сплавов - АК4-1, Д20, 1201. Сплавы Д20 и 1201 имеют самый широкий температурный диапазон применения (от криогенных -250°С до +300°С ) в условиях высоких нагрузок. Сплавы АК6 и АК8 пластичны при высоких температурах, что позволяет использовать их для изготовления поковок и штамповок. Сплав АК8 характеризуется большей анизотропией механических свойств, у него меньше трещиностойкость, но он сваривается лучше, чем АК6. Перечисленные высокопрочные сплавыт плохо свариваются и имеют низкую коррозионную стойкость. К свариваемым термоупрочняемым сплавам с нормальной прочностью относится сплав 1915. Это самозакаливающийся сплав (допускает закалку со скоростью естественного охлаждения), что позволяет обеспечить высокую прочность сварного шва. Сплав 1925, не отличаясь от него по механическим свойствам, сваривается хуже. Сплавы 1915 и 1925 имеют большую прочность, чем АМг6 и не уступают ему по характеристикам сварного шва. Хорошо свариваются, имеют высокую коррозионную стойкость сплавы средней прочности - авиали (АВ, АД35, АД31,АД33). АЛЮМИНИЕВЫЙ ПРОКАТ. Из алюминия и его сплавов производятся все виды проката – фольга, листы, ленты, плиты, прутки, трубы, проволока. Следует иметь в виду, что для многих термоупрочняемых сплавов имеет место "пресс-эффект" - механические свойства прессованных изделий выше, чем у горячекатаных (т.е. круги имеют лучшие показатели прочности, чем листы). Прутки, профили, трубыПрутки из термоупрочняемых сплавов поставляются в состоянии "без термообработки" или в упрочненном состоянии (закалка с последующим естественным или искусственным старением). Прутки из термически неупрочняемых сплавов производятся прессованием и поставляются в состоянии "без термообработки". Общее представление о механических свойствах алюминиевых сплавов дает гистограмма, на которой представлены гарантированные показатели для прессованных прутков при нормальных температурах: Из всего приведенного многообразия в свободной продаже всегда имеются прутки из Д16, причем круги диаметром до 100 мм включительно обычно поставляются в естественно состаренном состоянии (Д16Т). Фактические значения (по сертификатам качества) для них составляют: предел текучести σ0.2 = (37-45), предел прочности при разрыве σв = (52-56), относительное удлинение δ=(11-17%). Обрабатываемость прутков из Д16Т очень хорошая, у прутков Д16 (без термообработки) обрабатываемость заметно хуже. Их твердость соответственно 105 НВ и 50 НВ. Как уже отмечалось, деталь, изготовленная из Д16 может быть упрочнена закалкой и естественным старением. Максимальная прочность после закалки достигается на 4-е сутки. Поскольку дуралюминиевый сплав Д16 не отличается хорошими коррозионными свойствами, желательна дополнительная защита изделий из него анодированием или нанесением лако-красочных покрытий. При эксплуатации при температурах выше 80-100°С проявляется склонность к межкристаллитной коррозии. Необходимость дополнительной защиты от коррозии относится и к другим высокопрочным сплавам (Д1, В95, АК). Прутки из АМц и АМгобладают высокой коррозионной стойкостью, допускают возможность дополнительного формообразования горячей ковкой (в интервале 510-380оС). Разнообразные профили широко представлены из сплава АД31 с различными вариантами термообработки. Применяются для конструкций невысокой и средней прочности, а также для изделий декоративного назначения. Прутки, трубы и профили из АД31 имеют высокую общую коррозионную стойкость, не склонны к коррозии под напряжением. Сплав хорошо сваривается точечной, роликовой и аргонно-дуговой сваркой. Коррозионная стойкость сварного шва такая же, как у основного материала. Для повышения прочности сварного шва необходима специальная термообработка. Уголки производятся в основном из АД31, Д16 и АМг2. Трубы производятся из большинства сплавов, представленных на рисунке. Они поставляются в состояниях без термообработки (прессованные), закаленные и состаренные, а также отожженные и нагартованные. Параметры их механических свойств примерно соответствуют, приведенным на гистограмме. При выборе материала труб кроме прочностных характеристик учитывается его коррозионная стойкость и свариваемость. Наиболее доступны трубы из АД31. Плоский алюминиевый прокат. Листы общего назаначения производятся по ГОСТ 21631-76, ленты - по ГОСТ 13726-97, плиты по ГОСТ 17232-99. Листы из сплавов с пониженной или низкой коррозионной устойчивостью (АМг6, 1105, Д1, Д16, ВД1, В95) плакируются. Химический состав плакирующего сплава обычно соответствует марке АД1, а толщина слоя составляет 2 – 4% от номинальной толщины листа. Плакирующий слой обеспечивает электрохимическую защиту основного металла от коррозии. Это означает, что коррозионная защита металла обеспечивается даже при наличии механических повреждений защитного слоя (царапины). Маркировка листов включает в себя: обозначение марки сплава + состояние поставки + вид плакировки (если она присутствует). Примеры маркировки:
На гистограмме приведены основные характеристики механических свойств листов в различных состояниях поставки для наиболее используемых марок. Состояние "без термообработки" не показано. В большинстве случаеввеличины предела текучести и предела прочности такого проката близки ксоответствующим значениям дляотожженного состояния, а пластичность ниже. Плиты выпускаются в состоянии "без термообработки". Из рисунка видно, что выпускаемый ассортимент листов дает широкие возможности для выбора материала по прочности, пределу текучести и пластичности с учетом коррозионной стойкости и свариваемости.Для ответственных конструкций из прочных сплавов обязательно учитывается трещиностойкость и характеристики сопротивления усталости. Листы из технического алюминия (АД0, АД1, А5-А7). Нагартованные и полунагартованные листы используются для изготовления ненагружен-ных конструкций, резервуаров (в т. ч. для криогенных температур), требующих обеспечения высокой коррозионной стойкости и допускающих применение сварки. Они используются также для изготовления вентиляционных коробов, теплоотражающих экранов (отражательная способность алюминиевых листов достигает 80%), изоляции теплотрасс. Листы в мягком состоянии используются для уплотнения неразъемных соединений. Высокая пластичность отожженных листов позволяет производить изделия глубокой вытяжкой. Технический алюминий отличается высокой коррозионной устойчивостью во многих средах (см. страницу "Свойства алюминия"). Однако, за счет разного содержания примесей в перечисленных марках, их антикоррозионные свойства в некоторых средах всё-таки различаются. Алюминий сваривается всеми методами. Технический алюминий и его сварные соединения обладают высокой коррозионной стойкостью к межкристаллитной, расслаивающей коррозии и не склонны к коррозионному растрескиванию. Кроме листов, изготавливаемых по ГОСТ21631-76, в свободной продаже имеются листы, произведенные по Евростандарту, с маркировкой 1050А. По химическому составу они соответствуют марке АД0. Фактические параметры (по сертификатам качества) механических свойств составляют (для листов 1050АН24): предел текучести σ0.2 = (10.5-14), предел прочности при разрыве σв=(11.5-14.5), относительное удлинение δ=(5-10%), что соответствует полунагартованному состоянию (ближе к нагартованному). Листы с маркировкой 1050АН0 или 1050АН111 соответствуют отожженному состоянию. Листы (и ленты) из сплава 1105. Из-за пониженной коррозионной стойкости изготавливается плакированным. Широко применяется для изоляции теплотрасс, для изготовления малонагруженных деталей, не требующих высоких коррозионных свойств. Листы из сплава АМц. Листы из сплава АМц хорошо деформируются в холодном и горячем состояниях. Из-за невысокой прочности (низкого предела текучести) используются для изготовления только малонагруженных конструкций. Высокая пластичность отожженных листов позволяет производить из них малонагруженные изделия глубокой вытяжкой. По коррозионной стойкости АМц практически не уступает техническому алюминию. Хорошо свариваются аргонно-дуговой, газовой и контактной сваркой. Коррозионная стойкость сварного шва такая же, как у основного металла. Листы из сплавов АМг. Чем больше содержание магния в сплавах этой группы, тем они прочнее , но менее пластичны. Механические свойства. Наиболее распостранены листы из сплавов АМг2 (состояния М, Н2, Н) и АМг3 (состояния М и Н2), в том числе рифленые. Сплавы АМг1, АМг2, АМг3, АМг4 хорошо деформируются и в горячем и в холодном состоянии. Листы обладают удовлетворительной штампуемостью. Нагартовка заметно снижает штампуемость листов. Листы этих марок применяются для конструкций средней нагруженности. Листы из АМг6 и АМг6 вупрочненном состоянии не поставляются. Применяются для конструкций повышенной нагруженности. Коррозионная стойкость. Сплавы АМг отличаются высокой коррозионной стойкостью в растворах кислот и щелочей. Сплавы АМг1, АМг2, АМг3, АМг4 имеют высокую коррозионную стойкость к основным видам коррозии как в отожженном так и в нагартованном состонии. Сплавы АМг5, АМг6 склонны к коррозии под напряжением и межкристаллитной коррозии. Для защиты от коррозии листы и плиты из этих сплавов плакируются, а заклепки из АМг5п ставят только анодированными. Свариваемость.Все сплавы АМг хорошо свариваются аргоннодуговой сваркой, но характеристики сварного шва зависят от содержания магния. С ростом его содержания уменьшается коэффициент трещинообразования, возрастает пористость сварных соединений. Сварка нагартованных листов устраняет нагартовку в зоне термичес-кого влияния сварного соединения, механические свойства в этой зоне соответствуют свойствам в отожженном состоянии. Поэтому сварные соединения нагартованных листов АМг имеют меньшую прочность по сравнению с основным материалом. Сварные соединения АМг1, АМг2, АМг3 обладают высокой стойкостью против коррозии. Для обеспечения коррозионной стойкости сварного шва АМг5 и АМг6 требуется специальная термообработка. Листы и плиты из Д1, Д16, В95. Высокопрочные сплавы Д1, Д16, В95 имеют низкую устойчивость к коррозии. Поскольку листы из них используются в конструкционных целях, то для коррозинной защиты они плакируются слоем технического алюминия. Следует помнить, что технологические нагревы плакированных листов из сплавов, содержащих медь (например Д1, Д16), не должны даже кратковременно превышать 500°С . Наиболее распространены листы из дуралюминия Д16. Фактические значения механических параметров для листов из Д16АТ (по сертификатам качества) составляют: предел текучести σ0.2 = (28-32), предел прочности при разрыве σв= (42-45), относительное удлинение δ=(26-23%). Сплавы этой группы свариваются точечной сваркой, но не свариваются плавлением. Поэтому основной способ их соединения - заклепки. Для заклепок используется проволока из Д18Т и В65Т1. Сопротивление срезу для них соответственно 200 и 260 МПа. Из толстолистового проката доступны плиты из Д16 и В95. Плиты поставляются в состоянии "без термообработки", но возможно термоупрочнение уже готовых деталей после их изготовления. Прокаливаемость Д16 допускает термоупрочнение деталей сечением до 100-120 мм. Для В95 этот показатель составляет 50-70 мм. Листы и плиты из В95 имеют большую (по сравнению с Д16) прочность при работе на сжатие. |
www.dpva.ru
Алюминиевые сплавы при повышенных температурах
Предел прочности
Прочность алюминиевых сплавов с увеличением температуры снижается, не считая, конечно, эффекта искусственного старения. При этом длительность выдержки при повышенной температуре важна как для нагартованных алюминиевых сплавов, так и для термически упрочненных сплавов, но не оказывает никакого влияния на свойства алюминиевых сплавов в отожженном состоянии. На рисунке 1 представлены результаты испытаний на статическое растяжение образцов из термически упрочненного алюминиевого сплава 2014-Т6 (АК8) при различных температурах после выдержек различной длительности при тех же температурах. Длительность испытаний при повышенных температурах часто достигает 10000 часов, однако часто результаты испытаний интерполируют и за 10000 часов.
Рисунок 1
Прочность алюминиевых сплавов на срез, сжатие и смятие, а также усталостная прочность изменяются с температурой также как и прочность при растяжении. Обычно принимают, что отношения этих «прочностей» к прочности на растяжение постоянно. Восстановить прочность, которая снизилась из-за воздействия повышенной температуры, можно только термической обработкой или нагартовкой, что обычно не практично для готовых изделий.
Изменение предела прочности при растяжении алюминиевого сплава AlCu4MgSi (2014, АК8) при испытаниях при комнатной температуре после выдержки различной длительности при различных повышенных температурах показано на рисунке 2. После короткого воздействия высокой температуры или длительного воздействия умеренной температуры материал достигает сверхмягкого отожженного состояния и выходит на почти постоянный низкий предел прочности.
Предел прочности дюралюминового сплава АК8при повышенных температурах
Рисунок 2
Модуль упругости
Модуль упругости алюминиевых сплавов также снижается с увеличением рабочей температуры. Однако в отличие от прочностных характеристик, которые стабилизируются при пониженных «отожженных» величинах, он возвращается к своему значению при комнатной температуре после окончания воздействия повышенной температуры (рисунок 3).
Рисунок 3
Ссылка: TALAT 1501
aluminium-guide.ru
Прочность алюминия | Алюминевый профиль
Прочность алюминия
Предел прочности. Предел прочности при растяжении (сопротивление разрыву) является первым критерием любого конструкционного материала. На рисунке 1 показаны типичные кривые напряжение-деформация при испытаниях на одноосное растяжение четырех различных алюминиевых сплавов в сравнении с высокопрочной сталью, титановым сплавом и низкоуглеродистой сталью.
Рисунок №1. Кривые напряжение-деформация алюминиевых сплавов в сравнении с другими конструкционными материалами
— сплав1050А (международная классификация) или марка алюминия АД0 (ГОСТ 4784-97) — это 99,5 % алюминий в отожженном состоянии, который хорошо подходит для глубокой штамповки;
— сплав 5083-Н12 – это алюминиевый сплав системы Al-Mg с 4,5 % содержанием магния. В полунагартованном состоянии (Н12) этот сплав применяется в морских и сварных конструкциях;
— сплав 6082 Т6 или марка алюминия АД35 (ГОСТ 4784-97) системы Al-Mg-Mn-Si, закаленный и состаренный до состояния Т6 (на максимальную прочность) успешно применяется в строительстве;
— сплав 7075 системы Al-Zn-Mg-Cu в состоянии максимального термического упрочнения применяется в самолетостроении.
Отношение прочность/вес. Как видно из рисунка №1 высокопрочные стали имеют самое высокое отношение прочности к весу, за ними следует титановый сплав Ti-6Al-4V и самолетные алюминиевые сплавы. Далее расположились алюминиевые сплавы 5083-Н12 и 6082-Т6.
Если же рассматривать прочность, которая достигается на единицу массы, поделив прочность на плотность, то мы получим совершенно иные результаты (рисунок №2). При таком подходе наиболее эффективным конструкционным материалом является алюминиевый сплав 7075, а сплавы 5083-Н12 и 6082-Т6 выглядят более эффективными, чем низкоуглеродистые стали.
Рисунок №2. Прочность на единицу плотности алюминиевых сплавов и других конструкционных материалов
aledpro.com