Устройство и принцип работы блока питания ATX. Схема блока питания компьютера


Принцип работы компьютерного блока питания

Статья написана на основе книги А.В.Головкова и В.Б Любицкого"БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" Материал взят с сайта интерлавка. Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели И 02, L103 на: • выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея; • двухконтактный разъем JP1, ответная часть которого находится на плате. С разъема JP1 переменное напряжение сети поступает на: • мостовую схему выпрямления BR1 через терморезистор THR1; • первичную обмотку пускового трансформатора Т1.

На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115V/230V SW обеспечивает возможность питания импульсного блока питания как от сети 220-240В, так и от сети 110/127 В.

Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения импульсного блока питания из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного +310В, с некоторыми пульсациями. В данном импульсном блоке питания используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения блока питания в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. СЗО - сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4. 

В качестве управляющей микросхемы в данном импульсном блоке питания традиционно используется ИМС TL494.

Питающее напряжение с конденсатора СЗО подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5B, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы. 

Согласующий каскад в данном импульсном блоке питания выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора СЗО подается в средние точки первичных обмоток управляющих трансформаторов Т2, ТЗ. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к "корпусу". Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, ТЗ, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, ТЗ с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.

Трансформаторы Т2, ТЗ управляют мощными транзисторами полумостового инвертора. 

Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, ТЗ. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами ("мертвыми зонами"). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое - конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор. Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).

Цепочка С4, R7, шунтирующая первичную обмотку Т5, способствует подавлению высокочастотных паразитных колебательных процессов, которые возникают в контуре, образованном индуктивностью первичной обмотки Т5 и ее меж-витковой емкостью, при закрываниях транзисторов Q1, Q2, когда ток через первичную обмотку резко прекращается. 

Конденсатор СЗ, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.

Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах. 

Протекание переменного тока через первичную обмотку Т5 обуславливает наличие знакопеременных прямоугольных импульсных ЭДС на вторичных обмотках этого трансформатора. Силовой трансформатор Т5 имеет три вторичные обмотки, каждая из которых имеет вывод от средней точки. Обмотка IV обеспечивает получение выходного напряжения +5В. Диодная сборка SD2 (полумост) образует с обмоткой IV двухполупериодную схему выпрямления со средней точкой (средняя точка обмотки IV заземлена). Элементы L2, СЮ, С11, С12 образуют сглаживающий фильтр в канале +5В. Для подавления паразитных высокочастотных колебательных процессов, возникающих при коммутациях диодов сборки SD2, эти диоды за-шунтированы успокаивающими RC-цепочками С8, R10nC9, R11.

Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя. 

Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения +12В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения +5В. Это даст возможность использовать диоды Шоттки в канале выработки +12В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.

Элементы L1, С6, С7 образуют сглаживающий фильтр в канале +12В. 

Резисторы R9, R12 предназначены для ускорения разрядки выходных конденсаторов шин +5В и +12В после выключения ИБП из сети. RC-цепочка С5, R8 предназначена для подавления колебательных процессов, возникающих в паразитном контуре, образованном индуктивностью обмотки III и ее межвитковой емкостью. Обмотка И с пятью отводами обеспечивает получение отрицательных выходных напряжений -5В и-12В. Два дискретных диода D3, D4 образуют полумост двухполупериодного выпрямления в канале выработки -12В, а диоды D5, D6 - в канале -5В. Элементы L3, С14 и L2, С12 образуют сглаживающие фильтры для этих каналов. Обмотка II, также как и обмотка III, зашунтиро-вана успокоительной RC-цепочкой R13, С13.

Средняя точка обмотки II заземлена. 

Стабилизация выходных напряжений осуществляются разными способами в разных каналах. Отрицательные выходные напряжения -5В и -12В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912). Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12В и -5В. Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения импульсного блока питания из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно. Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.

Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов. 

Если хотя бы один из этих диодов (D3, D4, D5 или D6) окажется "пробитым", то в отсутствие диодов D5, D10 ко входу интегрального стабилизатора U1 (или U2) прикладывалось бы положительное импульсное напряжение, а через электролитические конденсаторы С14 или С15 протекал бы переменный ток, что привело бы к выходу их из строя. Наличие диодов D5, D10 в этом случае устраняет возможность возникновения такой ситуации, т.к. ток замыкается через них. Например, в случае, если "пробит" диод D3, положительная часть периода, когда D3 должен быть закрыт, ток замкнется по цепи: к-а D3 - L3 -D7- D5- "корпус". Стабилизация выходного напряжения +5В осуществляется методом ШИМ. Для этого к шине выходного напряжения +5В подключен измерительный резистивный делитель R51, R52. Сигнал, пропорциональный уровню выходного напряжения в канале +5В, снимается с резистора R51 и подается на инвертирующий вход усилителя ошибки DA3 (вывод 1 управляющей микросхемы). На прямой вход этого усилителя (вывод 2) подается опорный уровень напряжения, снимаемый с резистора R48, входящего в делитель VR1, R49, R48, который подключен к выходу внутреннего опорного источника микросхемы U4 Uref=+5B. При изменениях уровня напряжения на шине +5В под воздействием различных дестабилизирующих факторов происходит изменение величины рассогласования (ошибки) между опорным и контролируемым уровнями напряжения на входах усилителя ошибки DA3. В результате ширина (длительность) управляющих импульсов на выводах 8 и 11 микросхемы U4 изменяется таким образом, чтобы вернуть отклонившееся выходное напряжение +5В к номинальному значению (при уменьшении напряжения на шине +5В ширина управляющих импульсов увеличивается, а при увеличении этого напряжения -уменьшается). Устойчивая (без возникновения паразитной генерации) работа всей петли регулирования обеспечивается за счет цепочки частотно-зависимой отрицательной обратной связи, охватывающей усилитель ошибки DA3. Эта цепочка включается между выводами 3 и 2 управляющей микросхемы U4 (R47, С27).

Выходное напряжение +12В в данном ИБП не стабилизируется. 

Регулировка уровня выходных напряжений в данном ИБП производится только для каналов +5В и +12В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1. При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине +5В, а значит и на шине +12В, т.к. напряжение с шины +5В подается в среднюю точку обмотки III.

Комбинированная зашита данного ИБП включает в себя: 

• ограничивающую схему контроля ширины управляющих импульсов; • полную схему защиты от КЗ в нагрузках; • неполную схему контроля выходного перенапряжения (только на шине +5В).

Рассмотрим каждую из этих схем. 

Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5. Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухпо-лупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.

Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения. 

В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-ком-паратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3. 

Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково. Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений (+5В и +12В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов +5В и +12В имеют номинальные величины, потенциал анода диода D11 составляет около +5,8В, т.к. через делитель-датчик протекает ток с шины +12В на шину +5В по цепи: шина +12В - R17- D11 - шина +56.

Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref=+5B управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ. 

В случае КЗ в нагрузке канала +12В, например, потенциал анода диода D11 становится равным 0В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom - R39 - R36 -б-э Q4 - "корпус".

Открывание выходного транзистора компаратора 1 подключает резистор R39 к "корпусу", и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах +5В и +12В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к "корпусу". Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref - э-6 Q6 - R30 - к-э Q5 -"корпус". 

Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5B, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала +5В приведет к тому, что потенциал анода диода D11 будет составлять всего около +0.8В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение. Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5В и -12В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диодно-резистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5В или -12В, потенциал катода D12 повышается (от -5,8 до 0В при КЗ в нагрузке канала -12В и до -0,8В при КЗ в нагрузке канала -5В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref=+5B, а резистор R21 - к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.

Защита от выходного перенапряжения на шине +5В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1В) подключается к шине выходного напряжения +5В. Поэтому, пока напряжение на этой шине не превышает +5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине +5В выше +5,1В стабилитрон "пробивается", и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref=+5B на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине +5В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим. 

Схема образования сигнала PG в данном импульсном блоке питания является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3. 

Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока импульсный блок питания включен в питающую сеть. Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе СЗО, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и то-коограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref=+5B за-питывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom - R39 - R30 - С20 - "корпус". Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom - R33 - R34 - 6-э Q3 - "корпус". Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, импульсный блок питания успевает надежно выйти в номинальный режим работы, т.е. все его выходные напряжения появляются в полном объеме. Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, него выход ной транзистор откроется. Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора. При выключении импульсного блока питания из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1 мкф). Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: (+)С20 - R61 - D14 - к-э выходного транзистора компаратора 3 - "корпус".

Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера. 

Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение. Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41. Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12В через дополнительный развязывающий Г-образный фильтр R16, С15.

radioskot.ru

Принципиальные электрические схемы компьютерного оборудования.

&nbsp &nbsp На этой страничке размещено несколько десятков электрических принципиальных схем, и полезные ссылки на ресурсы, связанные с темой ремонта оборудования. В основном, компьютерного. Помня о том, сколько сил и времени иногда приходилось затрачивать на поиск нужной информации, справочника или схемки, я собрал здесь почти все, чем пользовался при ремонте и что имелось в электронном виде. Надеюсь, кому-нибудь, что-нибудь пригодится.

Утилиты и справочники.

cables.zip - Разводка кабелей - Справочник в формате .chm. Автор данного файла - Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru - краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратуа, игровые приставки, интерфейсы автомобилей.

Конденсатор 1.0 - Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

startcopy.ru - по моему мнению, это один из лучших сайтов рунета, посвященный ремонту принтеров, копировальной техники, многофункциональных устройств. Можно найти методики и рекомендации по устранению практически любой проблемы с любым принтером.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Цветовая маркировка проводов и разъемы питания ATX

ATXPower.rar - Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

colors_it_330u_sg6105.gif - Схема БП NUITEK (COLORS iT) 330U.

codegen_250.djvu - Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif - Схема БП Codegen 300w mod. 300X.

deltadps200.gif - Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

deltadps260.ARJ - Схема БП Delta Electronics Inc. модель DPS-260-2A.

DTK_PTP_2038.gif - Схема БП DTK PTP-2038 200W.

FSP145-60SP.GIF - Схема БП FSP Group Inc. модель FSP145-60SP.

green_tech_300.gif - Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.rar - Схемы блока питания HIPER HPU-4K580

hpc-360-302.pdf - Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0

hpc-420-302.pdf - Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-420-302 DF REV:C0

iwp300a2.gif - Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif - Схемы блока питания INWIN IW-P300A3-1 Powerman.

JNC_LC-B250ATX.gif - JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf - JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar - предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF - Схемы блока питания Key Mouse Electronics Co Ltd модель PM-230W

Power_Master_LP-8_AP5E.gif - Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif - Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

MaxpowerPX-300W.GIF - Схема БП Maxpower PX-300W

microlab350w.pdf - Схема БП Microlab 350W

microlab_400w.pdf - Схема БП Microlab 400W

linkworld_LPJ2-18.GIF - Схема БП Powerlink LPJ2-18 300W

SevenTeam_ST-200HRK.gif - Схема БП SevenTeam ST-200HRK

SHIDO_ATX-250.gif - Схемы блока питания SHIDO модель LP-6100 250W.

SUNNY_ATX-230.png - Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230

Другое оборудование.

splitter.arj - 2 принципиальные схемы ADSL - сплиттеров.

KS3A.djvu - Документация и схемы для 29" телевизоров на шасси KS3A.

GFL2.20E.pdf - Документация и схемы для телевизоров Philips на шасси GFL2.20E.

Если вы желаете помочь развитию проекта, можете воспользоваться кнопкой "Поделиться" для своей социальной сети

В начало страницы &nbsp&nbsp&nbsp | &nbsp&nbsp&nbsp На главную страницу сайта

comp0.ru

ATX блоки питания компьютеров: схемы и устройство | Ремонт компьютеров Троещина на дому: компьютерная помощь, диагностика компьютера на Троещине

Производя ремонт компьютеров очень часто приходится заглядывать под крышку БП: осматривать его узлы, замерять напряжения, иногда перепаивать компоненты.

Блоки питания компьютеров, являясь высоковольтными силовыми устройствами, выходят из строя намного чаще других комплектующих компьютера. Не зависимо от производителя и цены, устройство и принцип работы блока питания ATX неизменны. Схематически устройство блока питания компьютера можно разделить на:

  • Входную цепь (1)
  • Сетевой выпрямитель (2)
  • Автогенераторный источник питания (3)
  • Силовой каскад (4)
  • Вторичные выпрямители (5)

Внутреннее устройство блока питания ATX

Входная цепь состоит из сетевого фильтра гасящего помехи в сети от работы БП. Сетевой выпрямитель блока питания компьютера включает в себя диодную сборку (мост) и выпрямительные конденсаторы. Автогенераторный источник питания работает когда компьютер выключен (не из сети, разумеется, а кнопкой Power) он подает дежурное напряжение питания +5VStb на контроллеры материнской платы. На силовой каскад  от выпрямителя подается напряжение +310В. Транзисторы силового каскада блока питания ATX работают по двутактной схеме совместно с силовым трансформатором и управляются микросхемой ШИМ. Со вторичных обмоток силового трансформатора напряжение подается на вторичные низковольтные выпрямители. Микросхема ШИМ запускается по сигналу от материнской платы «Power On» запуская, соответственно, транзисторно-трансформаторный преобразователь и подавая  напряжения на его вторичные обмотки. Во вторичных обмотках блока питания компьютера, кроме диодных сборок (на радиаторах) задействованы дроссели.

Схема блока питания компьютера (кликните для увеличения).

Схема блока питания компьютера (кликните для увеличения).

 

Блок питания компьютера является импульсным устройством. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Сетевое напряжение 220в поступает через сетевой фильтр на выпрямитель состоящий из диодов и двух последовательно соединенных электролитических конденсаторов. Так же запитывается автогенераторный источник питания формирующий дежурное напряжение +5v stb. С выпрямителя, напряжение величиной 310в поступает на силовой каскад реализованный на мощных транзисторных ключах и трансформаторе. Силовой каскад управляется импульсами поступающими от микросхемы-генератора ШИМ (Широтно Импульсная Модуляция) через согласующий трансформатор на базы ключей. Генерируемое импульсное напряжение снимается со вторичных обмоток силового трансформатора, выпрямляется диодами и конденсаторами. Величина выходного напряжения контролируется специальной схемой защиты, которая формирует сигнал Power-Ok (Power-Good). В случае отклонения выходных напряжений от номиналов сигнал Power-Ok не подается на контроллер материнской платы, тем самым блокируя запуск компьютера.

 

PowerMaster_FA_5_2_v3-2_230W_LP-8

PowerMaster_230W

PowerMaster_FA_5_2_v3-2_250W

PowerMaster_250W

Maxpower_PX-300W

Maxpower_PX-300W

jnc

jnc

dtk_ptp-2038

dtk_ptp-2038

colors_it_330

colors_it_330

codegen_atx_300w

codegen_atx_300w

pitaniya-330w

Codegen-330w

Gembird-350W

Gembird-350W

Распиновка разъемов ATX блока питания компьютера

Распиновка разъемов ATX блока питания компьютера

                    Распиновка разъемов блока питания ATX

Ремонт блоков питания компьютеров следует начинать с проверки подачи сетевого напряжения ~220в на выпрямитель. Далее, необходимо проконтролировать наличие +310в на выходе выпрямителя (не забывайте, что конденсаторы выпрямителя блока питания компьютера включены последовательно и напряжение на их выводах будет составлять приблизительно по 150-160в). Удостоверьтесь в наличии напряжений +5v stb и Power-Ok (розовый и зеленый провода). Если они отсутствуют следует проверить автогенераторный источник питания дежурного режима и микросхему ШИМ (если нет напряжения Power-Ok). Если генерация дежурного напряжения +5v stb и Power-Ok в норме, сосредоточьте свое внимание на силовых ключах и вторичном выпрямителе блока питания. Не забывайте, что для проверки полупроводников и конденсаторов их лучше выпаять из схемы.

computerrepair.com.ua

Схемы блоков питания компьютера / Схемы / Коллективный блог

Без блока питания (БП) не обходится ни один компьютер. Он является одним из важных и обязательных компонентов системника. При правильном выборе хороший блок питания может отлично использоваться на нескольких поколениях компьютеров.

Его основным назначением является формирование напряжения, которое обеспечивает питание для функционирования всех блоков компьютеров. Кроме того, он выполняет функцию гальванической развязки, благодаря которой устраняются токи утечки, и предотвращается возникновение паразитных токов, возникающих при сопряжении устройств.

Как известно, для создания гальванической развязки необходим трансформатор с обязательными обмотками. А компьютер для своей работы требует большую мощность. Представьте, каких бы размеров должен был быть трансформатор для современных ПК и сколько бы он весил. Но благодаря тому, что частота питающего тока для создания необходимого магнитного поля требует меньшего количества витков на трансформаторе, это дает возможность, используя преобразователь, создавать легкие и компактные блоки питания.

Самый первый БП был импульсного типа и представлял собой преобразователь однотактный или двухтактный. Первый тип имел один трансформатор, который открывался и закрывался.

В двухтактном преобразователе работают два трансформатора, которые открываются и закрываются по очереди.

Рис.1 Схемы преобразователей

Такие преобразователи неудобны в практическом применении. Их основные параметры, среди которых частота преобразователя, выходное напряжение и другие, не стабильные и зависят от изменения напряжения питания, температуры и загруженности выхода самого преобразователя. Однако если в схему ввести контроллер, который будет отвечать за стабилизацию всех параметров, то она отлично подойдет для питания устройства.

Такой блок питания достаточно прост, и представляет собой генератор импульсов с контроллером широтно-импульсной модуляции (ШИМ), которая позволяет регулировать амплитуду прошедших через фильтр низких частот сигнала. При этом можно изменять длительность или скважность импульса. Основное достоинство модуляции – получение высокого КПД у усилителей мощности и широкий спектр в применении.

Рис.2 Сема блока питания с ШИМ-контроллером

Если мощность блока питания большая, тогда ШИМ-контроллер укомплектовывается элементами управления выходного ключа, в качестве которых очень часто используются IGВТ-транзисторы. Именно такой подход используется в блоках питания АХА, схему которого мы и рассмотрим ниже.

Рис. 3 Схема блока питания АХА

Для удобства она разделена на несколько зон, выделенных красными квадратами.

Чтобы питать микросхемы контроллера и формировать дежурное напряжение выключенного компьютера в схему блока питания вводится еще один преобразователь. В нашем случае он обозначен цифрой 2. Сам по себе он представляет однотактный тип с рядом дополнительных элементов. Это цепочки, направленные на поглощение всплесков напряжений, появляющихся в результате генерации трансформатора. Формирование дежурного напряжения в этом блоке осуществляется на стабилизаторе напряжения. Именно в этой части очень часто производители устанавливают компоненты низкого качества или имеющие дефекты. Как следствие, происходит снижение частоты преобразователя, и работающий слышит писк.

Полученное от сети переменное напряжение в 220 Вт перед передачей на преобразователь, превращают в постоянное. Этот процесс происходит в блоке 1, в состав которого входит заграждающий фильтр, которые убирает помехи, созданные самим блоком.

Функции третьего блока являются основными: защита от коротких замыканий, стабилизация выходного напряжения и формирование ШИМ-сигнала, управляющего транзисторными ключами трансформатора.

В состав четвертого блока входят два трансформатора и две группы транзисторных ключей. Задача первого трансформатора – создание управляющего напряжения для транзисторов на выходе. Слабый сигнал от ШИМ-контроллера для первого трансформатора усиливает первая группа транзисторов. Выходные транзисторы, нагруженные на второй трансформатора, помогают последнему сформировать основное напряжение питания. Сложность данной схемы обусловлена спецификой управления биополярными транзисторами и защитой ШИМ-контроллера от высокого напряжения.

В состав пятого блока входят диоды Шоттки, которые выпрямляют выходное напряжение с трансформатора, и фильтр низких частот, который состоит из конденсаторов большой емкости и дросселей. Кроме того, в фильтре на выходе установлены резисторы, которые обеспечивают незаряженное состояние после того, как блок питания был выключен. Эти же резисторы устанавливают на выходе выпрямителя сетевого напряжения.

Оставшиеся элементы схемы представляют собой цепочки, которые формируют «сигналы исправности», защищают блок питания от короткого замыкания и контролируют исправность выходных напряжений.

Схема, которую мы с вами рассмотрели, используется в блоках питания форм-фактора АТХ, в которых не производится коррекция коэффициента мощности.

Сегодня многими производителя активно выпускаются блоки питания АХА обязательной коррекцией коэффициента мощности. Если рассмотренные выше БП могут работать с напряжение 150-300 Вт, то второй тип БП работает в диапазоне от 300 Вт и выше.

Рис.4 Схема блока питания АТХ мощностью 300-500 Вт

В таких блоках питания в качестве ККМ использовали дроссель с большой индуктивностью, который устанавливался на входе. Этот вид БП получил название блок питания с РFС или пассивным ККМ. Его отличает достаточно большой вес, из-за того, что в схему помимо дросселя включены конденсаторы на выходе выпрямителя. По сравнению с блоками АХА КМ данного типа повышена только до 0,85.

Среди недостатков данной схемы стоит отметить небольшую надежность самого БП и высокую вероятность некорректной работы с некоторыми источниками бесперебойного питания в тех случаях, когда происходит переключение режимов работы «батарея/сеть». Это связано с тем, что емкость фильтра сетевого напряжения небольшая и в момент, когда происходит кратковременное падение напряжения, возрастает ток ККМ и срабатывает защита от короткого замыкания.

Сейчас многие производители устанавливают в своих блоках питания двухканальные ШИМ-контроллеры. В результате, одна микросхема работает и как преобразователь, и как ККМ, снижая, тем самым, количество используемых элементов.

Рис.5 Схема БП с двухканальным ШИМ-контроллером

На приведенной схеме одна часть задействована для того, чтобы формировать постоянное стабилизированное напряжение +380В, а другая является преобразователем, который формирует постоянное стабилизированное напряжение +12В. Сам ККМ состоит из ключа Q1, на который нагружен дроссель L1 трансформатора обратной связи Т1. Для зарядки конденсаторов С2, С3, С4 используются диоды D5 и D6. В состав преобразователя входят два ключа Q2 и Q3, которые нагружены на трансформатор Т3. Диодная сборка D13 используется для выпрямления импульсного напряжения, а затем отфильтровывается дросселем L2 и конденсаторами С16, С18. За формирование напряжения регулирования для выходного напряжения отвечает патрон U2.

И в конце отметит небольшой нюанс, на который необходимо обращать внимание при выборе блока питания. На этикетках, которые располагаются на БП, производители указывают только максимальную мощность, которую может выдать данный элемент по всем питаемым линиям. Поэтому видео, предложенное ниже, поможет вам в правильном выборе блока питания:

44kw.com

Схемотехника ATX (AT) БП на TL494, KA7500

AT 200W TL494

 

ATX Shido 250W, TL494

Microlab 400W, KA7500B

ATX, IC= TL494

230W Key Mouse Elekctronic

PC SMPS AT, cca 200W

old AT, cca 200W

Sunny Technologies AT 200W

Codegen ATX 250W - 250XA1

Seven Team ST-230WHF 230W

JNC Computer LC-250ATX

SevenTeam ATX2V2 with TL494

PowerMaster FA-5-2, 250W

PowerMaster LP-8, 230W

SevenTeam ST-200HRK 200W

Green Tech MAV-300W-P4

DTK-PTP-2038 200W ATX

Codegen Atx 300W

ATX LWT2005 china, KA7500B

Delta DPS-200PB-59 H

Alim ATX 250W SMEV J.M 2002

ATX (базовая схема)

Power Efficiency electronic PE-050187

AT UK5-15A

unknown AT

Wintech PC WIN-235PE

MaxPower ATX PX-230W

DTK Computer PTP-2007 Macron

PC ATX EC Model 200X

ATX-300P4-PFC (passive PFC)

 

easyradio.ru

Принципиальные электрические схемы компьютерного оборудования.

&nbsp &nbsp На этой страничке размещено несколько десятков электрических принципиальных схем, и полезные ссылки на ресурсы, связанные с темой ремонта оборудования. В основном, компьютерного. Помня о том, сколько сил и времени иногда приходилось затрачивать на поиск нужной информации, справочника или схемки, я собрал здесь почти все, чем пользовался при ремонте и что имелось в электронном виде. Надеюсь, кому-нибудь, что-нибудь пригодится.

Утилиты и справочники.

cables.zip - Разводка кабелей - Справочник в формате .chm. Автор данного файла - Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru - краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратуа, игровые приставки, интерфейсы автомобилей.

Конденсатор 1.0 - Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

startcopy.ru - по моему мнению, это один из лучших сайтов рунета, посвященный ремонту принтеров, копировальной техники, многофункциональных устройств. Можно найти методики и рекомендации по устранению практически любой проблемы с любым принтером.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Цветовая маркировка проводов и разъемы питания ATX

ATXPower.rar - Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

colors_it_330u_sg6105.gif - Схема БП NUITEK (COLORS iT) 330U.

codegen_250.djvu - Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif - Схема БП Codegen 300w mod. 300X.

deltadps200.gif - Схема БП Delta Electronics Inc. модель DPS-200-59 H REV:00.

deltadps260.ARJ - Схема БП Delta Electronics Inc. модель DPS-260-2A.

DTK_PTP_2038.gif - Схема БП DTK PTP-2038 200W.

FSP145-60SP.GIF - Схема БП FSP Group Inc. модель FSP145-60SP.

green_tech_300.gif - Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.rar - Схемы блока питания HIPER HPU-4K580

hpc-360-302.pdf - Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0

hpc-420-302.pdf - Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-420-302 DF REV:C0

iwp300a2.gif - Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif - Схемы блока питания INWIN IW-P300A3-1 Powerman.

JNC_LC-B250ATX.gif - JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf - JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar - предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF - Схемы блока питания Key Mouse Electronics Co Ltd модель PM-230W

Power_Master_LP-8_AP5E.gif - Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif - Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

MaxpowerPX-300W.GIF - Схема БП Maxpower PX-300W

microlab350w.pdf - Схема БП Microlab 350W

microlab_400w.pdf - Схема БП Microlab 400W

linkworld_LPJ2-18.GIF - Схема БП Powerlink LPJ2-18 300W

SevenTeam_ST-200HRK.gif - Схема БП SevenTeam ST-200HRK

SHIDO_ATX-250.gif - Схемы блока питания SHIDO модель LP-6100 250W.

SUNNY_ATX-230.png - Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230

В начало страницы &nbsp &nbsp &nbsp | &nbsp &nbsp &nbsp На главную страницу сайта

white55.narod.ru

Как отремонтировать блок питания компьютера своими руками, инструкция

Прежде чем ремонтировать блок питания, убедитесь, в нем ли причина плохой работы компьютера. Невозможность запустить компьютер может быть обусловлена другими факторами.

Как проверить работоспособность блока питания компьютера АТХ

Ремонт блока питания компьютера АТХ, расстыковка питающего разъема на материнской платеПроверить работоспособность блока питания возможно без измерительных приборов. При этом, его можно не извлекать из системного блока. Чтоб это сделать, отсоединяем от материнской платы и других устройств все разъемы, идущие от него. Оставляем 1 из 4 контактных разъемов для обеспечения нагрузки. Питание на материнскую плату от блока питания поступает при помощи 20 либо 24 контактного разъема, а так же 4 либо 6 контактного. Чтоб надежно фиксировать контакты, на разъемах предусмотрены защелки. Чтоб вынуть разъем, необходимо взяться пальцами сверху защелки и надавить, плавно покачивая ее из стороны в сторону, тем самым вынув ответную часть.

Два вывода разъема, снятого с материнки, следует закоротить между собой при помощи провода или скрепки. Провода располагаются со стороны защелки. Место установки перемычки показано на фото желтым. Если в разъеме 20 контактов, закоротить необходимо 14 (зеленый, может серый, POWER ON) и 15 (черный, GND) выводы. Если разъем 24 контактный, закорачиваем 16 (зеленый, может серый, POWER ON) и 17 (черный, GND) выводы.

Ремонт блока питания компьютера АТХ, проверка АТХ блока питания компьютера 20 контактов

Если замечено вращение крыльчатки кулера, блок питания можно считать исправным. Причиной плохой работы компьютера может быть выход из строя других блоков. Однако, эта проверка не дает полной гарантии на 100% работоспособность компьютера, поскольку отклонение напряжений может быть больше нормы. Для того, чтоб исключить поломку блока питания, подключите его к блоку нагрузок, измеряйте уровень напряжений на выходе. Отклонение напряжение не должно быть больше указанных в таблице.

Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB GND Цвет провода оранжевый красный желтый голубой синий черный Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5 0 Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 0 Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 0

Отрицательный конец щупа прибора подключается к общему проводу (черный), положительный – к контактам разъема. Проделывать эту операцию можно при включенном компьютере.

Структурная схема блока питания компьютера АТХ

Блок питания — сложное электронное устройство. Чтобы его отремонтировать, необходимо владеть навыками радиотехники, иметь необходимые приборы. В большинстве случаев 80% поломок блоков питания можно устранить в домашних условиях. Для этого нужно уметь паять, работать с отверткой и знать схемы источников питания. Буквально все блоки питания создаются по схеме приведенной ниже. Я отметил те компоненты, которые зачастую выходят из строя. Их можно будет заменить самостоятельно. Во время ремонта блока питания придется воспользоваться цветовой маркировкой проводов, выходящих из него.

Ремонт блока питания компьютера АТХ, проверка АТХ блока питания компьютера 24 контакта

Ремонт блока питания компьютера АТХ, структурная схема блока питания компьютераЧерез сетевой шнур подаётся напряжение на разъемные соединения, а уже оттуда на плату блока питания. Главным элементом защиты является предохранитель Пр1, обычно он рассчитан на ток 5 А. В зависимости от того, какой мощности источник питания, предохранитель может быть другого номинала. Фильтр образован конденсаторами С1-С4 и дросселем L1. Он служит для подавления дифференциальных и синфазных помех, возникающих при работе блока питания и поступающих из сети. По такой схеме собранные все сетевые фильтры. Они установлены в изделиях, блоки питания которых не имеют силового трансформатора. А именно: принтерах, видеомагнитофонах, сканерах, телевизорах. Фильтр работает на полную мощность, если подключение к сети осуществляется при помощи заземляющего провода. Жаль, но большинство китайских источников питания не имеют фильтра.

Примером тому служат запаянные перемычки дросселя и отсутствие конденсаторов. Если при ремонте вы обнаружите отсутствие некоторых элементов фильтра, рекомендую их установить. Ниже на фото показать блок питания, фильтр которого установлен.

Ремонт блока питания компьютера АТХ, блок питания с отсутствующим фильтром

Чтобы защититься от перенапряжения, устанавливаются варисторы Z1-Z3. Обозначены на фото синим цветом. Они работают по простому принципу. Если напряжение сети нормальное, варисторы имеют большое напряжение, которое никак не влияет на работоспособность схемы. Если уровень напряжение сети превышает допустимый, сопротивление падает, приводя к сгоранию предохранителя. Это спасает основные детали компьютера от поломки. Если блок питания перестал работать от перенапряжения, замените предохранитель.

Некоторые модели блоков питания имеют возможность переключения, что позволяет работать от сети 115 В. В таком случае контакты SW1 (переключатель) должны находиться в замкнутом состоянии. Чтоб конденсаторы С5-С6, включены в сеть после моста VD1-VD4 заряжались плавно, устанавливается термистор RT, имеющий отрицательный ТКС. Когда термистор холодный, его сопротивление равно единицам Ом, в случае прохождения тока через него, он разогревается и сопротивление падает в 20-50 раз. Компьютер имеет функцию дистанционного включения. Для этого в блоке питания установлен дополнительный источник питания с малой мощностью, который постоянно включен. Даже когда компьютер выключен, но вилка не вынута из сети. Он имеет напряжение +5 B_SB и создан по схеме автоколебательного трансформаторного блокинг-генератора всего на 1 тиристоре, который запитан от напряжения диодом VD1-VD4. Это самый ненадежный узел блока питания и производить ремонтные работы сложно.

Напряжения, необходимые для работы устройств системного блока и материнские платы, фильтруются от помех при помощи конденсаторов и дросселя, а затем проводами подаются к самим источникам. Кулер, служащий для охлаждения блока питания, питается от напряжения -12 В.

Как добраться до платы блока питания

Ремонт блока питания компьютера АТХ, Блок питания с фильтромДля того, чтоб извлечь блок питания из системного блока, откручиваем 4 винта (отмечены на фото). Перед осмотром отсоединяем проводники, имеющие сильное натяжение. Остальные можно оставить.

Ремонт блока питания компьютера АТХ, извлечение блока питания из системного блокаРасполагаем блок питания, таким образом, чтоб он был на углу системного блока. Выкручиваем 4 винта, помеченных на фото розовым цветом. Чаще всего пара винтов находится под наклейкой. Снимаем ее или продырявливаем. По бокам могут быть наклеены бумажки, мешающие снятию крышки, их тоже следует удалить или разрезать.

Крышка снята, удаляем пыль пылесосом. Это первая причина выхода радиодеталей из строя. Она, покрывая толстым слоем детали, снижает теплоотдачу, что приводит к перегреву и сгоранию.

Поиск неисправности блока питания компьютера АТХ

Первым делом осматриваем все детали, уделяя особое внимание геометрии конденсаторов. Чаще всего, из-за повышенного режимы температуры, они выходят из строя. 50% блоков питания прекращают работу из-за неисправных конденсаторов. Это обусловлено плохой работой кулера. Смазка кулера высыхает и срабатывает, обороты уменьшаются. Охлаждение деталей уменьшается, вследствие чего происходит перегрев. Когда кулер начинает издавать шум, следует его почистить и смазать. Если видно вздутие конденсатора и подтек электролита, нужно его менять. Вздутие может произойти по причине пробоя в изоляции. Бывает такое, что внешне конденсатор цел, однако уровень пульсаций напряжения больше. В этом случае отсутствует контакт между выводом конденсатора и обкладкой. Как говорится, конденсатор находится в обрыве. Проверить обрыв можно при помощи тестера, установив режим измерений на сопротивление. В статье «Измерение сопротивления» описывается технология проверки конденсаторов.

Следующим шагом будет осмотр предохранителей, резисторов, полупроводниковых приборов. Внутри предохранителя по центру имеется тонкая блестящая цельная проволока, иногда она имеет утолщение в средине. Если ее не видно, скорее всего, произошло ее сгорание. Чтоб убедиться так ли это, прозваниваем предохранитель омметром. Если предохранитель сгорел, ремонтируем его или заменяем новым. Перед тем, как его заменить, для проверки блока питания не выпаиваем сгоревший предохранитель из платы, а припаиваем к его выводам жилу медного проводника, диаметр которого 0,18 мм. Если во время включения блока питания проводок не сгорит, имеет смысл заменить предохранитель новым.

Как заменить предохранитель в блоке питания компьютера АТХ

Чаще всего блок питания имеет трубчатый стеклянный предохранитель, который рассчитан на защитный ток 5 А. Чтоб обеспечить надежность, он впаивается в плату. Для этого существуют предохранители, на которых есть выводы под пайку.

Ремонт блока питания компьютера АТХ, разборка блока питания системного блока

Его можно заменить обычным предохранителем, ток защиты которого равен 5 А. К его торцам следует припаять кусочки одножильного провода, диаметр которых 0,5 мм и длина 5 мм.

Ремонт блока питания компьютера АТХ, предохранитель блока питания

Остается впаять предохранитель в плату и проверить его в работе.

Ремонт блока питания компьютера АТХ, доработка стандартного предохранителя для установки в блок питания

Если во время включения блока питания произошло повторное сгорание предохранителя, это следствие пробоя переходов в тиристорах, либо выход из строя других элементов. Чтоб отремонтировать такой блок питания, необходимо обладать высокой квалификацией. Можно заменить предохранитель иным, рассчитанным на ток свыше 5 А. Но он все равно сгорит.

Поиск в блоке питания неисправных электролитических конденсаторов

Частой причиной нестабильной работы компьютера и выхода из строя блока питания является вздутие корпуса электролитического конденсатора. Чтоб предотвратить взрыв, на торце конденсатора делают надсечки. Когда давление в конденсаторе возрастает, корпус вздувается или разрывается именно в этом месте. Найти такой конденсатор не составит труда. Основная причина выхода из строя конденсатора заключается в плохой работе кулера или увеличения напряжения.

Ремонт блока питания компьютера АТХ, новый предохранитель запаян в плату блока питания

Глянув на фото, можно заметить, что конденсатор справа вздут и имеет следы подтека электролита, у левого конденсатора торец плоский. Его можно заменить. Чаще всего выходу из строя поддаются конденсаторы с питанием по шине +5 В, потому что запас напряжения мал и равен 6,3 В. Были случаи, когда конденсаторы цепи +5 В были вздуты. Когда я провожу их замену, устанавливаю конденсаторы не менее 10 В.

Чем больше напряжение конденсатора, тем лучше. Важно, чтоб он подошел по размерам. Если конденсатор не вмещается, я беру конденсатор с меньшей емкостью, но большим напряжением. Такая замена не приведет к ухудшению работы компьютера. Произвести замену конденсатора не составит труда, главное уметь обращаться с паяльником. Важно не забывать, что конденсатор со стороны отрицательного вывода имеет маркировку. Она нанесена в виде светлой широкой полосы, новый конденсатор следует устанавливать на то же место, где расположена эта полоса.

Проверка других элементов в блоке питания компьютера АТХ

Простые конденсаторы, а также резисторы не должны быть потемневшими и иметь нагар. Корпус полупроводников не должен иметь сколы и трещины. Если вы решили самостоятельно произвести ремонт, лучше всего заменить элементы, показанные на схеме. Если краска на резисторе потемнела, развалился тиристор, производить замену не имеет смысла.

Ремонт блока питания компьютера АТХ, вздутый электролитический конденсаторПо той причине, что, скорее всего из строя вышли другие элементы, исправность которых можно обнаружить только при помощи приборов. Если резистор потемнел, это не говорит о том, что он неисправен. Может быть, только краска стала темной, на само сопротивление в норме.

Если вспучились все конденсаторы, смысла проводить их замену я не вижу. Это свидетельствует о том, что схема стабилизации выходного напряжения вышла из строя, конденсаторы получили напряжение, превышающие норму. Этот блок питания можно отремонтировать, если есть навыки работы с измерительными приборами и электрическими элементами. Однако такой ремонт хорошо ударит по карману.

По материалам сайта: ydoma.info

www.proterem.ru