Методы сведения (юстировки) оптических волокон в сварочных аппаратах для оптоволокна. Сварочный аппарат оптических волокон


Пайка оптического волокна: детали и тонкости выполнения.

Пайка оптического волокна — процесс соединения жил кабеля путём точечного термического воздействия при помощи специального оборудования. Технология применяется во время прокладки или монтажа радиотехнического элемента для передачи информации. Качество выполненных работ влияет на дальнейшую работу линии. Один кабель может содержать до 38 волокон, каждое из которых передаёт биты информации до нескольких десятков Гб в секунду.

оптический кабель

Используемое оборудование

Пайка осуществляется специальными приспособлениями и паяльными установками. Аппарат непосредственно для пайки кабеля выступает в качестве роботизированной техники с системой автоматического управления. Он имеет малые габариты, не превышающие 150 мм с каждой стороны.

Распространёнными являются следующие типы аппаратов для пайки:

  • выравнивающие оптоволокно по сердцевине;
  • имеющие фиксированные V-канавки;
  • для пайки ленточного оптоволокна.

Общая схема такого устройства включает в себя несколько элементов:

  • монитор;
  • блок питания;
  • механическая часть;
  • электронную «начинку», где располагаются плата, преобразователь, дополнительные блоки;
  • клавиатура.

Каждое оборудование снабжено программным обеспечением, а также интерфейсом. Настройка находится под паролем, чтобы избежать халатного отношения.

Аппарат для пайки

Распространёнными моделями для пайки оптического волокна являются Sumitomo Type-39, Jilong KL-300/300T. К более дешёвым относятся Fujikura FSM-18S и Sumitomo Type-46. В первом случае производится оценка затухания при сварке. Иногда применяются аппараты для групповой пайки волокон кабеля (Fujikura FSM-60R, Sumitomo Type-66 Ribbon). В 90-х гг. использовались модели типа КС. Но, исходя из современных требований к пайке, процесс во многом неудобен и сложен.

Этапы выполнения

Сам процесс в современных условиях не требует особой специализированной подготовки и позволяет производить пайку волокон кабеля с поверхностными техническими знаниями. В первую очередь производится снятие внешнего изоляционного слоя оптоволокна. Затем снимается верхняя часть модулей, в которых располагается несколько волокон. Здесь применяются стандартные инструменты.

Затем производится очистка элементов кабеля от гидрофобного материала. Для этого необходим слегка окрашенный или бесцветный гель. Используя комплект, предназначенный для защиты соответствующих соединений, следует волокна закрыть специальными гильзами (термоусадочные трубки с силовым стержнем). На 2-3 сантиметра волокна зачищаются от цветного лака, после – защитного слоя и протираются спиртовой настойкой.

Следующий этап наиболее важен. Осуществляется скалывание конца волокон таким образом, чтобы фронтальная поверхность была перпендикулярна оси элемента. В обратном случае проводимая способность будет ухудшена. Допустимый угол составляет 1,5 градуса. В случае брака, который составляет 20%, необходимо повторить процедуру. Используется прецизионный скалыватель.

Далее волокна помещаются в V-канавки, где применяются зажимы. Два волокна подводятся друг к другу с микрозазором на торцах в автоматическом режиме благодаря манипуляторам под микроскопом. Концы элементов разогреваются до заданной температуры и совмещаются, создавая единое волокно.

После производится контроль оптоволокна при помощи механической деформации с оценкой уровня затухания. Далее – термоусадка комплекта защиты на волокнах в тепловой камере. Последним этапом становится укладка готового оптоволокна в спайс-пластины, кроссы либо оптическую муфту

Похожие статьи

goodsvarka.ru

сварочные аппараты и скалыватели, механическое и сварное сращивание, отмеривание и укладка волокон / СоХабр

Обломанное оптическое волокно под микроскопом

Здравствуйте, читатели Хабра!

В этой второй части своего рассказа я продолжаю описывать премудрости работы с оптоволокном. Я, в меру своего опыта и знаний, ознакомлю вас со сварочными аппаратами для оптики, расскажу про скалыватели, коснусь механического метода сращивания волокон. И, наконец, будет описание самого процесса сварки с видео, процесса укладки волокон и обзор результатов. В конце — небольшой бонус: сделанные мною анимации из серий фотографий волокон под микроскопом. В первой части я рассказывал про кабели и их разделку, оптический инструмент, муфты и кроссы, коннекторы и адаптеры.

Часть 1 здесь

В пока ещё не существующей третьей части я надеюсь рассказать про измерения на оптике, а также коснуться темы прокладки, протяжки и крепления кабеля по столбам, по кабельной канализации, по фасадам, по крышам, под землёй.

Осторожно: много текста и трафика!

Сварочные аппараты

Новейшая Fujukura FSM-80S с открытой крышкой и заложенными волокнами. © Fibertool

Что у сварочного аппарата под крышкой

Сварочный аппарат для оптических волокон (arc fusion splicer) — один из самых дорогих и сложных (наряду с рефлектометром) инструментов спайщика. Это умный прибор, который берёт на себя весь процесс сведения (юстировки) и сварки волокон, спайщику остаётся лишь подготовить их и заложить в аппарат, а затем достать, надвинуть термоусадочную гильзу КДЗС и заложить в печку. Вкратце принцип работы любого современного сварочного аппарат таков: 1) Очищенные, сколотые волокна с заранее надетой защитной гильзой КДЗС закладываются спайщиком в аппарат, фиксируясь зажимами. 2) Аппарат сам (или по нажатию кнопки) начинает их сводить, пока не увидит в оптическую систему, состоящую из камер-микроскопов и зеркал на внутренней поверхности крышки. 3) Когда оба волокна в поле зрения камер, аппарат даёт короткую слабую дугу, «сдувающую» с волокон микропылинки, которые обычно остаются несмотря на любую протирку. Есть мнение, что эта короткая дуга также чуть-чуть «оплавляет» волокна, подготавливая их к сварке. Если на волокнах была несгораемая и несдуваемая грязь (например, гидрофоб или жир с пальцев), то эта дуга только «запечёт» эту грязь, да так, что никакая протирка не поможет, только переделывать скол. 4) Если волокна чистые и сколы хорошие, он начинает их сводить прецизионными моторами по трём координатам — сначала грубо, потом точно. Если с волокнами непорядок — говорит нам об этом (пишет на экране и подаёт сигнал писком) и отказывается продолжать варить. 5) Когда волокна сведены и подвинуты почти вплотную друг ко другу, где-то на секунду-две включается основная мощная дуга, в которой волокна разогреваются, и в разогретом виде ещё чуть-чуть досводятся друг с другом, чтобы спаяться. После выключения дуги место сварки за долю секунды остывает. 6) Аппарат оценивает по картинке, нет ли косяка (хорошую сварку практически не видно), а также на просвет пытается примерно определить затухание на получившейся сварке. Информация о сварке (дата, время, затухание) сохраняется в памяти, необнуляемый счётчик сварок увеличивается на единицу. 7) Аппарат с дозированным усилием пытается развести сваренные волокна обратно, если при этом сварка не порвалась — тест прочности пройден. Многие его отключают за ненадобностью, ходят даже слухи, что он может подпортить ещё не остывшую сварку. 8) Спаянное волокно аккуратно достаёт спайщик, надвигает гильзу КДЗС и кладёт в печку, где КДЗС усаживается, защищая место сварки от воздействий. 9) Когда таймер печки вышел, волокно с горячей КДЗС достаётся и КДЗС кладётся на специальную полочку для охлаждения. Если положить её на стол, горячий пластик прилипнет. В горячем виде запихивать в ложемент на кассете нельзя — легко сломать волокно под ещё мягким пластиком.

Про внутреннее устройство, аппаратную и программную части я, к сожалению, не смогу ничего рассказать: никогда не приходилось ни разбирать сварочник, ни подключать к компьютеру. Могу только поклониться электронщикам, механикам и оптикам, создавшим столь сложное и прецизионное устройство, и программистам, написавшим алгоритмы для работы с изображением волокон.

На рынке сегодня ситуация такова: лучшие сварочные аппараты делают японцы (Fujikura, Sumitomo), на пятки им наступают китайцы (Jilong и другие). Так сложилось, что в России Фуджикуры распространены больше Сумитом и Фителов (моё субъективное мнение).

Цена современного сварочного аппарата, которым можно паять ответственные магистральные линии, немаленькая: она начинается с 120-130 тысяч рублей за китайский (за набор — kit), а хороший японский стоит около 300-350 тысяч рублей за набор. В «китовый» набор обычно входит сам сварочный аппарат, кейс, блок питания, скалыватель, стриппер для волокон, иногда дополнительный аккумулятор, полочка для складывания и остуживания усаженных волокон, пинцеты/кисточки/проволочки для чистки, ремень для переноски кейса, кабели для подключения к компьютеру, диск с ПО и прочее. Из бумаг обычно бывает инструкция, результаты выходных испытаний и декларация о соответствии.

Сварочные аппараты можно примерно классифицировать по назначению. На достоверную и всестороннюю классификацию не претендую, но всё же попробую.

1) Для качественной сварки одиночных волокон. Такие аппараты производят юстировку (взаимное выравнивание) волокон на просвет и по оболочке, и по сердцевине, ориентируясь по картинке с двух стоящих под углом 90 градусов камер с микроскопами (метод PAS — Profile Alignment System). Этот метод предпочтительнее, чем устаревший метод выравнивания по одной только оболочке — ведь волокно может быть с эксцентриситетом, немного овальным или с некоторым осевым смещением центрального 9-микрометрового сердечника. Сервомоторы в таких аппаратах обычно могут двигать волокна «к друг другу — от друг друга», «вниз-вверх», «вперёд-назад», кроме того, микроскопы на камерах могут менять фокус для точной фокусировки. Вращать волокно вдоль продольной оси или наклонять на какой-то угол для компенсации отклонения угла скола от нормы современные сварочники не умеют.

Это дорогие, но качественные и, наверное, самые распространённые аппараты, за счёт своей универсальности и качества. Умеют производить примерную оценку величины затухания на сварке, высчитывая её по хитрому алгоритму по изображению сварки на экране. Многие модели умеют сваривать волокна специально со смещением, чтобы сварка получилась с заданным затуханием, когда нужно получить аттенюатор. Примеры — вся лнейка японских аппаратов Fujikura от FSM-30S до FSM-80S, Sumitomo Type-39 (и друге), Furukawa Fitel S178A, с некоторой натяжкой — китайские Jilong KL-260C, KL-280, KL-300/300T и некоторые другие китайцы.

Fujikura FSM-60S

Sumitomo Type-39 © Masteram

Jilong KL-300T

Furukawa-Fitel-S178A

2) Вариант «подешевле» для сварки менее ответственных и которких линий, где за затуханием на сварке не так гонятся. Такой сварочник сводит волокна не по сердцевине, смотря на изображение с камер, а просто сдвигая по двум особо ровным V-образным канавкам, то есть многих сервомоторов там нет. Камера и экран лишь для контроля оператором и примерной оценки потерь. Подразумевается, что пользователь будет часто паять многомод. Понятно, что точность сведения и качество сварки будут статистически хуже, так как малейшая пылинка, несовершенство и неотцентрованность самих оптических волокон или микроцарапинка на канавке резко ухудшает соосность сердечников в волокнах и соответственно качество сварки. Цена ниже, чем у «профессиональных» японцев, но выше или сравнима с «профессиональными» китайцами. Поэтому я лично не вижу смысла брать такой аппарат. Пример — Fujikura FSM-18S, Fujikura FSM-17S, возможно — Sumitomo Type-46.

Fujikura FSM-18S. Похож на «шестидесятку». © Fibertool

3) Сварочные аппараты для групповой сварки ленточных (ribbon) волокон. В России их почти что нет, как нет и соответствующих кабелей, и прочего оборудования (соответствующие скалыватели, термострипперы). Кабель такого стандарта внутри в сечении прямоугольный, и в нём лежат ленты, составленные из нескольких (обычно до 12) волокон.

Кабель с ленточными волокнами

Готовый комплет пиг-тейлов для кросса, объединённых в ленту. Одна сварка — и кросс на 12 портов сварен. Здорово, правда?

Такой сварочный аппарат варит сразу всю ленту, сильно экономя время. Долгое время Фуджикура в России делала вид, что этих аппаратов вообще не существует. Вживую никогда такие сварочные аппараты не видел, точно принципов зачистки, сведения и сварки не знаю и сказать о них ничего не могу. Не могу также точно сказать, могут ли они варить одиночные волокна как простые сварочные аппараты. Покупать в России смысла не вижу.

Fujikura FSM-60R

Sumitomo Type-66 Ribbon

4) Прочие аппараты «второго эшелона», предназначенные для сварки FTTx-сетей, например, Sumitomo TYPE-25 и TYPE-25e. Границу с группой №2 провести трудновато. Конструкция менее продвинутая и качество сварки не такое высокое, как у «магистральных» аппаратов, аккумулятор слабее, но габариты и цена ниже. Сюда же, за не очень высокое качество, можно отнести дешёвые китайские аппараты, такие, как DVP-730, Jilong KL-260C и другие.

Fujukura FSM-12S

DVP-730 со скалывателем и стриппером

Sumitomo Type-25e

5) Специальные и лабораторные сварочные аппараты для сварки специальных волокон, например, волокон с сохранением поляризации (Fujikura FSM-100M, FSM-100P, FSM-45F). Такие аппараты очень дорогие, имеют кучу гибких настроек, требуют специальных скалывателей. Как вам, например, возможность сделать сколы под углом 45 градусов и так сварить?

Fujikura FSM-100P

Fujikura FSM-45F

6) Старые советские аппараты. Имели некоторое значение в 90-х, когда массовая оптика только начиналась и ими можно было как-то сварить многомод «лишь бы работало». Сейчас неактуальны, так как варят с большим по современным меркам затуханием (лучше 0,2 дБ сварку на одномоде и 0,1 на многомоде вряд ли возможно сделать), сварка очень сложна и неудобна (сведение под оптическим микроскопом вручную, дуга горит, пока держишь кнопку, «доводку» волокон для их спаивания в момент горения дуги нужно сделать вручную с более чем ювелирной точностью, и пр.), вероятность того, что следующая сварка будет удачной, мала, имеют большой вес и габариты, нет запчастей и сервиса, родной скалыватель — не скалыватель, а просто комплект из лезвия и резинки в виде параллелепипеда, они не рассчитаны на современные волокна, и пр. Примеры — КСС-111, Сова. КСС — это полный хардкор, всё вручную и на глаз. В Сове уже можно было юстировать волокна по уровню сигнала: перед и после местом стыковки волокна в зажимах изгибались и по принципу бокового ввода в одном из зажимов на изгиб светила лампа, в другом зажиме около изгиба стоял фотодиод. Когда ток с фотодиода максимальный — стало быть, сердечники волокон совпали лучше всего и можно варить. Правда, сам я на таких аппаратах не работал, может быть тот, кто работал, в чём-то меня опровергнет.

Вот несколько фотографий раздолбанного КСС-111, который стоит в моём университете.

Лично я работал на всех Фуджикурах от FSM-30S до FSM-60S, несколько волокон сварил на обучении на «урезанном» FSM-18S (который со сведением по V-канавке), несколько — на каком-то Sumitomo (наверное, Type-39 — уже не помню). А последние годы я работаю на китайском сварочном аппарате Jilong KL-280. Вот про эти аппараты я в основном и буду рассказывать.

У каждого аппарата есть свои особенности, свои сильные стороны. Это может быть гарантированно высокое качество, или высокая скорость сварки, или скорость усадки КДЗС, или наличие двух печек для КДЗС, или наличие дополнительных удобных фич, или сенсорный экран, или продублированные кнопки управления для удобной работы вдвоём, или супер-увеличение места сварки, или сверхкомпактность, или защищённость от ударов, мороси и ветра, или просто выгодная цена. Например, Fujikura FSM-60S — признанный лидер, задавший новую планку качеству, удобству и скорости работы, он не боится влаги, пыли и умеренных ударов, он относительно компактный, можно тонко настроить его поведение как нужно, но цена кусается, дорогие запчасти и обслуживание. (Недавно вышла новая Фуджикура — FSM-80S, вероятно, она совершеннее «шестидесятки», но я её вживую не видел и сказать про неё нечего). Китайский DVP-730, например, медленнее, менее надёжный, по слухам камеры могут разбалансироваться от тряски в багажнике, но цена втрое (!) ниже фуджикур. А вот Jilong KL-300T — по мнению многих, оптимальный вариант: по сути переработанный клон Fujikura FSM-50S, стоит значительно дешевле Фуджикур и Сумитом, обладает хорошей надёжностью, варит почти так же качественно, как фуджикуровские флагманы. А если кому-то нужна компактность? Тогда его выбор — Furukawa Fitel, или попроще — Fujikura FSM-12S. Словом, для каждой задачи найдётся наиболее подходящий вариант.

Почему же при таком разнообразии многие стремятся, несмотря на цену, купить дорогой сварочный аппарат, желательно японца-флагмана, который предназначен для сварки магистралей?

Я полагаю, дело в универсальности (кто знает, что придётся завтра варить — магистраль, FTTx, PON?), а также в том, что возможно встретить некоторое недопонимание с работниками заказчика, отвечающими за приёмку построенного объекта. С технической точки зрения ясно, что если для сети типа FTTB с её небольшими расстояниями или для коротких линий на десяток километров затухания на сварках не особо критичны, то для магистралей под сотню километров потеря 0,15 дБ на сварке — это уже криминал. Однако те, кто принимает работы, особенно крупные заказчики, зачастую ничего не хотят слышать и требуют, чтоб любая линия (не волокно, а вся готовая линия от кросса до кросса) укладывалась в показатели по затуханию не хуже 0,22 дБ/км затухания на длине волны 1550 нм и 0,36 дБ/км на 1310 нм, и поблажек особо не дают. С одной стороны их можно понять — ведь теоретически через нашу короткую линию могут однажды проключить и ответственную магистраль. Но с другой стороны, всё же порой требования излишне жёсткие. Понятно, что вывести линию на такие показатели с дешёвым сварочным аппаратом намного труднее, чем с хорошим и дорогим. С дорогим ты просто штатно сварил все муфты, возможно, потом после анализа измерений прошёл по муфтам и исправил пару косячков. А с плохим аппаратом можно бегать исправлять затухания очень долго.

Вообще, по моему личному мнению, сейчас самый классный аппарат — это Fujikura FSM-60S. Если б я выбирал для себя и не был стеснён в средствах — я бы выбрал его (правда, вероятно, новейший FSM-80S ещё лучше: там, например, заявлена фича с автоматически закрывающейся после закладки волокон крышкой, что экономит время). Если же денег не хватило бы, я взял бы или Jilong KL-280 (лично проверенный, неплохой аппарат, варит качественно, минусы — немного габаритнее, медленнее и неудобнее фуджикур, не умеет варить сварки-аттенюаторы с заданным затуханием, нет специально заточенных программ для сварки «смещёнки» и новых «сверхгибких» волокон, и до меня доходили слухи о его недостаточной надёжности) или Jilong KL-300T (его в интернете хвалят за надёжность, достаточно высокое качество сварок и за то, что это большой шаг вперёд для компании Nanjing Jilong по сравнению с прежними KL-280 и KL-260C, но я сам его не щупал).

Jilong KL-280

Как вариант можно рассмотреть б/у Фуджикуры 50S или 60S, но б/у есть б/у, можно нарваться на аппарат с каким-нибудь скрытым, трудновоспроизводимым дефектом, да и гарантии нет (как говорит мой папа, какой дурак продаст тебе хорошее?), а покупка такого дорогого инструмента — это всё-таки не покупка мобильника с рук. Аппараты FSM-30S, FSM-40S и прочие старые я бы не покупал, даже попадись новый экземпляр, завалявшийся на складе: цена на них будет почти такая же, как на современные японские флагманы, слишком они медленные, старые, с электродами и запчастями могут возникнуть проблемы, аккумуляторы там никель-металлгидридные (вместо литий-полимерных или литий-ионных на современных аппаратах) и слабые.

Fujikura FSM-20CS: демон древнего мира!

FSM-30S. Медленный, старый, для сварки нужно много движений, но варит вроде неплохо.

Конечно, картина у меня не самая полная; для полной картины мне нужно бы поварить на Sumitomo (тоже отличные японские аппараты) и Furukawa Fitel, на INNO Instrument, а также на других китайцах. Полную картину мог бы дать или спайщик из крупной фирмы с большим парком разных аппаратов, или тот, кто их продаёт.

Сварочный аппарат нужно беречь. Думаю, это очевидно, помня, сколько он стоит. Если вы покупаете аппарат, а работать на нём будут другие — нужно это внушить будущим работникам. Беречь его нужно фанатично, как зеницу ока! Обдумывать каждый шаг. Надёжно ли он стоит? Надёжно ли стоит рабочий столик? Не упадёт ли на него что-то сверху? Не накинет ли порыв ветра вот эту пыль с дороги на рабочее место? Не собирается ли гроза? Если собирается, взял ли я палатку? А что будет, если кто-то из прохожих дёрнет за торчащий из рабочей палатки свариваемый кабель, не упадёт ли от этого сварочник? Не захотят ли вот те ребята в туфлях и спортивных костюмах познакомиться поближе со сваркой оптоволокна? И так далее. Я всегда стараюсь садиться за сварочный аппарат с таким же чувством, с каким в начале 2000-х, будучи школьником без денег, в первый раз взял в руки мобильный телефон… :) Хранить и переносить аппарат без кейса нежелательно: кейс неслучайно изнутри отделан толстенным слоем пенопласта. Хотя на испытаниях FSM-60S японцы сбрасывали её с метровой высоты и потом она варила, проверять не советую.

Испытания Фуджикуры FSM-60S пылью и водой

То же самое касается скалывателя: основу скалывателя, наподобие корпусов жёстких дисков, делают из мягкого металла и покрывают легко сдирающейся краской или анодированием/воронением, и это неспроста. Его нельзя бить или ронять. Будет вмятина и содранная краска — гарантии конец. Нельзя также касаться кругового ножа пальцами и прочими предметами, волокна нужно закладывать очень осторожно, одно движение кривыми руками может повлечь порез пальца и минус ресурса в несколько тысяч сколов (если нож частично затупится). За этим также нужно внимательно и фанатично следить. Нельзя, чтоб он ржавел в сырости. Я и напарник можем гордиться: наш скалыватель за 3 года экстремальных чердачно-подвальных условий ни разу не падал.

Сварочному аппарату также периодически нужно делать обслуживание разного «уровня»: минимум — делать очистку электродов мощным током, калибровку положения дуги и калибровку силы тока в дуге. Всё это делается программно, через меню, и всё описано в инструкции. Так обстоит дело с нынешним нашим Jilong'ом KL-280, у японцев немного по-другому, там есть отдельные программы самотестирования. Эти тесты желательно прогонять каждый раз перед началом работы, если после предыдущей калибровки изменилась температура/влажность воздуха (влияет на дугу) или с прошлой калибровки было сделано много сварок (кончики электродов успели немного износиться).

Иногда требуют замены электроды (после нескольких тысяч сварок) и аккумулятор. Иногда требуется чистка от пыли (кстати, продувать баллончиком со сжатым воздухом запрещается — слишком чувствительная механика). Иногда что-то ломается, разъюстируется, и требуется полноценный ремонт в сервис-центре. На некоторых китайцах после 9999 сварок (весьма внушительный объём) аппарат блокируется, требуя нести его в сервис-центр для полного обслуживания.

Что касается электродов, то есть, конечно, рекомендуемые производителем аппарата объёмы сварок, после которых электроды лучше поменять. Однако по факту многие спайщики варят до упора, пока не начнутся плохие сварки и нестабильная дуга. С электродами есть маленький секрет: можно продлить их жизнь ещё на несколько сотен сварок. Дело в том, что износ электродов — штука комплексная. Отчасти он заключается в том, что на электроды постепенно напыляется слой стекла со свариваемых волокон. Отчасти — в выгорании «воронок» на кончиках электродов, что приводит к нестабильной дуге. Так вот, крошки напылённого стекла можно сковырнуть бритвой, то, что осталось — снять чисткой в стирательной резинке. Только резинку нужно выбирать «нежную», без абразивных элементов, иначе электроды придётся выбросить почти сразу.

После замены электродов нужно обязательно прогонять соответствующую калибровку.

Электроды для сварочного аппарата

Вот мы ознакомились с тем, что такое современный аппарат для пайки оптоволокна, какие эти аппараты бывают. Более подробно вернёмся к описанию его работы, когда далее сварим, усадим и уложим волокно. А сейчас познакомимся со скалывателями оптических волокон.

Скалыватели

Устройство оптического скалывателя

Скалыватель (cleaver) — это механическое прецизионное устройство, задача которого — сколоть конец оптического волокна так, чтобы плоскость скола была как можно ровнее и как можно перпендикулярнее самому волокну. Хотя существуют специализированные скалыватели и с электроникой, и позволяющие делать углы скола отличные от 90 градусов, я их рассматривать здесь не стану.

Качество скалывателя определяется по таким статистическим параметрам: насколько ровный скол получается, насколько угол плоскости скола отличается от 90 градусов, насколько часто скалыватель ломает волокна, насколько удобно с ним работать, каков ресурс.

Зачем нужен скалыватель? Если мы просто отломаем кончик волокна пинцетом, то вероятность хорошего скола будет крайне мала, и сварка гарантированно не получится. Вот пара примеров плохих сколов (а также картинка в шапке статьи):

Плохой скол на экране сварочника (вид одного и того же волокна с двух камер). На экране рабочая пыль и царапинки. ;) Поэтому я защитную плёнку и не отклеиваю.

Левое волокно с плохим сколом, правое — нормальное (небольшой чёрный дефект, что на правом волокне — частое явление, он обычно не оказывает влияния на сварку, так как расположен с краю волокна).

А сварка (если мы всё-таки заставим умный сварочник, несмотря на протесты, принудительно сварить) — будет выглядеть как-то так:

Типичный «пузырь». Сварка подлежит переделыванию. Работать линия с такой сваркой не будет. В лучшем случае, если линия короткая, поднимется с кучей потерь пакетов, но затухание тут будет несколько децибел.

Поэтому нам нужен специальный инструмент, чтобы аккуратно подготовить волокна к сварке. Скалыватели, как и сварочные аппараты, бывают разные. Подороже, подешевле, сильно подешевле, узкоспециальные, исторические. С контейнером для сколотых волокон и без такого. Полноценный обзор всех существующих скалывателей я дать, пожалуй, не смогу, так как работал всего с двумя моделями. Так что опишу то, с чем работал. Если вкратце — моё мнение такое: если со сварочником можно пойти на компромисс и сэкономить около сотни тысяч рублей, купив хорошего «китайца» вместо японца, то со скалывателем этого лучше не делать. Да, да: купив китайский «кит» с прилагающимся китайским скалываталем, я советую докупить дополнительно хороший японский скалыватель, а «китовый» скалыватель использовать как резервный (или как дополнительный, для ускорения работы). Хороший скол — это уже 50% удачной сварки, а быстрота и удобство в работе — залог того, что спайщик за день успеет сварить больше. Так что вложив лишних 20-30 тысяч, не сильно заметных на фоне стоимости сварочного аппарата, рефлектометра, автомашины и прочего оборудования, мы увеличим и удобство, и качество, и скорость работы спайщика. Хотя, конечно, если цель — сформировать мини-бригаду для обслуживания провайдерской сети при минимальном бюджете, где удобство, скорость работы и качество на втором плане, и строить первоклассные магистрали не планируется — можно и сэкономить, используя стоковый китовый скалыватель.

Вот немного примеров в картинках.

Советский скалыватель! Лезвие, резинка, чехол и инструкция. Бритвы — в дополнение. Спасибо начальнику, что сохранил такой артефакт. Такие толстые волокна, кстати, держать в руках не приходилось. Попытался ради опыта аналогичным образом (новое лезвие и мягкая стирательная резинка) сколоть современное волокно — попытка не удалась.

Jilong KL-21C во время чистки

Fujikura CT-30

Скалыватели INNO Dragon. С нанесённым рисунком!

Опишу первый скалыватель, которым я работал. Это — пример хорошего, проверенного временем скалывателя. Это Fujikura CT-30/CT-30A.

Очень у многих спайщиков имеется именно эта модель. Я с таким работал и скажу, что это действительно хорошее, продуманное и удобное устройство. Он компактный, надёжный, для скола нужно минимум движений, от него не приходится ждать неожиданностей. Только надо брать обязательно с контейнером для сколотых волокон. К сожалению, моё начальство не покупает мне его, приходится работать на китайском. Есть и другие модели фуджикуровских скалывателей, которые позиционируются как более современная, компактная и дешёвая, но отнюдь не менее качественная замена CT-30A. Но всё равно CT-30A – это классика.

Другой скалыватель, на котором я работал и который у меня сейчас — это китайский Jilong KL-21C, который был в наборе со сварочным аппаратом Jilong KL-280. Свою задачу этот скалыватель выполняет, но у меня к нему есть ряд претензий. Например: количество действий, которое нужно произвести для скола. У китайца оно больше, чем у японца. В случае CT-30A нам требуется: 1. Взвести каретку с ножом. 2. Заложить волокно. 3. Закрыть фиксатор волокна. 4. Нажать на крышку, произведя скол. 5. Открыть фиксатор. 6. Достать сколотое волокно.

В некоторых скалывателях нужно ещё меньше действий: даже взводить каретку не нужно, она взводится при открывании крышки и производит рабочий проход при её закрытии.

В случае же KL-21 нужно: 1. Взвести каретку с ножом. 2. Заложить волокно. 3. Закрыть фиксатор волокна. 4. Закрыть крышку. 5. Вручную протолкнуть каретку с ножом, произведя скол. 6. Открыть крышку, преодолев силу магнитов (одной рукой неудобно). 7. Открыть фиксатор. 8. Достать сколотое волокно.

Казалось бы, всего 2 лишних действия. Но это — эргономика, это — время, это — объём работы, который за рабочий день может быть больше, если все операции делаются быстро.

Потом, этот скалыватель порой ломает волокна, причём чистка, продувка особо не помогают. Двадцать раз сколол нормально, на двадцать первый достаёшь волокно — а оно сломалось в каком-то одном из нескольких «любимых» скалывателем мест: перед или после резиновой подушечки, или между подушечкой и ножом. Приходится зачищать и протирать спиртом заново. Вполне допускаю, что кто-то с этим не сталкивался, но факт есть факт. На холоде и в сырости по не до конца понятным мне причинам начинает колоть хуже и волокна ломать чаще. Доходило до того, что стоишь ночью на обочине дороги в грязи под снегом с дождём, весь мокрый и злой, на капоте машины разложена почти сваренная муфта, которую надо обязательно доделать, не менее продрогший товарищ одной рукой с картонкой прикрывает сварочник от осадков, второй рукой светит фонариком, и тут как назло 2 волокна из 3х ломаются и приходится их переделывать задубевшими пальцами.

Ресурс кругового 16-позиционного ножа у китайского скалывателя довольно маленький: приходится часто (по сравнению с фуджикуровским) поворачивать на следующую позицию, иначе начинает плохо колоть. Когда нож прошёл полный оборот, его соответствующим регулировочным винтом поднимают на какие-то микроны и он проходит второй оборот. После этого — второе поднятие и третий оборот, потом замена ножа. Полный ресурс хорошего японского скалывателя — где-то 48000 сколов. Вот что значит японская сталь! ;)

Круговые ножи для всевозможных скалывателей. Взаимный масштаб не соблюдён.

Есть и другие скалыватели. Например, дешёвые недо-скалыватели в виде прищепки, которые не обеспечивают точной перпендикулярности скола и которые я бы не советовал применять.

Принцип работы скалывателя такой: 1. Волокно (зачищенное от лака и протёртое от грязи) должно быть хорошо зафиксировано. 2. В момент скалывания на волокне алмазным ножом или ножом из твёрдой стали делается поперечная микроцарапина. 3. К волокну прикладывается такое усилие, чтобы оно треснуло аккурат по поцарапанному месту.

В разных моделях технология произведения этих операций немного разная, и наглядно показать процесс скалывания я не смогу (для этого пришлось бы в каком-нибудь 3DS MAX'е рисовать замедленную полупрозрачную 3D-анимацию процесса скалывания, где каждая деталь подкрашена своим цветом). Но объяснить в общих чертах и показать на видео попробую.

Рассмотрим подробнее скол одного волокна на типичном скалывателе. 1. Оптическое волокно зачищено на определённую длину, хорошо протёрто безворсовой салфеткой со спиртом. Пальцами стекла не касаемся! 2. Открываем фиксатор и крышку и осторожно закладываем волокно в скалыватель. Волокно при этом важно не запачкать и пальцами не влезть в нож! Волокна в лаковой оболочке закладываются в тонкую канавку, а пиг-тейлы в жёлтой оболочке — в толстую. Закладывать совсем толстые патч-корды нельзя; если надо сварить патч-корд — его нужно разделать как кабель, освободив волокно. 3. Волокно должно быть заложено так, чтобы граница между лаковым покрытием и голым стеклом легла на нужную нам цифру на линейке. Эта цифра говорит нам, сколько миллиметров голого стекла будет торчать из лака после скола. Для каждого сварочного аппарата эта цифра своя (например, для нашего Jilong'а KL-280 это 16 мм), надо её просто запомнить для своего аппарата. Если заложить так, что сколется меньшая длина — сварочнику не хватит диапазона подачи кареток, чтобы свести волокна, и он запищит и выведет на экран ошибку «Предел подачи» или «Заново уложите волокно». Если сколоть так, что стекла наоборот останется слишком много — всё сколется и сварится нормально, только вот защитная гильза-КДЗС (если она «короткого» стандарта 40 или 45 мм) может по длине оказаться короче, чем голый стеклянный участок волокна, и не защитить полностью оголённое волокно. В этом случае волокно без защитного лака очень легко сломается от изгиба на выходе из КДЗС (при той же укладке), и такую сварку нужно переделать. 4. Производим скол. В каких-то моделях для этого достаточно нажать на крышку скалывателя, в каких-то надо её закрыть, толкнуть пальцем каретку и снова открыть. 5. Открываем фиксатор, если надо — крышку и осторожно достаём сколотое волокно. Сразу, ещё не доставая, можно понять, не сломалось ли оно. Его теперь нельзя никуда класть, кроме как в сварочный аппарат, потому что стоит коснуться им чего угодно — оно сразу станет грязным. В сварочный аппарат его также надо закладывать таким образом, чтоб не зацепить кончиком никаких деталей и поверхностей: стоит случайно ткнуть торцом сколотого волокна в ту же V-канавку или в электрод при закладке в сварочник — и при сведении волокон вы увидите на этом волокне тонну грязи. :)

Волокна грязные, кроме этого к волокну прилипла большая пылинка

Такое выпачканное волокно, в принципе, можно попытаться очистить — сначала просто протереть салфеткой, а потом потыкать торцом в спиртовую, а затем в сухую салфетку. Вероятность процентов 60, что оно после этого будет чистым и хорошо сварится. Но всё же лучше его сразу перезачистить и переколоть, а ещё лучше — не ронять и не пачкать протёртые и сколотые волокна. 6. Сколотый кончик волокна, в зависимости от конструкции скалывателя, сам затягивается в контейнер для волокон, остаётся торчать в «валиках» или, если нет контейнера, падает на стол рядом со скалывателем. Соответственно в первом случае нужно просто проконтролировать, нормально ли затянуло волокно в контейнер (слишком длинное не поместится, поэтому зачищать волокна от лака по 10 см не нужно; иногда волокно может как-то соскочить и не затянуться в контейнер), во втором надо специальной ручкой прокрутить валики, чтоб волокно втянуло меж валиков в контейнер как бельё при отжиме в старой стиральной машине, а в третьем — тут же приложить к волокну кусочек изоленты, чтобы волокно к нему прилипло, а потом обклеить эти прилипшие к изоленте волокна со всех сторон. Вообще пользоваться скалывателем без контейнера для волокон КРАЙНЕ не рекомендую, и вот почему. Кусочки оптического волокна, особенно без лака — это опасный отход производства. В странах с лучшей культурой переработки отходов их собирают и утилизируют. У нас, конечно, как придётся, но всё равно это не повод разбрасывать после себя волокна. Все осколки волокон нужно тщательно собирать! Если такой едва заметный кусочек попадёт в еду, в питьё — можно заработать язву желудка или прочие проблемы. Если он вопьётся в тело и сломается — теоретически может по кровотоку дойти до сердца, хотя обычно становится трудноизвлекаемой, очень неприятной занозой, которую никакой рентген не найдёт и которая крошится под пинцетом при попытке её вытащить. Да и просто волокна в одежде, в обуви, в сиденьях машины — не самая приятная вещь. Поэтому: 1. Никакой еды на рабочем месте. 2. Все волокна до последнего необходимо тщательно собирать. Даже если работа производится где-нибудь в полузатопленном канализацией подвале, где по колено мусора и блох, или в поле по колено в грязи — это не повод мусорить волокнами! 3. Скалыватель — только с контейнером для сколотых волокон. 4. По-хорошему следует пользоваться средствами защиты: очками, спецовкой, фартуком. Но этого никто не делает. Я лично, когда приходит время чистить контейнер скалывателя от накопившихся кусочков сколотых волокон, сажусь за стол, стелю себе большой лист бумаги и над ним ссыпаю их в отдельную бутылочку, а потом тщательно собираю то, что упало. Вот радость-то будет врагам в ботинки высыпать!..

Однако вернёмся к скалывателям. Сами понимаете, что успешный скол зависит от микронов. Поэтому скалывате

sohabr.net

Сварка оптического волокна — Циклопедия

Видео: сварка оптики для "чайника"

Сварка оптического волокна — процесс соединения оптических волокон с помощью их сплавления при высокой температуре. В настоящее время сварку оптического волокна производят при помощи специальных сварочных аппаратов.

[править] Сварочные аппараты

Сварка оптических волокон производится с использованием специальных сварочных аппаратов, которые позволяют в автоматическом режиме провести работу по измерению параметров скола волокон, совмещения торцов свариваемых волокон, сварки, отжига, оценки параметров стыка, проверки механической прочности сварного стыка, термоусадки защитной гильзы на место стыка.

Современные сварочные аппараты состоят из следующих элементов:

  • Прочный корпус в котором расположены все элементы аппарата.
  • Микроскоп или видеокамера с оптической системой (зеркала, призмы) — применяются для точного позиционирования волокон друг относительно друга. В настоящее время чаще используют две видеокамеры закреплённые в двух плоскостях (под углом 90°). При этом отпадает необходимость в прецизионных зеркалах и призмах совмещающих изображение двух плоскостей на один экран.
  • Сварочная камера — объединяет в себе подвижные манипуляторы с зажимами для волокон (для юстировки и сведения их под микроскопом), электроды создающие дугу для сварки и крышку, защищающую место сварки от внешних воздействий.
  • Тепловая камера (печь) — необходима для термоусадки защитной муфты на сваренный участок.
  • Блок электронного управления работой аппарата.

[править] Процесс сварки

  1. Разделка оптического кабеля и очистка волокон от гидрофобного материала.
  2. На волокна одного из кабелей надеваются специальные гильзы — КДЗС (комплект для защиты стыка), состоящие из полиэтиленовой трубки и стального силового стержня, размещённых внутри внешней термоусаживаемой оболочки.
  3. С концов волокон (2-3 см) снимается первичное буферное покрытие и волокна промываются изопропиловым спиртом с использованием безворсовых салфеток.
  4. Подготовленное волокно скалывается специальным прецизионным скалывателем. Плоскость скола волокон должна быть строго перпендикулярна оси волокна. Допустимое отклонение — не более 1,0° на каждый скол.
  5. Волокна, предназначенные для сварки, укладываются под зажимы сварочного аппарата в (V-образные канавки).
  6. Под микроскопом или под контролем видеокамер, механически (в V-образных канавках) или с помощью подвижных зажимов, происходит совмещение (юстировка) волокон. В современных сварочных аппаратах юстировка происходит автоматически.
  7. Электрическая дуга разогревает до установленной температуры концы волокон, далее торцы волокон совмещаются микродоводкой держателя одного из волокон. При этом, благодаря силам поверхностного натяжения, происходит «схлопывание» поверхностей торцов волокон. Пока стык не остыл, сварочный аппарат продолжает юстировать сердцевины волокон, в это время температура дуги понижается до определённой температуры, для «отжига» (снятия механических напряжений) места сварки.
  8. Аппарат проверяет затухание, вносимое сваренным стыком. Существует несколько методов проверки: от оценки качества сварки по оптическому изображению горячего волокна (в ИК области), до непосредственного измерения путём введения в одно волокно опорного излучения и отводом его части из другого волокна.
  9. Аппарат осуществляет проверку механической прочности соединения приложением растягивающего усилия (обычно 200 — 400 гр.).
  10. КДЗС сдвигается на место сварки и этот участок помещается в тепловую камеру (печь), где происходит термоусадка КДЗС.
  11. Сваренные волокна укладываются в сплайс пластину (кассету), оптическую муфту или оптический кросс.
  • Удаление защитных оболочек с оптического волокна

  • Подготовка торца оптического волокна скалыванием

  • Установка оптических волокон в сварочный аппарат

  • Сварка оптических волокон

  • Отображение параметров результата сварки оптических волокон

  • Установка комплекта для защиты стыка (КДЗС) оптических волокон

  • Термоусадка КДЗС на сварном стыке оптических волокон

  • Укладка оптических волокон с КДЗС в сплайс кассету

  • Установка сплайс кассеты в оптический бокс и его окончательная сборка

cyclowiki.org

Методы сведения (юстировки) оптических волокон в сварочных аппаратах для оптоволокна

  1. Статьи

Метод сведения (юстировки) оптических волокон – это один из наиболее важных параметров сварочного аппарата для оптического волокна. Он во многом определяет стоимость аппарата, его назначение и эксплуатационные характеристики. Для понимания сути применяемых методов юстировки и связанных с этим последствий, рассмотрим структуру оптического волокна.

Структура оптического волокна

Оптическое волокно состоит из сердцевины, оболочки и буферного слоя. Световой поток, несущий информацию, распространяется в сердцевине, отражаясь (как от зеркала) от границы раздела сред “сердцевина-оболочка”. Диаметр сердцевина одномодового оптического волокна примерно равняется 9 мкм, диаметр многомодового 50 или 62,5 мкм (в зависимости от стандарта)

Оболочка оптического волокна обладает несколько другими характеристиками, нежели сердцевина, что и обеспечивает отражение светового потока и удержание его в пределах сердцевины. Диаметр оболочки одномодового и многомодового волокна равен 125 мкм

В связи с тем, что основным элементом в производстве оптического волокна является кремний (как и у обычного оконного стекла), оно тоже имеет схожие характеристики. А именно: достаточно большая прочность на разрыв и большая хрупкость в случае воздействия царапин. Поэтому еще на этапе производства для защиты от механических и химических воздействий оптическое волокно покрывают специальным лаком – буферным слоем. (его мы удаляем перед выполнением сварного соединения).

В случае, если структура оптического волокна близка к идеальной, сварочные аппараты обслуживаются и эксплуатируются надлежащим образом, то потери на сварном соединении будут одинаково хорошими, не зависимо от выбора способа их юстировки перед сваркой. К сожалению, в реальности не всегда так получается. Использование дешевого кабеля с волокнами невысокого качества, может привести к повышении потерь на сварном стыке. Это обусловлено несколькими причинами:

  • сердцевина у низко качественных волокон может быть смещена относительно центра волокна, в результате чего может наблюдаться несоосность сердцевин сращиваемых волокон
  • сердцевина волокна может иметь овальное сечение, что приведет также к неполному совмещению сердцевин
  • диаметры сердцевин свариваемых волокон могут отличаться

Рассмотрим основные способы юстировки оптических волокон:

Подписаться на рассылку статей

fibertop.ru