Медь имеет высокую электропроводность и теплопроводность. Железо электропроводность и теплопроводность


Медь имеет высокую электропроводность и теплопроводность — Обучающие статьи

Медь имеет высокую электропроводность и теплопроводность. По показателям этих свойств она уступает только серебру. Пластичность меди позволяет легко обрабатывать ее прокаткой, штамповкой и волочением. С развитием электротехники медь стала основным материалом для проводов, шин, контактов и других токопроводящих изделий.

Высокая теплопроводность меди позволяет применять ее во всяких устройствах, проводящих тепло – в нагревателях и холодильниках. В химической промышленности из меди делают змеевики для нагревания или охлаждения растворов, варочные котлы, трубопроводы и другие детали аппаратуры.

Даже малые примеси других элементов сильно снижают электропроводность, теплопроводность и коррозионную стойкость меди. Для полного использования этих свойств необходим металл, содержащий не более 0,05 % примесей.

Однако чистая медь слишком мягка для строительных конструкций, деталей машин и арматуры. Сплавы ее с другими металлами имеют значительно большую прочность и твердость, многие из них превосходят медь и по другим ценным свойствам, например, по коррозионным и антифрикционным.

Сплавы меди с 10–40 % Zn – латуни дешевле чистой меди. Вместе с тем они хорошо обрабатываются давлением и резанием, более прочны, тверды и стойки против коррозии. Небольшие добавки железа, алюминия и марганца в различных комбинациях придают латуням еще большую прочность и твердость, а присадки олова, алюминия, марганца и никеля усиливают антифрикционность. В виде листов, прутков, труб и разных отливок латуни широко применяются в химическом и общем машиностроении, судостроении и военной технике.

Бронзами раньше называли только сплавы меди с 6–20 % Sn, известные высокими механическими свойствами, коррозионной стойкостью и антифрикционностью. Позднее из-за дефицитности олова подобные сплавы научились получать, добавляя к меди другие металлы. Теперь, помимо оловянных бронз, широко пользуются бронзами алюминиевыми (5–11) % Аl, свинцовистыми (25–33) % Рb, кремниевыми (4–5) % Si, бериллиевыми (1,8–2,3) % Be, кадмиевыми до 1 % Cd и др. Все эти сплавы содержат небольшие количества вторичных легирующих компонентов, которые усиливают те или иные свойства меди.

Каждый вид бронзы ценен в своей области применения: алюминиевые бронзы с добавками свинца нужны для подшипников, а бериллиевые идут для изготовления пружин.

Латуни и бронзы, подобно многим другим сплавам, подразделяются на литейные и деформируемые, пригодные для литья либо для обработки давлением, прокаткой, ковкой, штамповкой, волочением.

Медноникелевые и медноникелевоцинковые сплавы: мельхиор (5–35 % Ni) и нейзильбер (5–30 % Ni и 13–45 % Zn) особенно стойки в агрессивных средах, содержащих активные химические вещества. В виде ленты, листов и проволоки эти сплавы идут на изготовление медицинских инструментов, изделий точной механики, столовых приборов, бытовых и художественных изделий.

Медь известна с древних времен – бронзовый век был периодом быстрого развития материальной культуры. Впоследствии бронзу вытеснило более дешевое и доступное железо. С возникновением крупной промышленности производство и потребление меди вновь стало быстро увеличиваться.

До 1958 г. медь занимала первое среди цветных металлов место по масштабам мирового производства. Теперь она уступает в этом алюминию, но все еще остается дефицитным металлом, требующим заменителей. В электротехнике часть меди стали заменять алюминием – менее электропроводным, но более легким. Это выгодно: расход алюминия по массе почти в два раза меньше, чем меди. На железнодорожном транспорте медь и бронзу частично заменяют цинковыми сплавами. В военной технике патронные гильзы вместо латуни начали делать из стали и только покрывают их слоем латуни – плакируют. Замена меди другими, менее дефицитными металлами и сплавами — важная проблема нашего времени.

www.42buketa.ru

Плотность железа, удельная теплоемкость, теплопроводность: таблица свойств

В таблице приведена плотность железа d, а также значения его удельной теплоемкости Cp, температуропроводности a, коэффициента теплопроводности λ, удельного электрического сопротивления ρ, функции Лоренца L/L0 при различных температурах — в диапазоне от 100 до 2000 К.

Свойства железа существенно зависят от температуры: при нагревании этого металла его плотность, теплопроводность и температуропроводность уменьшаются, а значение удельной теплоемкости железа растет.

Плотность железа равна 7870 кг/м3 при комнатной температуре. При нагревании железа его плотность снижается. Поскольку железо является основным элементом в составе стали, то плотность железа определяет и значение плотности стали. Зависимость плотности железа от температуры слабая — при его нагревании плотность металла снижается и принимает минимальное значение 7040 кг/м3 при температуре плавления, равной 1810 К или 1537°С.

Удельная теплоемкость железа, по данным таблицы, имеет значение 450 Дж/(кг·град) при температуре 27°С. В зависимости от структуры удельная теплоемкость твердого железа при увеличении температуры изменяется по-разному. По значениям в таблице видны характерный максимум теплоемкости железа вблизи Tc и скачки при структурных переходах и при плавлении.

В расплавленном состоянии свойства железа претерпевают изменения. Так, плотность жидкого железа уменьшается и становиться равной 7040 кг/м3. Удельная теплоемкость железа в расплавленном состоянии имеет величину 835 Дж/(кг·град), а теплопроводность железа снижается до значения 39 Вт/(м·град). При этом удельное электрическое сопротивление этого металла увеличивается и при 2000 К принимает значение 138·10-8 Ом·м.

Теплопроводность железа при комнатной температуре равна 80 Вт/(м·град). С ростом температуры теплопроводность железа снижается — она имеет отрицательный температурный коэффициент в области температуры 100-1042 К, а затем начинает слабо расти. Минимальное значение теплопроводности железа составляет 25,4 Вт/(м·град) вблизи точки Кюри. При β-γ переходе наблюдается слабое изменение теплопроводности, которое также имеет место и при γ-δ переходе.

Теплопроводность железа резко падает по мере увеличения количества примесей, особенно кремния и серы. Наивысшей теплопроводностью обладает очень чистое электролитическое железо — его теплопроводность при 27°С равна 95 Вт/(м·град).

Зависимость коэффициента теплопроводности железа от температуры также определяется степенью чистоты этого металла. Чем железо чище, тем выше его теплопроводность и тем больше по абсолютной величине она снижается с повышением температуры.

Источники:

  1. В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.
  2. Чиркин В. С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967.

thermalinfo.ru

Свойства металлов. DjVu

ФPAГMEHT УЧЕБНИКА (...) Мы уже знаем, что в пространственной решётке металлических кристаллов находятся положительно заряженные атомы металлов — ионы. Они более или менее прочно удерживаются на своих местах. Вокруг ионов беспорядочно движутся свободные электроны. Их можно представить в виде «электронного газа», омывающего кристаллическую решётку. Свободные электроны легко перемещаются внутри решётки и служат хорошими переносчиками тепловой энергии от нагретых слоёв металла к холодным.       Высокую теплопроводность металла всегда легко обнаружить. Прикоснитесь в холодную погоду рукой к стене деревянного дома и к железной ограде: железо на ощупь всегда гораздо холоднее, чем дерево, так как железо быстро отводит тепло от руки, а дерево — в сотни раз медленнее. Лучше всех других металлов проводят тепло серебро и золото, затем идут медь, алюминий, вольфрам, магний, цинк и другие. Самые плохие металлические проводники тепла — свинец и ртуть.       Теплопроводность измеряют количеством тепла, которое проходит по металлическому стержню сечением в 1 квадратный сантиметр за 1 минуту. Если теплопроводность серебра условно принять за 100, то теплопроводность меди будет 90, алюминия 27, железа 15, свинца 12, ртути 2, а теплопроводность дерева всего 0,05.       Чем больше теплопроводность металла, тем быстрее и равномернее он нагревается.       Благодаря своей высокой теплопроводности металлы широко используются в тех случаях, когда необходимо быстрое нагревание или охлаждение. Паровые котлы, аппараты, в которых протекают различные химические процессы при высоких температурах, батареи центрального отопления, радиаторы автомобилей — всё это делается из металлов. Аппараты, которые должны отдавать или поглощать много тепла, чаще всего изготовляются из хороших проводников тепла — меди, алюминия.       Самые лучшие проводники электричества — металлы. Хорошей электропроводностью металлы опять-таки обязаны свободным электронам.       Когда мы присоединяем лампочку, плитку или какой-нибудь другой электрический прибор к источнику тока, в проводах, в нити лампочки, в спирали плитки мгновенно возникают большие изменения: электроны теряют прежнюю полную свободу движения и устремляются к положительному полюсу источника тока. Такой направленный поток электронов и есть электрический ток в металлах.       Поток электронов движется по металлу не беспрепятственно — он встречает на своём пути ионы. Движение отдельных электронов тормозится. Электроны передают часть своей энергии ионам, благодаря чему скорость колебательного движения ионов увеличивается. Это приводит к тому, что проводник нагревается.       Ионы разных металлов оказывают движению электронов неодинаковое сопротивление. Если сопротивление мало, металл нагревается током слабо, если же сопротивление велико, металл может раскалиться. Медные провода, подводящие ток к электрической плитке, почти не нагреваются, так как электрическое сопротивление меди ничтожно. А нихромовая спираль плитки раскаляется докрасна. Ещё сильнее нагревается вольфрамовая нить электрической лампочки.       Наиболее высокой электропроводностью отличаются серебро и медь, затем следуют золото, хром, алюминий, марганец, вольфрам и т. д. Плохо проводят ток железо, ртуть и титан. Если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия— 55, железа и ртути — 2, а титана — лишь 0,3.       Серебро — металл дорогой и в электротехнике используется мало, но медь применяется для изготовления проводов, кабелей, шин и других электротехнических изделий в громадных количествах. Электропроводность алюминия в 1,7 раза меньше, чем у меди, и поэтому алюминий применяется в электротехнике реже, чем медь.       Серебро, медь, золото, хром, алюминий, свинец, ртуть. Мы видели, что в таком же приблизительно порядке стоят металлы и в ряду с постепенно убывающей теплопроводностью (см. стр. 33).       Наилучшие проводники электрического тока, как правило, являются и наилучшими проводниками тепла. Между теплопроводностью и электропроводностью металлов существует определённая связь, и чем выше электропроводность металла, тем обычно выше и его теплопроводность.       Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Это объясняется следующим образом. Атомы элементов, составляющих примеси, вклиниваются в кристаллическую решётку металла и нарушают её правильность. В результате решётка становится более серьёзной преградой для электронного потока.       Если в меди присутствуют ничтожные количества примесей — десятые и даже сотые доли процента — электропроводность её уже сильно понижается. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05% примесей. И наоборот, в тех случаях, когда необходим материал с высоким сопротивлением— для реостатов), для различных нагревательных приборов, применяются сплавы — нихром, никелин, константан и другие.       Электропроводность металла зависит также и от характера его обработки. После прокатки, волочения и обработки резанием электропроводность металла понижается. Это связано с искажением кристаллической решётки при обработке, с образованием в ней дефектов, которые тормозят движение свободных электронов.       Очень интересна зависимость электропроводности металлов от температуры. Мы уже знаем, что при нагревании размах и скорость колебаний ионов в кристаллической решётке металла увеличиваются. В связи с этим должно возрастать и сопротивление ионов электронному потоку. И действительно, чем выше температура, тем выше сопротивление проводника току. При температурах плавления сопротивление большинства металлов увеличивается в полтора-два раза.       При охлаждении происходит-обратное явление: беспорядочное колебательное движение ионов в узлах решётки уменьшается, сопротивление потоку электронов понижается и электропроводность увеличивается.       Исследуя свойства металлов при глубоком (очень сильном) охлаждении, учёные обнаружили замечательное явление: вблизи абсолютного нуля, то-есть при температурах около минус 273,16°, металлы полностью утрачивают электрическое сопротивление. Они становятся «идеальными проводниками»: в замкнутом металлическом кольце ток не ослабевает долгое время, хотя кольцо уже не соединено с источником тока! Это явление названо сверхпроводимостью. Оно наблюдается у алюминия, цинка, олова, свинца и некоторых других металлов. Эти металлы становятся сверхпроводниками при температурах ниже минус 263°.       Как объяснить сверхпроводимость? Почему одни металлы достигают состояния идеальной проводимости, а другие нет? На эти вопросы пока ещё нет ответа. Явление сверхпроводимости имеет громадное значение для теории строения металлов, и в настоящее время его изучают советские учёные. Работы академика Ландау и члена-корреспондента Академии наук СССР А. И. Шаль-никова в этой области удостоены Сталинских премий.       МАГНИТНЫЕ СВОЙСТВА       Известна железная руда — магнитный железняк. Куски магнитного железняка обладают замечательным свойством притягивать к себе железные и стальные предметы. Это — естественные магниты. Лёгкая стрелка, сделанная из магнитного железняка, всегда поворачивается одним и тем же концом к северному полюсу Земли. Этот конец магнита условились считать северным полюсом, а противоположный ему — южным.       Если железный или стальной стержень привести в соприкосновение с магнитом, стержень сам становится магнитом, сам будет притягивать железные опилки, стальные гвозди. Говорят, что стержень намагничивается.       Намагничиваться способны все металлы, но в разной степени. Очень сильно намагничиваются только четыре чистых металла — железо, кобальт, никель и редкий металл гадолиний. Хорошо намагничиваются также сталь, чугун и некоторые сплавы, не содержащие в своём составе железа, например сплав никеля и кобальта. Все эти металлы и сплавы называют ферромагнитными (от латинского слова «феррум» — железо).       Совсем слабо притягиваются к магниту алюминий, платина, хром, титан, ванадий, марганец. Намагничиваются они так незначительно, что без специальных приборов обнаружить их магнитные свойства нельзя. Эти металлы получили название парамагнитных (греческое слово «пара» означает около, возле).

sheba.spb.ru

Теплопроводность металлов и ее применение

Металлы –  это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель –  удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов –  это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов –  золото, медь, серебро. Более низкая теплопроводность –   у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование –  ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение –  при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы –  кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

fb.ru

Электропроводность и теплопроводность металлов - Справочник химика 21

    Металлы образуются из атомов электроположительных элементов. В сплавах определенные места в решетке могут быть заняты либо атомами отдельного компонента, либо различными видами атомов. Высокая электропроводность и теплопроводность металлов обусловлены движением свободных электронов через пространственную решетку. [c.583]     Электропроводность и теплопроводность металлов [c.218]

    Электропроводность и теплопроводность металлов объясняются подвижностью электронов неполностью заполненных зон, обусловленной тем, что в этих зонах к уровням, занятым электронами, вплотную примыкают свободные уровни, на которые могут переходить (возбуждаться) электроны. [c.91]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]

    Табл. 2 показывает также, что электропроводность и теплопроводность металлов не слишком сильно (не более, чем в 2,5 раза) меняются при плавлении. Подобные же результаты были получены [9] для Fe, Со и Ni, у которых отношения Ятв/иж составляют соответственно 1,07, 1,11 и 1,14. Мало изменяются при плавлении и магнитные восприимчивости N1 и Со (9]. [c.14]

    Чрезвычайно высокие по сравнению с другими типами кристаллов значения электропроводности и теплопроводности металлов указывают на высокую подвижность и большую свободу электронов в их пространственной структуре. С точки зрения строения атомов типич- [c.79]

    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла. [c.361]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]

    Закон зависимости плотности тока термоэлектронной эмиссии от температуры теоретически установил и экспериментально проверил Ричардсон [148]. Он дал два теоретических вывода этой зависимости. Первый вывод основан на представлениях электронной теории металлов, созданной для объяснения явлений электропроводности и теплопроводности металлов, контактной разности потенциалов, эффекта Холла и т. д. Согласно этой теории, в металлах, кроме электронов, крепко связанных с атомами, [c.77]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование [c.206]

    Из высокой электропроводности и теплопроводности металлов можно сделать заключение, что, но крайней мере, часть электронов имеет возможность свободно перемещаться но кристаллу и уже под действием слабого электрического поля пли небольшого градиента (перепада) температуры лю кет бразовывяп ся п.анравлеипый поток электроно (Друде, 1902 г.). Согласно теорпп Друде, строение металлов можно представить себе как совокупность положительно. аряже .иых попов (атомных остовов кристаллической структуры), между которыми свободно перемещаются электроны, подчиняющиеся газовым законам ( элект-ронный газ ). [c.197]

    В кристаллах металлов в узлах находятся положительные ионы металлов, а в междоузлиях — электронный газ, способный к передвижению по решетке под действием разности потенциалов или разности температур. Это обусловливает большую электропроводность и теплопроводность металлов. Большинство чистых металлов обладает высокой пластичностью. Это объясняется отсутствием направленности металлической связи, поскольку в узлах решетки находятся ионы одного знака. Как уже говорилось, чистые металлы-элементы кристаллизуются лишь в трех структурах с плотнейшей упаковкой частиц гексагональной (КЧ = 12), гранецентрированной кубической (КЧ = 12), объемноцентрирован-ной кубической (8 ближайших соседей на расстоянии и 6 — на расстоянии 1,15го). [c.293]

    Металлы — вещества с сильно делокализованными электро-намп. Делокализация обусловлена тем, что количество низких по энергии орбиталей у металлов значительно больше числа имеющихся валентных электронов. Высокие электропроводность и теплопроводность металлов и нх блеск объясняются высокой подвижностью электронов на делокализованных орбиталях, а большая пластичность — наличием в их структуре плоскостей скольжения и минимальной направленностью металлических связей. [c.119]

    Задолго до развития теории квантов в XIX в. была разработана теория свободных электронов в металлах. Эта теория исходила из представления, что в металлическом кристалле валентные электроны атомов могут почти свободно, т. е. почти не взаимодействуя с атомными остатками, передвигаться по кристаллическо11 решетке. В э.тектрическом поле эти электроны, названные электронами проводимости, переносят ток, в отличие от валентных электронов атомных остатков. На примерах особенно одновалентных металлов (натрий, Атедь и др.) с помощью этой теории выведены некоторые основные законы физики, например закон Ома, закон Видемана—Франпа (о прямой пропорциональности между электропроводностью и теплопроводностью металла) и др. [c.263]

chem21.info

Железо, теплопроводность при низких температурах

    При измерении температур ниже 0°С кроме приведенных в таблице термопар медь—константан и железо—константан используются и некоторые другие, в частности термопара константан—манганин. Преимуществом этой термопары, имеющей при указанных температурах примерно такую же величину т. э. д. с., как и термопара медь—константан, является то, что манганин, особенно при низких температурах, имеет значительно меньшую теплопроводность, чем медь [66, 67]. [c.149]

    Медь и ее сплавы. Характерной особенностью меди является ее высокая теплопроводность, в 6 раз большая, чем у железа, и более высокая, чем у железа, механическая стойкость при низких температурах, вследствие чего 30 [c.30]

    Недостатками свинца являются также его большой удельный вес, равный 11,34, плохая теплопроводность, в два раза меньшая, чем у железа, и низкая температура размягчения. В аппаратах, выложенных свинцом, нельзя поднимать температуру выше 250°. Все эти недостатки свинца, а также его дефицитность и ядовитость соединений свинца приводят к постепенному вытеснению его химически стойкими неметаллическими материалами. [c.77]

    Большая трудность при проведении синтеза но Фишеру-Тропшу с кобальтовым катализатором состоит в том, что на 1 синтез-газа развивается приблизительно 600—700 ккал тепла, которое должно быть отведено, потому что температура катализатора должна поддерживаться с точностью до 1°. Промышленный катализатор на кобальтовой основе содержит на 100 частей кобальта 5 частей окиси тория, 8 частей окиси магния и 200 частей кизельгура. Катализатор отличается чрезвычайно низкой теплопроводностью и поэтому проблема отвода тепла становится особенно трудной. Контактная камера установки Фишера-Тропша, вмещающая 10 кобальтового катализатора, может из-за плохого отвода тепла пропустить лишь 1000 синтез-газа в час. Требуемая поверхность охлаждения для 1000 синтез-газа составляет около 3000 м . Из 1 газа получают 165 —175 г целевых углеводородов. В настоящее время современные установки синтеза Фишера-Тропша работают только с железным катализатором, состоящим практически только пз железа и обладающим значительно лучшей теплопроводностью. [c.27]

    Особый тип химической связи наблюдается в металлах. Металлические кристаллы характеризуются большим числом весьма полезных свойств, которые сделали их незаменимым материалом для человечества. К ним относятся высокая отражательная способность, высокая пластичность (способность вытягиваться в проволоку), ковкость, высокие теплопроводность и электропроводность. Эти свойства обусловлены особенностями металлического типа химической связи. Одна из них, как уже упоминалось, обязана высокой подвижности электронов, которая, по-видимому, приводит к тому, что кристаллические решетки металлов не являются такими жесткими, как у типичных ионных или ковалентных кристаллов. Отметим также важную особенность металлов — их способность образовывать сплавы, т. е. давать однородные твердые растворы, отличающиеся новыми, полезными свойствами. Например, сталь — главный конструкционный материал современной техники — представляет собой в основном твердый раствор углерода в железе. Огромную роль на начальных этапах истории человечества сыграли плавящиеся при относительно низкой температуре сплавы меди и олова, т. е. бронза (бронзовый век). [c.163]

    Изложенное выше относится и к динасу для коксовых печей °. Остин и Пирс наблюдали образование отчетливых зон микроскопическим и дилатометрическим методами наружные слои состояли из кристобалита промежуточные — из тридимита, а во внутренних частях сохранялся кварц. Общее термическое расширение этих различных минералов определяет стабильность кирпичей. Низкая температура плавления эвтектики в системе кремнезем — окись кальция — закись железа (см. В. II, 122 и ниже) (лишь—1100°С) служит причиной образования критической зоны в кирпиче если жидкотекучие эвтектические расплавы будут накапливаться в отдельных местах, то такие участки легко могут вызвать разрушение и дефекты кирпича. Остин и Пирс пришли к важным заключениям о том, что стабильность связана также с теплопроводностью различных зон температурный коэффициент теплопроводности будет отрица- [c.765]

    Металлическая медь имеет характерный красный цвет. В очень тонких слоях медь в проходящем свете окрашена в зеленовато-синий цвет. Температура плавления меди относительно низкая (стр. 679). Чистая медь представляет собою мягкий металл (твердость 3 по минералогической шкале), довольно прочна на разрыв и хорошо тянется медь легко обрабатывается молотом на холоду и моделируется при высоких давлениях (приспособления для закрытия автоклавов, пояски для снарядов). Теплопроводность меди почти такая же высокая, как и у серебра (0,9 теплопроводность серебра равна 1), и намного превосходит теплопроводность других широко используемых металлов (например, у железа 0,1). Поэтому в тех случаях, когда необходима легкая передача тепла, всегда используют медь (трубы паровозов, котлы для перегонки и т. д.). Электропроводность меди близка к электропроводности серебра (стр. 206) и намного выше, чем у других металлов. Однако электропроводность значительно снижается, если медь содержит примеси других металлов даже в небольших количествах (например, Аз, 5Ь, РЬ). Поэтому в электротехнике в больших масштабах используют самую чистую, электролитическую медь. [c.682]

    К недостаткам свинца, помимо его низкой механической прочности, срхедует отнести также большой удельный вес, плохую теплопроводность (в два раза меньшую, чем у железа) и низкую температуру размягчения в освинцованных аппаратах нельзя поднимать температуру выше 250°. [c.33]

    Свойства. Алюминий — серебристый металл с удельным весом 2,70 Температурой плавления 660,2° и температурой кипения 2270°. Он крис таллпзуется кубически, гранецентрированно (рис. 46), а = 4,0414 Д. Теплопроводность алюминия Я. = 0,5 при обычной температуре в три раза больше, чем для ковкого железа, и вдвое меньше, чем для меди. Удельная электропроводность для вытянутой алюминиевой проволоки оставляет около 60% электропроводности медной проволоки. Теплоемкость равна 0,23 (нри 100°) и сравнительно с другими металлами весьма высока она приблизительно в 2 4 раза больше, чем для меди или для цинка, и вдвое больше, чем для железа. Теплота плавления также весьма высока (см. стр. 359) поэтому алюминий, несмотря на свою более низкую температуру плавления, плавится труднее, чем медь но будучи расплавленным, он дольше остается жидким, чем другие металлы. Алюминий очень легко поддается обработке, из пего можно вытягивать очень тонкую проволоку, прокатывать в тонкую жесть и ковать чрезвычайно тонкую фольгу (листовой алюминий). Сопротивление растяжению чистого алюминия почти в четыре раза меньше, чем меди. Его можно, однако, значительно повысить добавлением нескольких процентов меди. При этом, однако, понижается химическая стойкость алюминия. [c.384]

    Для прямоточных котлов надежная защита металла от коррозии достигается применением нейтрально-окислительного водного режима, разработанного специалистами ЭНИНа, и комплексонного водного режима, разработанного МЭИ. В нейтрально-окислительном режиме создание защитной пленки происходит в процессе окисления металла кислородом. Защитный слой состоит из РегОз, РеО, и а-Ре в разных соотношениях и имеет повышенную теплопроводность в сравнении с защитной пленкой, полученной при гидразинно-аммиачном водном режиме. При комплексонной обработке защитная пленка из магнетита образуется в процессе термолиза ЭДТАцетата железа в зоне температур среды 280—360 °С. Пленка, по данным ЦКТИ, имеет низкую пористость (10—20%) и высокую теплопроводность. [c.19]

    Наряду с высокой коррозионной стойкостью в агрессивных средах никелевые сплавы имеют ряд других особенностей, к которым относятся высокая пластичность от отрицательных температур до 1200 °С, в 1,5—2 раза более высокие значения прочностных свойств, твердости и электросопротивления, чем у стали 12Х18Н10Т, и в 1,5—2 раза более низкие значения коэффициента линейного расширения (N1—Мо-сплавы) и теплопроводности, чем у широко распространенных коррозионностойких сплавов на основе железа [3.1 ]. В табл. 3.2 приведены механические свойства никеля и его сплавов при 20 °С. Сплавы немагнитны. Сплавы обладают способностью к деформации в горячем и холодном состоянии, обрабатываются механическими способами и свариваются. [c.169]

    СОСНЫ, лиственницы, березы а = 0,05 при сжатии вдоль волокон ели, пихты, дуба а = 0,04 при изгибе всех пород а = 0,04 при скалывании вдоль волокон для всех пород а = 0,05. С повышением температуры с 20 до + 80° С прочностные свойства дерева ухудшаются на 20"—30%. Наоборот, понижение температуры до минус 60 С увеличивает пределы прочности при скалывании, растяжении и сжатии соответственно на 15, 20 и 45% сравнительно с этими же характеристиками при 20° С. Древесина химически не стойка против действия крепких серной и соляной кислот, азотной кислоты, растворов едких ш,елочей, углекислых солей, солей железа, алюминия, магния, сернистого газа, хлора и многих других сред. Смолы, содержащиеся в древесине, могут загрязнять обрабатываемые вещества. Конструктивное оформление аппаратуры из дерева довольно примитивно. Максимальная температура материалов, обрабатываемых в деревянной аппаратуре, не должна быть выше 100° С. Дерево применяется в пищевой промышленности, а также в промышленности органических полупродуктов и красителей. Дерево служит прекрасным материалом для тары. Дерево устойчиво против органических кислот, хлористых и сернокислых солей, масел, растворов красителей, сахарных растворов, соляных рассолов. Теплоемкость абсолютно сухой древесины не зависит от породы и равна 0,33 ккал/ка °С, теплопроводность ее весьма низка К = 0,03 до 0,1 ккал м Счас, что может явиться в зависимости от применения и достоинством, и недостатком. Коэффициент температурного расширения весьма мал. Механические свойства основных пород, используемых в аппаратостроении, приведены в табл. 34. Для улучшения свойств древесины ее покрывают бакелитовым и другими лаками. [c.55]

    Из (8.25) следует, что при комнатной температуре в чистых металлах преобладает электронный механизм в теплопроводности. В неупорядоченных металлических сплавах вклады в теплопроводность могут оказаться одного порядка. Иапример, нержавеюшая сталь обладает весьма низкой теплопроводностью по сравнению с чистым железом. [c.189]

chem21.info

Железо электропроводность ионов - Справочник химика 21

    Примером может служить коррозия технического железа на воздухе, когда оно покрыто влажной пленкой или же находится в растворе электролитов с незначительной концентрацией Н+. Таким образом, электрохимическая коррозия в нейтральной среде происходит с поглощением кислорода. Продуктом коррозии является гидроксид железа (II), постепенно окисляющийся до гидроксида железа (III). Ионы примеси, растворенной в воде, необходимы только для увеличения электропроводности воды, которая без них очень мала. В процессе коррозии железа протекают реакции  [c.170]     Распад молекул на катионы и анионы обусловливает аддитивность свойств растворов электролитов. Например, в растворах всех солей натрия можно обнаружить химико-аналитическими реакциями катион Na" ", в растворах всех сульфатов — ион SO , в растворах солей железа (III) — ион Fe . Аддитивны электропроводность растворов электролитов, светопреломление, светопоглощение в УФ-, видимой и ИК-областях спектров, фармакологические свойства ионов. Это используют в электроанализе, фотоколориметрии и фармации. [c.34]

    Особый тип химической связи наблюдается в металлах. Металлические кристаллы характеризуются большим числом весьма полезных свойств, которые сделали их незаменимым материалом для человечества. К ним относятся высокая отражательная способность, высокая пластичность (способность вытягиваться в проволоку), ковкость, высокие теплопроводность и электропроводность. Эти свойства обусловлены особенностями металлического типа химической связи. Одна из них, как уже упоминалось, обязана высокой подвижности электронов, которая, по-видимому, приводит к тому, что кристаллические решетки металлов не являются такими жесткими, как у типичных ионных или ковалентных кристаллов. Отметим также важную особенность металлов — их способность образовывать сплавы, т. е. давать однородные твердые растворы, отличающиеся новыми, полезными свойствами. Например, сталь — главный конструкционный материал современной техники — представляет собой в основном твердый раствор углерода в железе. Огромную роль на начальных этапах истории человечества сыграли плавящиеся при относительно низкой температуре сплавы меди и олова, т. е. бронза (бронзовый век). [c.163]

    Электропроводность разных тканей и биологических жидкостей неодинакова наибольшей электропроводностью обладают спинномозговая жидкость, лимфа, желчь, кровь хорошо проводят ток также мышцы, подкожная клетчатка, серое вещество головного мозга. Значительно ниже электропроводность легких, сердца, печени. Очень низка она у жировой ткани, нервной, костной. Хуже всего проводит электрический ток кожа (роговой слой). Сухой эпидермис почти не обладает электропроводностью. Жидкость межклеточных пространств гораздо лучше проводит ток, чем клетки, оболочки которых оказываются существенным препятствием при движении многих ионов. Возле оболочек накапливаются одноименные ионы, возникает их поляризация. Все это приводит к резкому (в 10—100 раз) падению силы постоянного тока, проходящего через ткани, уже через 0,0001 сек после его замыкания. Поэтому электропроводность кожи обусловлена, главным образом, содержанием протоков желез, особенно потовых. В зависимости от физиологи- [c.43]

    На основании полученных результатов строится график в координатах доля анодной зоны поверхности — сила тока и определяется положение максимума на кривой. В отдельном эксперименте снимаются поляризационные кривые на тех же самых электродах модели коррозионного элемента и рассчитываются значения наклонов тафелевских участков обеих кривых для анодного процесса ионизации железа и для катодного разряда ионов водорода на медном катоде. Электролитом может служить 0,1 н. раствор серной кислоты с добавкой для лучшей электропроводности 1,0 н. сульфата натрия. Полученные данные по определению коэффициентов и дают возможность определить /max. [c.257]

    Высшая степень окисления (+6) встречается только у железа и образуется за счет ковалентно-полярных связей. Степень окисления +3 и +2 — связи ионные, но для степени окисления +3 у железа сохраняются и ковалентные связи. Металлообразные соединения для этих металлов не характерны и только силициды их обладают значительной электропроводностью. [c.381]

    Влияние температуры t) раствора хлоридов железа на Я покрытий. Исследования автора показали, что вязкость, плотность, электропроводность раствора хлоридов железа, а также подвижность ионов в них находятся в прямопропорциональной зависимости от t. [c.71]

    С повышением температуры электролита t) увеличивается и наибольших значений достигает при /=90° С. Эту закономерность представляется возможным объяснить тем, что с повышением t интенсифицируется подвижность ионов и возрастает электропроводность электролита, а это способствует, в свою очередь, облегчению разряда ионов железа. [c.74]

    Темп. пл. 140—150 °С содержание кальция 6,5—7%, железа не более 0,005%. влаги не более 1% электропроводность, водной вытяжки при 25 С не выше 2,5 10 Ом см кислотное число не более 2,5 нижний предел взрываемости 20,8 г/смЗ Темп. пл. 120°С содержание цинка 10,5—12.5 /о. железа не более 0.01%. хлор-иона не более 0,02%, влаги не более 2% МРТУ 6-09-2084-65 ТУ 19П-62—72 [c.396]

    Как было отмечено, алюминий и его сплавы очень чувствительны к контактированию с другими металлами. Самыми опасными являются контакты с более положительными металлами — медью и медными сплавами. В ря.де условий вреден контакт с железом, сталью и коррозионно-стойкой сталью. Контакт с цинком и кадмием в условиях, когда алюминий находится в пассивном состоянии, безвреден и даже несколько защищает алюминий. Магний и магниевые сплавы, несмотря на то, что они имеют значительно более отрицательный потенциал, при контакте с алюминием оказываются также опасными, так как вследствие сильной катодной поляризации алюминия он может перейти в активное состояние под влиянием защелачивания среды (эффект катодной перезащиты алюминия). В результате опасных контактов происходит более существенное разрушение алюминия в электропроводных средах, содержащих ионы хлора. В атмосферных условиях при достаточной влажности отрицательное влияние контактов также может проявляться, хотя и будет распространяться только на поверхность алюминия, непосредственно прилегающую к контакту. [c.265]

    Влияние температуры. Повышение температуры влечет за собой изменение очень многих свойств раствора. Повышается электропроводность, изменяется активность ионов в растворе (обычно уменьшается), изменяются потенциалы разряда всех присутствующих ионов, снижается перенапряжение как выделяемого металла, так и водорода. В некоторых случаях повышение температуры приводит к возникновению или исчезновению в растворе коллоидных образований (гидроокисей железа, никеля и т. п.). Так как каждое из этих изменений в свою очередь влияет на характер катодного осадка, то влияние температуры оказывается очень сложным и проявляется неодинаково в различных случаях. [c.526]

    Однако имеются металлы (например, железо или никель) с очень малой плотностью тока обмена (10 — 10" А/см ). Энергия активации их анодного растворения велика, они нуждаются в сильной активационной поляризации, растворение их идет медленно. Медленное растворение, то есть большая энергия активации для металлов группы железа, хрома, тантала и т. д., является, по-видимому, результатом наличия сильной связи между ионами металла и электронами, удерживающей частицы в кристалле металла. Этим также объясняется большая твердость и относительно плохая электропроводность таких металлов. По той же причине продукты их анодного или химического окисления во многих случаях не переходят в раствор, а остаются сцепленными с поверхностью и тем самым пре- [c.188]

    В электролит переходит 90—95% никеля, железа и цинка из анода небольшие количества никеля и железа переходят в шлам в виде сульфидов и пассивных агрегатов. Накопление сульфатов указанных металлов в электролите, во-первых, уменьшает электропроводность последнего во-вторых, участвуя в переносе тока к катоду наряду с ионами меди, но практически не разряжаясь на катоде в присутствии ионов меди, ионы никеля, железа и цинка накапливаются в прикатодном слое, затрудняют подход ионов меди к катоду и снижают их концентрацию у катода. При недостаточном перемешивании и больших плотностях тока могут получаться неплотные осадки меди на катоде. [c.196]

    Электропроводность растворов одинаковой молярной концентрации зависит от количества ионов, образу-юищхся при диссоциации. Учитывая это, вещества можно расположить в следующий ряд сернокислое окисное железо, азотнокислый алюминий, гидрат окиси бария, хлористый калий (если пренебречь гидролизом солей). [c.210]

    Методы очистки воды с помощью ионообменных смол в настоящее время широко применяют как в лабораторных условиях, так и в промышленности. Ионообменные смолы — это нерастворимые высокомолекулярные вещества, которые имеют ионогенные группы гидроксила и гидроксония, способные к реакциям обмена с ионами, содержащимися в воде. Удалить диссоциированные в воде соединения можно фильтрованием воды либо последовательно через колонки с анионитом и катионитом, либо через смесь катионита и анионита (фильтр смешанного действия). Этим методом можно получить воду с очень низким значением удельной электропроводности. Обычно в деионизованной воде из неорганических примесей присутствуют только соли кремниевой кислоты или соединения железа в коллоидном состоянии. Однако в воде, очищенной на ионообменных смолах, содержатся примеси органических веществ, которые вымываются из ионитов (незаполимеризо-ванные мономеры, катализаторы синтеза и стабилизаторы высокомолекулярных соединений). В связи с этим деионизованная вода обычно не применяется при исследованиях строения границы между электродом и раствором, а также электрохимической кинетики. [c.27]

    Ре(ОН)з легко перехбдит в коллоидное состояние. Для этого достаточно влить небольшое количество разбавленного раствора РеС1з в кипящую воду. Образующийся вследствие гидролиза гидроксид совместно с Ре (0H) l2 переходит в коллоидное состояние, что обнаруживается по окрашиванию раствора в буро-красный цвет. Коллоидный раствор гидроксида железа не обладает заметной электропроводностью температуры кипения и замерзания его мало отличаются от соответствующих температур чистой воды. Железо в коллоидном состоянии не дает характерных реакций на ион железа. Очень часто Ре -ионы в ходе систематического качественного анализа переходят в коллоидное состояние и тем самым, проходя в фильтрат вместе с другими катионами, не осаждаемыми в виде гидроокисей, нарушают обычный ход анализа. Растворы коллоидного гидроксида железа применяются в медицине. [c.355]

    Раствор должен быть очищен от более электроположительных примесей. Для очистки от железа последнее переводят сначала из FeS04 в Рез(804)з путем окисления его диоксидом марганца. После нейтрализации кислоты Рег (804)3 и АЬ (804)3 осаждаются в виде гидроксидов, которые, осаждаясь, адсорбируют соединения мышьяка и сурьмы. Электроположительные ионы выделяют из раствора цементацией цинковой пылью. Марганец, перешедший в раствор лри окислении железа, не являясь вредной примесью, окисляется на аноде до. диоксида марганца, который опять используется для -окисления железа. Очищенный от примесей раствор сульфата цинка подкисляют для увеличения электропроводности и направляют на электролиз. [c.310]

    Положение о связи активности с d-электронной конфигурацией усиленно отстаивалось Дауденом [78]. Имеется много экспериментальных подтверждений этой точки зрения для области хемосорбции и катализа на металлах, и Дауден попытался распространить ее на окислы переходных металлов. Успешнее всего это можно было сделать для реакций с участием водорода, потому что для этого газа, в отличие от кислорода, хемосорбция не обязательно осуществляется путем простого переноса электрона. Мы уже упоминали (раздел IV, А), что хемосорбция водорода на окиси цинка и закиси никеля ниже 100° не оказывает влияния на электропроводность, и отсюда можно сделать вывод о том, что осуществляется слабая форма хемосорбции, возможно, путем ковалентной связи через ионы металла. Для построения ряда активности наиболее пригодной для исследования является реакция обмена Нг — Ог. Она была изучена Дауденом, Маккензи и Трепнеллом [79], которые указали, что нельзя согласиться с прежними предварительными выводами об rt-характере проводимости (например, в окиси цинка или в восстановленной окиси хрома) как об основном факторе, объясняющем высокую активность в реакциях с участием водорода [80]. Вместо этого, согласно интерпретации названных авторов, их результаты указывают на пример такого изменения свойств в ряду ионов переходных металлов, которое отличается наличием двух максимумов, причем низкая активность окиси железа характеризует устойчивость а -конфигурации. Имеются сомнения в надежности некоторых из их экспериментальных [c.345]

    Каталитические свойства определялись по отношению к окислению СО. Двухвалентные ионы, даже при содержании в несколько атомных процентов, а у магния до десятков процентов, практически не изменяют Екат и незначительно изменяют ко. Напротив, литий и натрий уже в десятых долях процента вызывают резкий рост Я при одновременном росте ко, как это показано на рис. 3. Индий и железо вызывают падение Е и В исследованной области температур это означает сохранение почти неизменной каталитической активности при введении двухвалентных ионов, почти не изменяющих и электропроводность рост активности под влиянием Ме +, уменьшающих электропроводность, н падение активности при введении Ме+, увеличивающих электропроводность. [c.8]

    Проведенное нами ранее [1] изучение электропроводности ацетатов железа в концентрированных растворах уксусной кислоты (от 80,48 до 98,7 вес. % СНзСООН) позволило рассчитать константы диссоциации этих солей в растворителе, который можно рассматривать как СН3СООН с переменным содержанием воды. Величины констант диссоциации РеАсз и РеАса представлены в таблице. Зависимость р реАс от 1/0 (й — экспериментальная константа диссоциации, полученная путем экстраполяции переменной концентрационной константы диссоциации соли на область бесконечно разбавленных растворов, в которых, по условию нормировки, коэффициенты активности ионов и молекул равны 1 при 25° С О — диэлектрическая проницаемость растворителя) имеет линейный характер (рис. 1). Величины О рассчитаны из литературных данных [2]. [c.244]

    Путем химического обессоливания конденсата и глубокой очистки от продуктов коррозии (гидроксидов железа, меди и других металлов) получается вода высокой чистоты, которая требуется для производства особо чистых видов реактивов и другой продукции химических заводов. Очистка конденсата (и дистиллята) осуществляется методом обезжелезивания, который заключается в фильтровании воды через фильтры тонкой очистки от продуктов коррозии (механическая очистка) и рильтры смешанного действия (химическая очистка). Вода высокой чистоты характеризуется полным отсутствием посторонних ионов ее электропроводность не превышает 0,2 мкСм,/см. [c.81]

    Большое количество диссоциированных солей в морской воде придает ей высокую электропроводность и значительную коррозионную агрессивность. Наибольшую агрессивность проявляет хлор-ион, разрушающий защитные пленки на погруженных в морскую воду металлах. Влияние концентрации МаС1 на скорость коррозии железа, погруженного в аэрированную воду, представлено на рис. П1-16. Вначале скорость коррозии увеличивается пропорционально росту содержания МаС1, но в дальнейшем уменьшается. Максимальная скорость коррозии соответствует 3% [c.93]

    Наилучшим методом автоматизации управления является регулирование процессов по прямому анализу реакционных масс. Для осуществления этого метода необходимо найти такой физический цараметр, который бы однозначно характеризовал качество или состав реакционной массы. В предыдущих и данной монографиях приведено много таких параме7ро.в температура кипения реакционной массы однозначно характеризует ее состав в производстве хлорбензола , степень окраски погона анилина показывает содержание в нем нитробензола (стр. 186), магнитная проницаемость суспензии шлама определяет степень превращения железа (стр. 184), pH реакционной массы и ее электропроводность характеризуют концентрацию в ней ионов Н , ОН , катионов различных солей и анионов кислот, по тепловому эффекту при определенной обработке (стр. 112) определяют содержание НЫОз в Нг504 и т. д. [c.307]

    Вагнер допустил, что удельная электропроводность пропорциональна числу ионов Ре +. Тогда можно ожидать, что электропроводность будет возрастать прямонронорциональпо давлению кислорода в степени V6 Вагнер и Кох [122] экспериментально показали, что удельная электропроводность вюстита в интервале температур 800— 1000° С примерно пропорциональна давлению кислорода в степени Знак наблюдаемой зависимости показывает, что Ре1 д.О является соединением с дефицитом ионов железа. Отсутствие полного совпадения между рассчитанной и наблюдаемой зависимостями электропроводности от давления может быть результатом неполного равновесия между окружающей атмосферой и основной массой твердого образца или результатом изменений энергии активации с изменением концентрации дефектов, как было отмечено для окисных систем переходных металлов и предсказано для лития [49]. [c.271]

    Практически все ферриты при высоких температурах ( 1300° С и выше) имеют значительную склонность к диссоциации, для устранения которой необходимо повышать давление кислорода [42]. С этим явлением необходимо считаться при определении окончательной температуры обжига. Кроме того, с давлением кислорода связано в. известной мере валентное состояние ионов железа. Согласно диаграмме состояния (см. рис. П1.1, стр. 75), FegOg переходит в FegOi при 1400° С, однако возможно появление ионов Fe + и при более низкой температуре, если давление кислорода каким-либо образом снизится. Присутствие Fe в ферритах снижает электропроводность изделий и увеличивает магнитные потери, что нежелательно. [c.184]

    Возможность свободного перемещения валентных электронов в металле обусловливает его высокую электропроводность. Кроме того, энергия связи в щелочных металлах, таких, как натрий, значительно меньше, чем в ионных кристаллах, например ЫаС1, частично из-за большего межатомного расстояния, и такие металлы легко деформируются. В то же время переходные металлы, в частности железо и вольфрам, имеют более высокие температуры плавления и обладают очень высокой прочностью в этих металлах частично заполненные внутренние электронные оболочки также дают существенный вклад -в образование связи. [c.15]

    Наличие анодных и катодных участков в однородном на вид куске железа может быть показано с помощью так называемого ферроктльного индикатора [18]. Он состоит из смеси 100 мл 0,1 н. раствора хлористого натрия, 3 мл 1-процентного раствора железосинеродистого калия КдРе (СЫ)в и 0,5 жл 1-процентного спиртового раствора фенолфталеина, к которой добавлен агар-агар в количестве, достаточном для застудневания на холоду. Теплый раствор индикатора выливают на кусок железа, дают ему застыть и оставляют на несколько часов, после чего становится заметным, что в некоторых областях индикатор окрашен в синий цвет, тогда как в других — в розовый. На анодных, т. е. более электроотрицательных, участках железа металл переходит в раствор, образуя двухвалентные ионы, в результате реакции которых с железосинеродистым калием появляется синее окрашивание. На катодных участках при электрохимическом восстановлении железа железосинеродистого калия, которое восстанавливается до К4ре(СМ)е, расходуются ионы водорода, раствор поэтому становится щелочным и в присутствии фенолфталеина окрашивается в розовый цвет. Роль хлористого натрия в ферроксильном индикаторе заключается в том, что он, во-первых, увеличивает электропроводность раствора и, во-вторых, препятствует пассивации железа. Подобный индикатор, содержащий ализариновый краситель, был предложен для определения анодных и катодных участков на алюминии при применении этого индикатора на анодных участках наблюдается красное окрашивание, а на катодных — фиолетовое [19] .  [c.665]

    Для последующего электролиза наиболее вредными примесями в растворах после выщелачивания являются хлор и железо, а также соединения алюминия и мышьяка, азотная кислота. Хлор-ионы способствуют сильному разрушению анодов из свинца и его сплавов. Ионы железа окисляются на аноде при высокоположительном его потенциале окисленные ионы взаимодействуют с металлической медью на катоде и переводят ее в раствор, сами при этом восстанавливаясь, и т. д. Выход меди по току падает. Сульфат алюминия накапливается и снижает электропроводность электролита. Мышьяк вреден для катодного процесса, см. 41. Йоны азотной кислоты в электролите приводят к быстрому разрушению свинцовых анодов. [c.253]

    Магнетитовые аноды. Магнетит FeaOi — смешанный оксид железа со структурой обратной шпинели Fe +[Fe Fe +]04. Электропроводность таких структур обусловлена переносом электронов между разновалентными ионами, находящимися в одном кристаллографическом положении. Перераспределение ионов железа между тетраэдрическими и октаэдрическими нустотами приводит к превращению магнетита в смесь простых оксидов FeO и РегОз. Этим объясняются легкая взаймо-превращаемость оксидов и их нестехиометрический состав. [c.20]

chem21.info