Схема работы и основные детали сварочного инвертора. Схема сетевого инвертора


Нестандартные схемы использования полуавтоматики

Полуавтоматика - это устройство полуавтоматического управления генератором и защита электросети мощностью нагрузки до 6кВт или 13,5кВт.Полуавтоматика может использоваться для автоматического подключения инвертора.Если есть возможность управлять инвертором, то получается полностью автоматический ввод резерва АВР.

Рис 1. Автоматическое подключение инвертора к резервной сети дома.

Двухполюсный автомат на выходе инвертора не обязателен, но может использоваться, например, чтоб ограничить его нагрузку для более медленного разряда аккумуляторов.Требование к инвертору – должен допускать подключение ноля на ноль электросети.Для данной схемы желательно чтоб инвертор синхронизировал свой выход с электросетью, при применении нормального ИБП это требование выполняется автоматически.

Рис 2. Автоматическое подключение источника бесперебойного питания к резервной сети дома.

ИБП для применения в данной схеме должен иметь сквозной ноль в цепи 220В, или полную гальваническую развязку так как выход будет посажен на ноль – чтоб не спалить ИБП или инвертор.ИБП работает в автоматическом режиме, ограничен только входной ток ИБП на величине около 3А по входной сети 220В.

Данная схема применяется, когда не нужно быстрое переключение на ИБП при пропадании электросети. И является более надёжной по сравнению с автономным применением ИБП, так как даже при поломке ИБП при наличии электросети система сохраняет работоспособность.

В данной схеме ИБП также защищён от высокого напряжения электросети (380В).

Полуавтоматика может работать совместно с сетевыми солнечными инверторами.

Рис 3. Выделение резервной сети дома для сетевого фотоэлектрического инвертора.

Сетевой инвертор (солнечных батарей) генерирующий в сеть можно включать после полуавтоматики на её выход.

Тем самым мы разделяем дом на резервную часть и не резервную часть, не резервируемые нагрузки могут подпитываться от инвертора при наличии электросети или от сети!

При отсутствии электросети они от инвертора не питаются!

Подключение электросети в данном случае происходит в момент синхронизации фазы электросети и фазы инвертора (после синхронизации входа с выходом – данная опция является штатной для всех модификаций полуавтоматического управления генератором).

(Примечание, из-за возможно неточной синхронизации, необходимо иметь большой запас по мощности полуавтоматики – применять только 13кВт модификацию или использовать мощные магнитные пускатели, предназначенные для тяжёлых переключений рис3.1).

Полуавтоматика при этом обеспечивает передачу энергии как со входа на выход так и с выхода на вход (генерацию в электросеть).

При отсутствии электросети силовую фазу инвертора можно снять с вывода «генератор фаза». Полуавтоматика в данном случае обеспечивает двунаправленную передачу энергии.

Обязательное требование к сетевому инвертору синхронизация с электросетью и возможность генерировать энергию в электросеть.

Управляющие «сухие» контакты полуавтоматики могут дополнительно использоваться.

Рис 3.1. Усиление контактов полуавтоматики при работе с сетевым фотоэлектрическим инвертором.

В данном применении включение магнитного пускателя будет происходить после синхронизации выхода сетевого инвертора с входом электросети.

Рис 4. Использование полуавтоматики совместно с ручным перекидным рубильником.

Эта схема применяется если необходимо быстро исключить полуавтоматику из цепи резервного питания дома.

Аналогичную схему можно применять только для автоматической остановки генератора при появлении электросети с задержкой примерно 30 секунд.

Силовая коммутация осуществляется рубильником вручную, при этом рубильник может быть только двух позиционный! Выход полуавтоматики при этом может не использоваться, а напряжение с генератора подаётся на второй вход рубильника напрямую.

Рис 5. Использование полуавтоматики в системах с разделённым нолём.

Остановка генератора осуществляется с помощью контактов дополнительного реле, если на магнитном пускателе «электросеть» есть лишние нормально разомкнутые контакты, то реле не нужно - остановка может осуществляться от свободных контактов пускателя «электросеть».

В схеме применяется разделительный трансформатор ТР мощностью около 10Вт, необходимой только для переключения и удержания магнитного пускателя при работе от генератора.

Положение контактов указано при отсутствии внешней сети, по схеме видно, что есть электрическая блокировка для исключения одновременного включения катушек магнитных пускателей (в данном случае может быть включен только пускатель генератора). Кроме этого магнитные пускатели должны иметь механическую блокировку с перекидным рычагом, препятствующим одновременному замыканию контактов магнитных пускателей. Это необходимо для полного исключения возможности встречного включения электрогенератора с внешней сетью.

spi.od.ua

что такое, зачем нужен, типы, характеристики, как выбрать

В настоящее время альтернативная энергетика все более прочно входит в повседневную жизнь современного человека и причин тут несколько. Это и экологическая безопасность подобных производств, и возможность создать автономную систему электроснабжения, которая, по истечении срока окупаемости, может приносить определенный доход пользователю.

Одним из видов производства электрической энергии, использующем альтернативный и возобновляемый источник, является солнечная энергетика, а одним из устройств, обеспечивающим работу солнечной электростанции в автоматическом режиме, является инвертор.

Что это такое

Содержание статьи

Солнечный инвертор – это техническое устройство, служащее для преобразования постоянного электрического тока, напряжением 12/24/48 В, вырабатываемого солнечными батареями, в переменный, используемый для освещения и питания различных приборов и устройств напряжением 220/380 В.

Зачем он нужен

Работа солнечной электростанции в качестве основного или резервного источника электроснабжения, предполагает подключение определенного количества нагрузки, в качестве которой выступают бытовые приборы и технические устройства, для работы которых требуется переменный ток напряжением 220/380 В.

В свою очередь, солнечная батарея (панель), вырабатывает постоянный ток напряжением более низкого порядка, посредством которого заряжаются аккумуляторные батареи, входящие в состав солнечной электростанции (накопители выработанного электричества).

Схема работы солнечной электростанции приведена на рисунке:

Схема работы солнечной электростанции

Для того, чтобы преобразовать, накопленную в аккумуляторах электрическую энергию, в параметры, соответствующие параметрам подключаемых устройств, и служат технические устройства, называемые инверторами.

Типы солнечных инверторов

Инверторы, для солнечных электростанций, производятся в различной исполнении и отличаются друг от друга по техническим характеристикам, стоимости и наличию средств автоматики и защиты. А вот типов подобных устройств, определяющих их способность работать по отношению к традиционной сети электроснабжения (от энергоснабжающих организаций), всего три, это:

  1. Автономные («off grid») – способны работать только отдельно от внешних электрических сетей, используются для автономных систем электроснабжения.
  2. Сетевые («on grid») –работают в синхронном режиме с внешней сетью электроснабжения. Инверторы данного типа, кроме своей основной функции, (преобразования напряжения), контролируют качество электрической энергии внешней сети (напряжение и частота), а также способны передавать излишки генерированной энергии для реализации во внешнюю сеть электроснабжения.
  • Гибридные («hybrid») – совмещают в себе функции автономных и сетевых устройств, обладают большим количеством настроек, позволяющих отрегулировать различные режимы работы.

Инверторы сетевого типа

Отличительной особенностью сетевых инверторов является характер их работы по отношению к вешней электрической сети.

Устройства данного типа устанавливаются в электрическую цепь между солнечной панелью и электрической сетью 220/380 В. Установка сетевого инвертора предполагает работу солнечной электростанции без наличия накопителей энергии (аккумуляторов), когда выработанный солнечными батареями ток идет на питание отдельных потребителей, подключаемых непосредственно к инвертору, а излишки – во вешнюю сеть. Работа такого устройства осуществляется только в дневное время, когда есть солнечный свет.

Инверторы автономного типа

Инверторы автономного типа работают в составе солнечных электростанций, обеспечивающих автономное электроснабжение потребителей электрической энергии. Технические устройства данного типа преобразуют накопленную в аккумуляторах энергию до требуемых параметров и обеспечивают надежность автономного электроснабжения.

В зависимости от формы выходного сигнала по току, инверторы данного типа подразделяются на: синусоидальные и квази-синусоидальные.

Синусоидальные инверторы обладают лучшими техническими показателями, но больше по габаритным размерам и стоимости, нежели квази-синусоидальные, что определяет сферу их использования и распространение на рынке подобных устройств.

Основные технические характеристики

При выборе типа инвертора и возможности его установки в той или иной схеме электроснабжения, основными параметрами, определяющими выбор, служат его технические характеристики, каковыми являются:

  • Мощность – определяет количество нагрузки (приборов и устройств), которое можно подключить к конкретному устройству. Номинальная мощность, указывает на длительно допустимую нагрузку, при подключении которой инвертор способен работать продолжительное время. Максимально допустимая (пиковая) мощность, определяет способность преобразовывать электрический ток не продолжительное время, в моменты запуска электрических двигателей или иных устройств, при включении которых в работу происходит скачек электрического тока (ток запуска).
  • Вид выходного сигнала (форма синусоиды) – определяет возможность подключения того или иного оборудования к конкретной модели инвертора. При использовании более дешевых устройств, с квази-синусоидальной формой сигнала по электрическому току, возможны сложности в процессе эксплуатации приборов и агрегатов, чувствительных к качеству электрического тока (отопительные котлы, насосы, электронные устройства).
  • Напряжение на входе и выходе – определяет возможность установки с определенным видом солнечных панелей, вырабатывающих электрический ток напряжением 12/24/48 В, и в соответствии с этим, напряжением сети питания потребителей – 220 и 380 В.
  • Наличие защитных элементов – зависит от конкретной модели устройства. Основными видами защиты являются – защита от короткого замыкания и перегрузки.
  • Дополнительные опции – также зависит от модели устройства. Это может быть установка встроенной розетки, жидкокристаллического дисплея, зарядного устройства и прочих элементов.

Популярные модели

Каждый пользователь выбирает для себя сам какую модель выбрать и где ее купить. Конечно же оптимальным местом для выбора и приобретения сложных технических устройств, к каковым относится солнечный инвертор, являются компании дилеры производителей подобных изделий, но не везде они присутствуют, поэтому можно воспользоваться сетью интернет, где можно найти модель, соответствующую предъявляемым к ней требованиям.

В настоящее время наибольшей популярностью пользуются серии и модели:

  • «СибВольт» (Россия) – сетевые инверторы, номинальной мощностью от 1,5 до 3,0 кВт, на напряжение 12/24/48 В.
  • «Sunrise» (Китай) – гибридного типа, номинальной мощностью 3,2 и 4,0 кВт, на напряжение 48 В.
  • «UMA» (Россия) – автономного типа, номинальной мощностью от 2,4 до 4,0 кВт, на напряжение 24/48 В.
  • «S300» (Тайвань) – автономного типа, номинальной мощностью 300,0 Вт, на напряжение 12/24 В.
  • «Stark Country» (Китай) — гибридного типа, номинальной мощностью от 1,6 до 4,0 кВт, на напряжение 12/24/48 В.
  • «Sunville SV15000s» (Россия) – сетевое устройство, номинальной мощностью 15,0 кВт.

Серии и конкретные модели, на рынке подобных товаров, представлены достаточно обширно, как в плане технических характеристик, так и компаний их выпускающих. В связи с этим всегда есть возможность выбрать устройство в соответствии с личными пожеланиями пользователя основываясь на критериях выбора рассмотренных ниже.

Как выбрать лучший?

Как уже было указано выше, на рынке подобных устройств, представлено большое количество моделей различных производителей, которые схожи по своим техническим характеристикам. Для того, чтобы выбрать инвертор, и при этом не ошибиться, необходимо следовать критериям выбора, которыми являются:

  1. Номинальная мощность.
  2. Максимальная (пиковая) мощность.
  3. Форма выходного сигнала по току.
  4. КПД.
  5. Эксплуатационные показатели (температура, влажность, высота установки над уровнем моря).
  6. Напряжение на «входе» и «выходе» устройства.
  7. Наличие средств защиты от токов КЗ и перегрузки.
  8. Наличие «спящего» режима, вентилятора охлаждения и дополнительных опций.
  9. Габаритные размеры и вес.
  10. Бренд и надежность производителя.
  11. Стоимость.

Опираясь на выше приведенные критерии и зная параметры сети, каждый пользователь способен самостоятельно выбрать лучшую модель, из представленных, в настоящее время, в конкретном регионе или на интернет ресурсах.

Подключение инвертора к солнечной батарее

Инвертор является устройством, работающим в комплексе с другими элементами солнечной электростанции, которыми являются:

  • Солнечная панель – источник электрической энергии;
  • Аккумуляторная батарея – накопитель выработанной энергии;
  • Контроллер заряда – отвечает за состояние аккумуляторных батарей, контролирует режим их работы — «заряд-разряд»;
  • Провода и кабели – обеспечивают соединение всех устройств в единую электрическую цепь;
  • Несущие конструкции – обеспечивают надежное крепление монтируемого оборудования, некоторые устройства, позволяют регулировать положение солнечных панелей в пространстве, в соответствии с расположением солнца.

Подключение инвертора в схему работы электрической станции, зависит от типа устройства, т.е. способности работать по отношению к внешней электрической сети.

Подключение, в зависимости от типа инвертора, выполняется по следующей схеме, для:

  • Автономных («off grid») моделей.
  • Подключение, в зависимости от типа инвертораМодели данного типа устанавливаются между нагрузкой и аккумулятором, зарядка которого также осуществляется через контакты инвертора. У некоторых моделей, как показано на рисунке, может быть предусмотрен отдельный вход для подключения к электрической сети переменного тока, для обеспечения зарядки аккумуляторов, в случае невозможности их заряда от солнечных батарей.
    • Сетевых («on grid») моделей.

    on gridИнверторы данного типа, включаются в электрическую цепь между солнечной батарей и элементами нагрузки и внешней электрической сетью. У данного типа устройств не предусмотрено подключение аккумуляторных батарей. В случаях, когда количество вырабатываемой электрической энергии превышает требуемые значения, излишки перераспределяются во внешнюю сеть.

    • Гибридных («hybrid») моделей.

hybridГибридный тип подобных устройств, предполагает установку инвертора между аккумуляторами, внешней сетью и нагрузкой одновременно.Использование инвертора, в схемах солнечных электростанций, позволяет осуществлять их работу в автоматическом режиме, что значительно упрощает их использование и расширяет сферу применения.

Понравилась статья? Поделись с друзьями!

alter220.ru

Инверторы, ведомые сетью

ИНВЕРТОРЫ, ВЕДОМЫЕ СЕТЬЮ

Как уже отмечалось, инвертированием называется процесс преобразования энергии постоянного тока в энергию перемен­ного тока. Если при этом приемная часть такого преобразователя (на­грузка) не имеет других источников питания, то инвертор называется автономным. Если же инвертор преобразует энергию постоянного тока и отдает ее в сеть, где есть дру­гие источники, то он называется инвертором, ведомым сетью (ИВС), или просто ведомым.

ИВС выполняют практически по таким же схемам, что и управляе­мые выпрямители. На рис. 1, а показана простейшая схема одно­фазного двухполупериодного ИВС. В качестве источника энергии ис­пользуется обычная машина постоянного тока МПТ, которая может работать в режиме как двигателя, так и генератора.

Рис. 1. Однофазный ведомый ин­вертор (а) и диаграммы его работы (б-д)

Выходным звеном инвертора, работающего на сеть переменного то­ка, является трансформатор, параметры которого (количество обмоток и число витков) определяют значение и число фаз получаемого пере­менного напряжения. Для получения такого напряжения необходимо обеспечить периодический переход тока из одной обмотки в другую. Это достигается путем прерывания постоянного тока и распределения его по фазам трансформатора с помощью управляемых вентилей.

Чтобы изменить направление потока энергии, следует изменить знак мощности , развиваемой выпрямителем. Так как направ­ление тока изменить нельзя вследствие односторонней проводимости тиристоров, то изменить знакPd можно только изменением знака Ud, что достигается в управляемом выпрямителе увеличением угла управ­ления .

При выпрямлении источником энергии является сеть, поэтому при () кривая токаi1, потребляемого от сети, совпадает по фазе с напряжением питания U1 (рис. 1,6). Если , то форма токаi1 близка к прямоугольной, тиристор VD1 работает в первом полу­периоде, VD2 - во втором и машина работает в двигательном режиме (рис. 1, в, полярность на клеммах указана на рис. 1, а).

При работе схемы в качестве инвертора источником питания слу­жит машина постоянного тока, причем полярность на ее клеммах - обратная (на рис. 1, а в скобках). Изменение полярности источника постоянного тока - одно из обязательных условий перехода схемы в режим инвертирования. При этом фазовый сдвиг между i1 и U1 со­ставит 180° (рис. 1,г), а тиристоры будут работать в обратной по­следовательности: в первом полупериоде - VD2, во втором - VD1 (рис. 1, д).

Таким образом, тиристоры находятся в открытом состоянии при отрицательной полярности напряжений вторичных обмоток трансфор­матора, при этом осуществляются поочередное подключение обмоток трансформатора через дроссель к источнику постоянного тока и пере­дача энергии в сеть.

Ранее проводивший тиристор запирается под действием обратного напряжения сети со стороны вторичных обмоток, отсюда и название инвертора - ведомый.

К ранее проводившему тиристору при отпирании очередного прикладывается обратное напряжение, равное сумме напряжений двух вторичных обмоток только в том случае, если очередной тиристор отпирается в момент, когда на подключенной к нему обмотке имеет место напряжение положительной полярности. Т. е. реальное значение угла должно быть меньшена некоторый угол, иначе говоря, или, или(рис. 2).

Рис. 2. Диаграмма работы тиристора в ИВС

Если же очередной тиристор будет отпираться при , то условие запирания ранее проводившего тиристора не будет выполнено, он оста­нется открытым, будет создана цепь короткого замыкания источника постоянного тока через вторичные обмот­ки трансформатора и ИВС выйдет из строя. Такое явление называется опрокидыва­нием инвертора.

Таким образом, второе условие пере­хода схемы в режим инвертирования - протекание тока через тиристоры при от­рицательном напряжении на обмотках.

Рассмотрим работу однофазного ИВС подробнее (рис. 3). В схеме предпо­лагается , поэтому входной ток ин­вертора идеально сглажен.

На интервале проводит тиристорVD2, его анодный ток , равныйid, проте­кает под действием ЭДС Ed источника по­стоянного тока (генератора) через вторич­ную обмотку трансформатора навстречу напряжению . Полуволна напряженияотрицательной поляр­ности определяет на этом интервале напряжениеUd инвертора. По окончании интервала , т. е. с опережением на уголотносительно точки, подачей управляющего сигнала отпирается тиристорVD1. Ввиду наличия индуктивностей ив анодных целях тиристоров наступает интервал коммутации- период перехода тока сVD2 на VD1, в течение которого . По окончании этого интервалаVD2 заперт, VD1 открыт и . На интервале от(- угол, в течение которого кVD2 приложено обратное напряжение для вос­становления его запирающих свойств) до угла ток от генератора протекает через другую половину вторичной обмотки трансформатора иVD1. Участок напряжения (отрицательной полярности) опреде­ляетUd инвертора на этом интервале, и т. д.

Рис. 3. Диаграмма работы однофазного ИВС

Заштрихованные участки (рис. 3, а) определяют отрицательный знак напряжения Ud, противоположный режиму выпрямления.

Кривая напряжения на тиристоре (рис. 3, в) определяется сум­мой напряжений на вторичных обмотках трансформатора: максималь­ное прямое напряжение равно , обратное -. Дли­тельность действия обратного напряжения на тиристоре должна обес­печить надежное его запирание, т.е.. На рис. 3, г приведены кривые напряжения сетиU1 и отдаваемого в сеть тока i1, амплитуда тока равна .

Так как коммутационные процессы в управляемом выпрямителе и ведомом инверторе сходны, то соотношения для периода коммутации в УВ можно использовать и в ИВС при условии подстановки . Тогда

,

т.е. .

При неизменных угле опережения и напряженииU2 для увеличе­ния инвертируемого тока Id необходимо уменьшить разность за счет роста угла коммутации, т. е. увеличение инвертируемого тока приводит к уменьшению времени действия запирающего напряжения на выключаемом вентиле. Таким образом, критерием выбора углаявляется обеспечение принеобходимого угла, требуемого для надежного запирания тиристора с целью исключить опрокидыва­ния инвертора.

Тогда

, (*)

или

.

Если не учитывать активное сопротивление в цепи источника пи­тания, то его ЭДС будет равна Ud, причем последнее имеет, как видно, отрицательную полярность, а коммутационное падение напряжения будет прибавляться кUd .

Если принять , то

.

Отсюда

,

или ,

где .

Иначе говоря, при и замененауравнение инвертора аналогично уравнению УВ.

На рис. 4 приведена обобщенная характеристика преобразова­теля, ведомого сетью, из которой видно, что в пределах угла регули­рования он работает в режиме управляемого выпрямителя, а при- в режиме ИВС.

Рис. 4. Обобщенная характе­ристика тиристорного преобра­зователя

Коммутационное падение напряжения (за полупериод) можно вычислить так:

(**)

.

Так как

,

то после подстановки

.

Так как в инверторе Ed = Ud, то повышение Ed приводит к увеличению Id, т. е. увеличивается мощность, отдаваемая инвертором в сеть.

Зависимость напряжения Ed, питающего ИВС, от тока Id называется входной характеристикой инвертора. Уравнение характеристики опре­деляется из уравнений (*) и (**):

,

.

Как видно, разница между входной характеристикой ИВС и внеш­ней характеристикой УВ заключается в замене угла на уголи в зна­ке коммутационного падения напряжения.

Входные характеристики ИВС приведены на рис. 5. Из него видно, что для каждого угла регулирование с увеличениемIdрас­тет Ed, причем при этом происходит уменьшение (времени, пре­доставляемого тиристорам для восстановления запирающих свойств). При достижении током некоторого значения уголстановится крити­ческим. При дальнейшем увеличении тока происходит опрокидыва­ние тиристора.

Рис. 5. Входные характеристики ИВС

Так как с уменьшением допускаемый ток ИВС уменьшается, то на том же графике можно построить так называемую ограничительную характеристику, соответствующую предельным значениям, при ко­торых еще не происходит опрокидывания инвертора. Уравнение этой характеристики может быть получено следующим образом:

,

отсюда

.

Подставив это выражение в уравнение входной характеристики ИВС, можно получить

Коэффициент мощности ИВС , где. Прии(критический режим)

, .

Трехфазные инверторы применяются значительно чаще чем одно­фазные. Схема трехфазного ИВС подобна схеме Ларионова, только вместо нагрузки последовательно с дросселем включается источник постоянного тока, а выходной частью схемы служит первичная обмот­ка трансформатора, включенная на ведомую сеть. Характеристики и параметры трехфазного ИВС аналогичны рассмотренным.

РЕВЕРСИВНЫЕ УПРАВЛЯЕМЫЕ ВЫПРЯМИТЕЛИ

Во многих случаях в энергетических установках тре­буется получать в нагрузке напряжение постоянного тока различной полярности при питании ее от сети переменного тока, а часто необхо­димо обеспечить и возврат энергии в сеть. К таким установкам отно­сятся в первую очередь электрические машины постоянного тока, работающие в системе электропривода грузоподъемных устройств (кранов, лебедок), а также гребные электрические установки перемен­но-постоянного тока с регулируемыми УВ. Для обеспечения указан­ных режимов применяются так называемые реверсивные УВ (РУВ), без каких-либо контактных переключателей.

Такие РУВ представляют собой два обычных, чаще всего трехфаз­ных мостовых УВ, включаемых по одной из схем, приведенных на рис. 6.

Схема а - перекрестная, требует раздельного питания мостов от отдельных обмоток, поэтому используется реже. Схема б выполнена так, что оба УВ, включенные встречно-параллельно, получают питание от одной вторичной обмотки трансформатора или просто от сети. Реакторы L1-L4 могут быть независимыми, а могут быть выполнены попарно на общих магнитопроводах.

Рис. 6. Схемы реверсивных УВ

Различают два режима управления тиристорными группами РУВ -раздельное и совместное. При более простом, раздельном управлении тиристорные мосты рабо­тают по очереди. Например, чтобы обеспечить полярность напряжения на нагрузке, указанную на рис. 6, б, мост I ра­ботает в режиме выпря­мителя, причем величина напряжения и, следова­тельно, частота вращения машины постоянного то­ка (МПТ) определяются углом регулирования (принапряжение максимально). При необ­ходимости затормозить и остановить МПТ мостI переводится в инверторный режим (), происходит отдача энергии от МПТ, работающей в режиме генератора, в сеть, а когда МПТ останавливается и ее необходимо реверсировать, включается в работу мостII в выпрямительном режиме. После выключения одного моста перед включением другого необходимо обеспечить некоторую паузу, пока ток через тиристоры ранее работавшего моста не спадет до нуля и не произойдет надежное запирание тиристоров. Эта пауза (5 ... 20 мс) приводит к некоторому уменьшению быстродействия в переходных режимах электропривода, но для МПТ большой мощности это время практически неощутимо. Для контроля спадания токов в мостах до нуля в схемах предусматриваются специальные датчики тока, сигнал с которых заводится в схему управления. Реакторы между мостами в принципе не нужны, но для исключения режимов прерывистых то­ков, что неблагоприятно отражается на МПТ, в цепи ее якоря должна быть достаточно большая индуктивность.

При совместном управлении сигналы на управляющие электроды подаются на тиристоры обоих мостов, один из которых работает в ре­жиме выпрямления, второй - в режиме инвертирования. Для предот­вращения появления значительных уравнительных токов необходимо, чтобы средние значения напряжений выпрямителя и инвертора были бы равны, т. е. , а для этого необходимо, чтобы

, или ,

или , т. e. .

При недоиспользуется мощность РУВ, а при возникают значительные уравнительные токи. Если в режиме выпрямления работает мост I, а в режиме инвертирования - мост II, то , или.

При изменении направления тока через нагрузку и изменении режимов работы мостов .

Для пояснения процессов пуска, торможения и реверсирования двигателя постоянного тока, питающегося от РУВ, удобно рассмотреть совмещенные внешние характеристики такого преобразователя (рис. 7).

Если необходимо обеспечить пуск МПТ в сторону, определяемую полярностью, указанной на рис. 6, б, осуществляется подача управ­ляющих сигналов на тиристоры моста I с углом , близким к 90°. Дви­гатель начинает разгоняться до небольшой скорости, определяемой. Для дальнейшего увеличения частоты вращения МПТ надо увеличивать, что производится уменьшением угламостаI соот­ветственно до значения . При этом происходит переход рабочей точки с одной внешней характеристики на другую по линиям, показан­ным пунктиром, наклон которых зависит от темпа пуска МПТ и вели­чины индуктивности в цепи якоря. Чтобы не допустить слишком боль­ших токов (больше), необходимо ограничивать темп изменения. Если схема управления будет настроена на поддержание, то разгон двигателя будет идти практически по линиидо дости­жения внешней характеристики УВ, соответствующей заданному углу(например,), и далее двигатель будет работать в точке пересече­ния этой внешней характеристики и линииМс=const, если в схеме уп­равления не предусмотрена дополнительная обратная связь, обеспечи­вающая n=const. В этом режиме работает мост I, мост II не используется.

Рис. 7. Диаграмма работы РУВ на электропривод

При необходимости торможения двигателя угол увеличивают, например сдо, что эквивалентно для мостаII характеристике ; рабочая точка переходит воII квадрант, включается второй мост, отключается первый и дальнейшее торможение (с отдачей энергии в сеть) проводится изменением угла до, т. е. до полной останов­ки двигателя. Для получения максимальной скорости процесса тор­можения тормозной ток следует, регулируя угол, поддерживать на уровне, близком к. При дальнейшем изменении угла регулирова­ния второго мостаможно обеспечить пуск МПТ в обратном направ­лении.

Диаграмма напряжений на мостах РУВ приведена на рис. 8. Реверсивный управляемый выпрямитель с совместным управле­нием мостов позволяет обеспечить высокие динамические качества электропривода постоянного тока, однако у него есть и два больших недостатка - повышенные требования к схемам управления мостов для точного обеспечения равенства , а также неизбеж­ность появления уравнительных токов между мостами. Эти токи возникают как следствие неравенства мгновенных значений напря­жений и, создаваемых мостами, работающими соответственно в выпрямительном и инверторном режимах (при равенстве средних значений). Если мостI работает как выпрямитель, а мост II - как ин­вертор, то при имеет место разность напряжений (рис. 8, б). Уравнительный ток протекает по внутреннему контуру, образуемому открытыми тиристорами (в данный момент) и обмотками трансформа­тора. Так, на интервалеуравнительный ток протекает через тиристо­ры 5 и 6 мостаI и 4 и 5 моста II (расположение диодов в мостах пока­зано на рис. трехфазного мостового УВ). Так как сопротивления этих контуров очень не­велики, для ограничения уравнительного тока необходимо применять специальные меры, например включать в цепь реакторы.

Рис. 8. Диаграмма напряжений на мостах РУВ

Индуктивность реакторов рассчитывают из условия ограничения уравнительных токов до уровня . Естественно, с применением реакторов ухудшаются массогабаритные показатели РУВ, увеличи­ваются потери в вентилях и обмотках трансформатора, требуются дополнительные меры по охлаждению элементов схемы. Поэтому РУВ с совместным управлением следует использовать при создании быстро­действующих, относительно малоинерционных приводов.

Необходимо иметь в виду, что уравнительные токи возникают и в РУВ, выполненном по перекрестной схеме, но так как частота этих токов в два раза больше, чем во встречно-параллельной схеме, то габариты реакторов соответственно меньше.

Для получения в нагрузке регулируемого напряжения постоян­ного тока любой полярности можно применять схему (рис. 9), включающую один трехфазный УВ с одной схемой управления, кото­рый может работать как в выпрямительном, так и в инверторном ре­жиме, и тиристорный переключатель полярности VD7, VD10. При включении VD7 и VD10 ток по нагрузке протекает слева направо, при включении VD8 и VD9 - в обратном направлении.

Рис. 9. РУВ с тиристорным переключателем полярности

Так как в схему управления этими тиристорами можно не вклю­чать устройства фазового управления, а предусмотреть только бло­кировку переключения при , то все устрой­ство получается дешевле, проще и не требует защиты от уравнитель­ных токов. Но, как и в схеме с раздельным уп­равлением тиристорных мостов, в этой схеме следует учесть бестоко­вую паузу.

studfiles.net

Сетевой инвертор - понятие и принцип работы

Сетевой инвертор - понятие и принцип работы

Сетевыми (или  grid-tie) инверторами являются устройства, преобразующие постоянное (DC) напряжение от возобновляемых источников энергии (солнечных батарей. ветроустановок или микроГЭС) в переменное (AC) напряжение, и передающие его напрямую в сеть 220 (или 380)В, тем самым снижая потребление электроэнергии от энергосетей.

Сетевые инверторы также называют синхронными преобразователями, так как они обладают отличительной особенностью - наличием синхронизации выходного напряжения и тока со стационарной сетью.

Таким образом, сетевой инвертор осуществляет преобразование постоянного тока от солнечных модулей и других возобновляемых источников энергии в переменный, с надлежащими значениями частоты и фазы для сопряжения со стационарной сетью. Как правило, преобразование осуществляется с помощью PWM - широтно-импульсной модуляции.

Принцип работы сетевого инвертора состоит в перетекании тока, синхронизированного по частоте и фазе, при этом напряжение инвертора должно быть чуть выше напряжения в сети. Это становится возможным с помощью замера и повышения напряжения на выходе сетевого инвертора до текущего значения потока выходной мощности от источника постоянного тока.

В целях безопасности сетевые инверторы оборудуются так называемой anti - islanding защитой: в случае выхода сети из строя, либо выхода уровней напряжения или частот за допустимые пределы, автоматический выключатель отключает выход от сети.

Срабатывание данного вида защиты зависит от настроек инвертора и условий сети. В худшем случае - если напряжение в сети опускается ниже 0,5 от номинального, а частота отклоняется на 0,5 -0,7 Гц от номинального значения, сетевой инвертор должен остановить процесс генерации электроэнергии в сеть не менее чем за 100 миллисекунд.

Для того, чтобы снизить потери на преобразование постоянного напряжения в переменное, сетевые инверторы функционируют при высоких входных напряжениях – ближе к напряжению в сети. Кроме того, обычно они оборудованы встроенной системой отслеживания точки максимальной мощности солнечных батарей. Данная система слежения (Maximum Power Point Tracking (MPPT))  позволяет определять наиболее оптимальное соотношение напряжения и тока, снимаемых с солнечных модулей, тем самым позволяя получать максимум энергии при любых внешних изменениях метеоусловий, в результате этого генерация от солнечных панелей в сеть осуществляется даже в пасмурную погоду.

В настоящее время сетевые инверторы находят широкое применение для экономии электроэнергии на производствах, в офисах, в торговых центрах и т.п. Сетевые фотоэлектрические системы строятся на таких объектах мощностью от 500 ватт и выше.

Сетевые инверторы промышленного назначения используют для передачи энергии от возобновляемых источников энергии в 3-х фазную сеть. В настоящее время для промышленного использования производят сетевые инверторы мощностью до нескольких сотен кВт. Подобные  инверторы (преобразовательные станции) построены по модульному принципу, с целью минимизации потерь и извлечения максимальной эффективности использования солнечной энергии.

Основные характеристики сетевых инверторов

  • номинальная выходная мощность – мощность, получаемая от данного инвертора.
  • выходное напряжение – показатель, определяющий к какой сети по напряжению может быть подключен инвертор. Для небольших инверторов (бытового назначения) выходное напряжение обычно равно 240В. Инверторы для промышленного назначения рассчитаны на 208, 240, 277, 400 или 480В, кроме того их можно подключать к 3-х фазной сети.
  • максимальная эффективность - наивысшая эффективность преобразования энергии, которую может обеспечить инвертор. Максимальный КПД большинства сетевых инверторов составляет более 94%, у некоторых - до 97%.
  • взвешенная эффективность- средняя эффективность инвертора, этот показатель лучше характеризует эффективность работы инвертора. Этот показатель важен, так как инверторы, способные преобразовывать энергию при различных выходных напряжениях переменного тока, имеют разную эффективность при каждом значении напряжения.
  • максимальный входной ток - максимальное количество постоянного тока, которое может преобразовывать инвертор. В случае, если какой-либо возобновляемый источник (например, солнечная панель) будет производить ток, превышающий это значение, сетевой инвертор его не использует.
  • максимальный выходной ток - максимальный непрерывный переменный ток, производимый инвертором. Этот показатель используют для определения минимального (номинального) значения перегрузки по току устройств защиты (к примеру, выключателей или предохранителей).
  • диапазон отслеживания напряжения максимальной мощности - диапазон напряжения постоянного тока, в котором будет работать точка максимальной мощности сетевого инвертора.
  • минимальное входное напряжение - минимальное напряжение, необходимое для включения инвертора и его работы. Этот показатель особенно важен для солнечных систем, так как разработчик системы должен быть уверен, что для произведения этого напряжения  в каждой цепочке последовательно соединено достаточное количество солнечных модулей.
  • степень защиты IP (или код исполнения) – характеризует степень защиты корпуса от проникновения внешних твердых предметов (первая цифра), а также воды (вторая цифра).

Пример среднесуточной генерации сетевой солнечной системы 12 кВт для Самарской области

По материалам сайта: http://www.solar-tlt.ru

fix-builder.ru

Правильное, и не правильное, подключение инвертора | Пелинг Инфо солнечные батареи

Решил разобрать варианты не правильного подключения инвертора к АКБ. Дабы достаточно много людей думают, что достаточно использовать провода, именно те что идут в комплекте с инвертором. Либо использовать провода, которые нашли дома сечением До  4 кв мм.

Спешу многих огорчить, что провода в 90 процентов случаев идут ну максимум, чтобы вы могли убедиться в работе данного устройства. А вот чтобы у вас инвертор заработал полноценно, нужно сделать перерасчет на потребляемую мощность от АКБ в зависимость на сечение провода. Так — же придется заменить провода и в самом инверторе. Дабы по качеству они мало чем отличаются от проводов, идущих в комплекте, и даже хуже.

Не устаю повторять, что мощность на выходе инвертора ничтожно мала по сравнению с мощностью потребления инвертора при нагрузке даже в 100 ватт, ну а если у вас 800 или 1000 ватт нагрузка, думаете, провода в 1-6 кв мм выдержат (от АКБ до Инвертора).? Конечно же, нет! Даже трехсот ваттный инвертор, может при включении приборов потреблять токов аж до 80. А, а в рабочем режиме максимальные токи могут составлять 55А — 60А. Если вы применяете провода до 4 мм кв. или меньше инвертор может просто не включится, это в лучшем случае, или начнут греться провода, приводя к потерям не только по току, но и к разогреву колодок вследствие чего появится не контакт, либо разогрев и замыкание проводов. Вариантов выхода из строя инверторов куча, и большинство  по вене владельца. Я сам использовал множество разных проводов от недостатка денег. Но после того как я изменил г провода в инверторе, на те что нашел у себя 4 и 8 кв. мм. Я увидел реальную разницу в мощности, после чего и приступил к более дорогой переделке системы, именно увеличение сечения проводов от 6 кв. мм до 12-34, и уже не смотрел на цену. Да провода у нас дешевле  даже чем в Томске, почему то. После этой замены систему как будто подменили. После этого я уже тестировал не на китайских инверторах и не на UPS, а на покупном чистом синусе, который на удивление с легкостью преодолел барьер в 1600 Ватт и составил 2000 Ватт. Но это только в рамках теста, сильно уж много при такой нагрузке пожирается току. Аж 270. А, но в целях переделки домашней системы потребления на альтернативную я должен был знать, на что способна моя система.

Для всех тех кто берет такие инверторы для Авто напоминаю, вам тоже нужно переделывать проводку под инвертор а не подключать его к прикуривателю не в коем случае, сечение провода в Авто до прикуривателя составляет всего 2 -3 мм кв., длина провода может составлять до 2-3 метров. Представьте, что может произойти с вашей машиной. Тоже самое, относится и к подогревателям, обогревателям, и другой шняге которой полно продается везде под прикуриватель!

Будьте внимательны, осведомлен, значит вооружен!

Видео прилагается :

Поделиться ссылкой:

Похожее

peling.ru

Схема работы и основные детали сварочного инвертора

Уникальные возможности инверторов и вполне понятная схема сварочного аппарата объясняют тот высокий интерес, который проявляют к ним многие пользователи.

Некоторые из них даже пытаются изготовить аппарат своими руками. Однако для того чтобы собрать сварочный аппарат в домашних условиях необходимо хотя бы приблизительно знать, что представляет собой схема инвертора.

Лишь после изучения схемного решения этого электронного прибора можно будет собрать качественный бытовой инвертор и в случае необходимости самостоятельно отремонтировать его.

Как происходит преобразование

Электрические схемы инверторных устройств от различных производителей могут отличаться небольшими деталями, однако все они работают по одному и тому же алгоритму. Основная задача встроенной электроники во всех случаях сводится к следующему:

  • обеспечить выпрямление входного сетевого напряжения;
  • преобразовать (инвертировать) его в импульсный сигнал относительно высокой частоты;
  • понизить уровень полученного импульсного сигнала до требуемого значения и снова выпрямить его на выходе устройства.

Основная цель этой цепочки – получить постоянный ток величины, необходимой для поддержания сварочного процесса. Причём сделать это нужно так, чтобы используемые в схеме детали позволили снизить габариты и вес всего аппарата в целом.

Поскольку электронный преобразователь состоит из полупроводниковых деталей, то поставленная перед конструкторами задача решается без особых проблем. Инвертор всегда значительно меньше по размерам, чем обычный трансформаторный преобразователь тока.

Однако схема сварочного инвертора значительно сложнее, и собрать ее своими руками с нуля практически невозможно. Можно только использовать готовые части, соединив в общую конструкцию.

Ещё одним достоинством инвертора является возможность электронного регулирования амплитудного значения тока. Это позволяет расширить возможности прибора, варить металл разной толщины, в том числе сваривать достаточно тонкие детали. Причем делать это можно без механических регуляторов, заметно уступающих по надёжности своим электронным аналогам.

Пояснения к работе аппарата

Хорошо знакомые с электроникой специалисты сразу заметят, что рассмотренный принцип преобразования используется в блоках питания большинства современных электронных приборов (в компьютерах, холодильниках, телевизорах и так далее).

Основная особенность электросхем (схемных решений) инверторов – это увеличение частоты переменного сигнала за счёт его преобразования (инвертирования).

Многим неспециалистам не вполне понятно, зачем нужно дважды преобразовывать один и тот же сигнал, сначала выпрямляя его, затем превращать в переменный, а после снова выпрямлять.

Дело в том, что размеры и вес основного узла любого сварочного аппарата – его трансформатора – определяются не только мощностью, но и частотой протекающего через обмотки тока. Чем выше рабочая частота – тем более лёгким и компактным получается сам трансформатор.

Зависимость от частоты достаточно сильна; при её четырехкратном увеличении габариты трансформаторного модуля снижаются вдвое.

Поскольку типовая схема инверторных источников сварочного тока обеспечивает повышение частоты с 50 Герц до 60-80 килогерц –выигрыш в габаритах и весе может оказаться очень существенным.

В итоге получается очень лёгкий и компактный сварочный инвертор, при изготовлении которого расходуется минимум дорогих материалов (включая дефицитную медь).

Сетевой выпрямитель

Особенности работы инвертора предполагают наличие на его входе постоянного сигнала, получаемого путём выпрямления сетевого напряжения 220 Вольт. Выпрямительный модуль состоит из классического диодного мостика и нескольких конденсаторов, обеспечивающих фильтрацию получаемых после выпрямления пульсаций.

К источнику электроэнергии, обеспечивающему электрическим питанием сварочный инвертор, выпрямитель подключён через ещё одну фильтрующую цепочку, защищающую сеть от высокочастотных помех.

Большие рабочие токи выпрямителя сильно нагревают диодный мост, вследствие чего во время работы он нуждается в непрерывном охлаждении. Один из традиционных способов снижения температуры – крепление моста на специальном радиаторе с термическим предохранителем, отключающим схему при его нагреве до 90°.

После подключения резонансного сварочного инвертора к сети, зарядный ток конденсаторов увеличивается настолько, что может вызывать пробой элементов диодного мостика.

Во избежание этого каждый сварочный инвертор должен оборудоваться схемой обеспечения плавного запуска. Для этого в неё вводятся элемент коммутации (реле) и резистор, ослабляющий уровень потребляемого тока в момент включения.

После того как инверторный аппарат выходит на рабочий режим функционирования, реле своими контактами блокирует резистор, отключая его временно от схемы.

Импульсный преобразователь

На выходе выпрямительного модуля увеличенное напряжение 310 Вольт поступает на участок схемы с транзисторами. Они в сварочном инверторе выполняют функцию импульсных ключей.

Основное функциональное назначение транзисторов – обеспечение коммутации подводимого к ним напряжения с целью получения импульсного сигнала прямоугольной формы частотой в диапазоне от 60 до 80 килогерц.

Ключевые транзисторы так же, как и диодные мостики, всегда монтируются на радиаторах, обеспечивающих возможность их постоянного охлаждения. Для защиты этих элементов от перенапряжения в схеме предусмотрены специальные демпферные RC-цепочки. Работу остальных преобразовательных модулей сварочного инвертора стоит рассмотреть отдельно.

Импульсный трансформатор

Важнейшим элементом схемы любого сварочного агрегата, определяющим особенности технологического процесса сварки, является понижающий трансформатор.

В сварочных инверторах он отличается особой компактностью. Другое существенное отличие этого узла от традиционных трансформаторов – наличие ещё одной (дополнительной) выходной обмотки, предназначенной для запитывания схемы управления.

На приёмную обмотку инверторного преобразователя поступает последовательность прямоугольных импульсов величиной порядка 310 Вольт и частотой 60-80 килогерц. При этом наводимое во вторичной обмотке напряжение снижается до 60-70 Вольт (за счёт меньшего количества витков).

Одновременно с этим величина тока в выходных цепях сварочного инвертора возрастает до 110-130 Ампер, после чего ток подвергается окончательному выпрямлению.

Выходное выпрямительное устройство

Сигнал, формируемый высокочастотным трансформатором, должен быть преобразован в постоянный ток, используемый для получения сварочной дуги. Для этого необходим выходной выпрямительный узел.

Его схема построена на основе сдвоенных диодов, отличающихся высоким быстродействием и определяющих максимальный потребляемый ток всего сварочного аппарата. Эти выходные элементы также устанавливаются на охлаждающие радиаторы.

Схема запуска устройства работает так. В момент включения напряжение питания через стабилизаторный блок подаётся на модуль управления и сразу активирует его.

После этого в работу вступают ключевые транзисторы, благодаря чему во вспомогательной обмотке трансформатора начинает действовать переменное напряжение.

Затем оно выпрямляется с помощью диодного мостика и через стабилизатор начинает самостоятельно питать управляющую схему, отключая последнюю от сетевого выпрямителя сварочного инвертора.

Управляющий модуль

Управляющая схема предназначена для координации переключений всех узлов сварочного инвертора. Её основу составляет микросхема с функцией микроконтроллера, осуществляющего широтно-импульсную модуляцию входного сигнала. Основная задача этой схемы – управление переключением инверторных транзисторов, стоящих на её выходе.

Помимо этого, в состав управляющего модуля входит ряд дополнительных элементов, облегчающих процесс формирования импульсного сигнала и управления его параметрами.

Благодаря принципиально иной схеме работы, сварочные аппараты инверторного типа позволяют получать стабильную дугу. Инвертор делает сварку компактной, быстрой и удобной.

Коэффициент полезного действия при этом возрастает почти до 90%, а потребляемая мощность снижается, что приводит к экономии электроэнергии. Применение транзисторов и диодов открывает возможности для развития сварочной техники.

Появляются аппараты с дополнительными функциями, такими, как автоматическое отключение и программирование работы.

svaring.com

Инверторы для автономных и резервных систем

Дополнительное оборудование  → Инверторы

Каталог инверторов для автономных систем и систем резервирования находится здесь

 

Инвертор

  Инвертор (лат. inverto — переворачивать) в широком смысле имеет значение преобразователя. Применительно к нашей тематике под этим прибором подразумевают прибор, который инвертирует постоянное напряжение АКБ в переменное напряжение. В составе солнечной электростанции(СЭС) он применяется, когда необходимо запитать от АКБ нагрузки переменного тока. Инверторы бывают двух основных типов. Первый тип это инверторы, которые как выходной сигнал генерируют так называемую чистую синусоиду, а второй тип инверторов выдает сигнал в виде модифицированной синусоиды. Модифицированная синусоида(квазисинусоида) может по форме быть прямоугольником(меандр), трапецией, ступенчатой синусоидой и т.д. Ниже на графиках можно увидеть сигнал в виде чистой синусоиды и модифицированной. Изображенный на втором графике сигнал характеризуется резкими передним и задним фронтами, а также имеет плоскую вершину. Это конечно наихудший вариант модифицированного синуса и такой можно встретить лишь у крайне некачественных инверторов. Инверторы с чистой синусоидой дают сигнал как в сети, а хорошие инверторы порой даже лучше, чем реально есть в сети. Квазисинусоида подходит не всем приборам. Но тем не менее подавляющему большинству, особенно, если в приборе имеется блок питания и входное переменное напряжение вновь преобразуется в постоянное. Квазисинус является также источником радиопомех. Модифицированная синусоида приводит к потери мощности асинхронных и синхронных двигателей, заставляет их греться.

Инвертор для солнечной системы    Инвертор с чистым синусом

  От модифицированной синусоиды не работает большинство котлов отопления. Но инверторы с модифицированной синусоидой значительно дороже своих чистосинусоидных собратьев. К подбору инвертора нужно подходить серьезно. Например многие нагрузки имеют пусковую мощность, и мощность эта может значительно превышать номинальную. Например, казалось бы безобидный холодильник может в момент пуска потреблять кратковременно мощность в 5-7 раз больше паспортной. То же самое относится ко всем нагрузкам имеющим двигатели. КПД современных качественных инверторов составляет порядка 90-95% и зависит от температуры эксплуатации инвертора. При повышении температуры КПД снижается. Помимо формы выходного напряжения инверторы подразделяются еще на две большие группы. Разница в способе преобразования напряжения АКБ в напряжение для питания нагрузок переменного тока. Одна группа это инверторы, использующая низкочастотный трансформатор в виде тора.Такие инверторы называют низкочастотными(50Гц). Другая группа использует транзисторные ключи и частоту ~20Мгц. Такие инверторы называют высокочастотными. Инверторы НЧ чрезвычайно надежны, нередко имеют широкий спектр настаиваемых параметров, в их состав(если это ББП) обычно входит очень мощное зарядное устройство. Они могут безостановочно работать в режиме non-stop. Но эти инверторы имеют большой вес и существенно дороже инверторов ВЧ. Эти ВЧ инверторы (иногда их называют автомобильными инверторами) чаще всего используются для непродолжительного включения, более компактны и имеют малый вес. Но очень редко они имеют какое либо программируемые параметры.

Инвертор для солнечной батареиИнвертор большой мощностиИнвертор 12ВИнвертор 24В

  Продвинутые инверторы позволяют трехфазную конфигурацию и масштабирование. В такой схеме инверторы синхронизируются по специальной шине. Это позволяет скомпоновать из однофазных инверторов трехфазный инвертор и осуществлять питание трехфазных нагрузок. Под маштабированием подразумевается возможность параллелить инверторы по одной фазе для увеличения суммарной мощности..

 

трехфазный инвертор    инвертор со спящим режимом

  При выборе мощности инвертора также следует помнить о различии между ВА(вольт-ампер) и Вт(Ватт). Вольт-ампер (ВА) - это полная мощность, и чтобы её определить нужно перемножить значение тока на значение напряжения. Ватт же это мощность, способная совершить работу в 1Дж за 1 сек. Различие этих значений есть реактивная мощность. Соотношение между активной и реактивной мощностями называется коэффициентом мощности сos φ. Если нагрузка полностью активная, то сos φ=1

  Если нагрузка это лампа накаливания или ТЭН, то cosφ=1 и ВА=Вт естественно. Если же нагрузка имеет индуктивность или емкость, то на шильдике принято указывать величину косинуса "φ". Как  на этом старом двигателе ниже:

Инвертор с зарядным устройством

  Например, мы имеет двигатель мощности P=7кВт а cosφ=0.7. Это означает, что полная мощность потребляемая инвертором составит 7/0,7=10кВА.

Блок бесперебойного питанияИнвертор зарядное устройствоНадежный инверторИнвертор для автономной системы

  Инверторы имеют 3 основных режима работы: - Режим постоянной работы - это режим работы с нагрузкой не более номинальной мощности;- Режим небольшой перегрузки - в этом режиме некоторые марки инверторов могут поддерживать в течении определенного времени(нередко до 60мин) нагрузку в 1.2-1.5 раза больше номинальной мощности;- Режим пусковой мощности-  этот режим характеризуется тем, что перегрузка может достигать 1.5-3 раза, но конечно недолго, обычно не более 5 сек.

  Некоторые модели продвинутых инверторов имеют дополнительно режим добавления мощности к мощности сети. Используется подобный режим при ограничении потребления мощности коммунальной сети вообще или по времени. В этом случае инвертор с подобной функцией может синхронизироваться с сетью и "подмешивать" энергию генерируемую им от блока АКБ к мощности транслируемой им из сети. Подобная функция весьма полезна в ряде случаев.

  Подбирая мощность инвертора необходимо учитывать пусковые токи нагрузок, а также номинальная мощность должна превышать мощность одновременно подключенных нагрузок на 25-30%. Подобный подход к расчету обеспечивает долгий срок службы инвертора. Исходное для преобразования в 220В напряжение на стороне инвертора соответствует стандартному ряду номинальных напряжений аккумуляторных батарей:12V, 24V, 48V и иногда 36V. Лишь ББП, с двойным преобразование энергии используют на входе постоянного тока напряжение до 240В. Чем мощнее инвертор, тем больше должно быть входное напряжение. Это позволяет снизить токи в соединительных кабелях, а также КПД преобразования выше. В составе инвертора может находиться зарядное устройство. Такое инвертор может заряжать АКБ от сети(или бензогенератора) и при этом транслировать энергию к потребителям. Инвертор с такой функцией можно использовать и как Блок Бесперебойного Питания(ББП). Иначе они называются Источники Бесперебойного Питания(ИБП или UPS). Существует 4 базовых типа ББП. Это "online" схема - инвертор с двойным преобразованием энергии , "Offline" схема - инвертор с переключением, "Line Interactive"- инвертор взаимодействующий с внешней сетью, "Ferroresonant UPS" инвертор феррорезонансного типа. Есть еще несколько редких схем ББП, но это лишь подвиды вышеописанных типов.

  Для того чтобы была возможность транслировать сеть к потребителям при её наличии в ББП встраивают электронный байпас. Как только внешняя сеть пропадает, то байпас за 10-20мс переключает нагрузку на питание от инвертора. В этом и состоит основной принцип бесперебойного питания. Кроме этого электронного байпаса, при монтаже системы устанавливают и механический байпас. Он нужен для переключения нагрузки непосредственно на сеть, чтобы можно было провести обслуживание ББП или АКБ. Большинство бюджетных ББП не имеют возможности настройки глубины разряда аккумуляторов и отключают генерацию по достижении напряжения на АКБ равного 1.6В/элемент. Для аккумулятора с номинальным напряжением 12В это напряжение равняется 10.5В, и это практически 100%-ный разряд АКБ, чего систематически допускать не рекомендуется. В противном случае ресурс АКБ резко снизится. Более подробно можно ознакомиться с этим в разделе "Аккумуляторы". Чтобы избежать подобных глубоких разрядов нужно отслеживать уровень заряда АКБ, чтобы в нужный момент отключить нагрузку и зарядить аккумулятор. Для небольшой мощности потребителей переменного тока с помощью реле постоянного тока и "контроллера заряда", имеющего для выхода нагрузки напряжение защитного отключения нагрузки, можно обеспечить отключение нагрузки при глубине разряда АКБ порядка 60-70%. Однако наилучшее решение- это покупка инвертора имеющего возможность настройки напряжения "отсечки", т.е. напряжения отключения генерации. Существует также ряд сторонних устройств, позволяющих защитить АКБ от чрезмерного разряда. Вот перечень основных возможностей, которыми отличаются продвинутые инверторы:

• -возможность настраивания зарядных напряжений каждой стадии, продолжительности стадий заряда, внесение температурной компенсации в эти напряжения;• -возможность задания предельных параметров входного переменного напряжения(частоты, напряжения). Если внешнее напряжение не выходит за эти границы, то ББП транслирует внешнее напряжение сети к нагрузкам;• -наличие вспомогательного выхода AUX. Этот выход программируется для срабатывания по определенным событиям и позволяет управлять многими внешними устройствами;• -возможность использовать энергию альтернативных источников питания приоритетно;• -возможность масштабирования, т.е. наращивания мощности системы за счет параллельного включения инверторов;• -возможность конфигурирования инверторов в трехфазную систему;• -наличие большого перечня защитных функций.

На фото можно видеть продукцию лучших мировых производителей инверторов:

 

Батарейно-сетевой инверторИнвертор с добавлением мощностиИнвертор для автономкиСолнечный инверторИнвертор с модифицированным синусом

 

  Иногда контроллер заряда встраивают в инвертор. К примеру серия AJ фирмы Studer или ББП MeanWell. Очень важным моментом для инвертора является наличие «спящего» режима. В момент отсутствия нагрузки инвертор с такой функцией снижает потребление энергии в несколько раз. Кроме того часть инверторов позволяет настроить выходное напряжение на уровне 200-210В (или даже ниже). Это тоже позволяет снизить расход энергии в условиях автономии. Ряд моделей инверторов имеют панели или пульты дистанционного управления. А наиболее продвинутые имеют мониторинг и управление через сеть интернет. Кроме описанных выше инверторов существует еще один тип инверторов. Эти инверторы созданы для прямого взаимодействия со внешней сетью. Они применяются в системах, носящих название grid-tie. Суть их работы состоит в следующем: на вход сетевого инвертора поступает напряжение от массива солнечных модулей. Модули при этом объединены в высоковольтные цепочки(до 1000В и более). Имея на входе MPPT контроллер, сетевые инверторы могут отслеживать напряжение максимальной мощности, которое затем инвертируется в переменное и подмешивается к электрической сети. Энергия, генерируемая солнечными батареями, потребляется при этом нагрузками в приоритетно, а недостаток потребляется из сети.

  Батарейный инвертор

  Если мощность солнечных батарей покрывает потребности нагрузки, то из сети ничего не потребляется. Несомненным плюсом инверторов этого типа является отсутствие дорогостоящих АКБ, что снижает первоначальную стоимость системы на 35-40%, а также её обслуживания в будущем. Но в то же время отсутствие АКБ лишает нагрузки резервирования при отключении сети, работает "сетевик" лишь в светлое время суток, а кроме того сетевому инвертору как опорное требуется внешнее напряжение. Поэтому при отсутствии внешней сети сетевой инвертор не работает. Чтобы совместить полезные свойства батарейного и сетевого инвертора были разработаны специальные батарейно-сетевые модификации. Они получили название гибридных. Когда есть сеть они работают как сетевые, т.е. «подмешивают» энергию от солнечных батарей или ветрогенератора к коммунальной сети, а нагрузки объекта потребляют эту энергию в первую очередь. Если существует необходимость зарядить аккумуляторные батареи, то одновременно происходит заряд АКБ. "Солнечные батареи" при этом могут вести заряд через обычный(ШИМ или МРРТ) "контроллер" или через отдельный сетевой инвертор, подключенный к выходу гибридного инвертора. Здесь поясним, что ряд гибридных инверторов являются двунаправленными, т.е. способны вести заряд АКБ со входа и с выхода. Это значит, что ЗУ инвертора заряжает АКБ от внешней сети, а также от сетевого инвертора, включенного на выход(!) инвертора. Такими двунаправленными инверторами являются Xtender, SMA, Victron и некоторые другие. Если же происходит аварийное отключение внешней сети, то гибридный инвертор превращается в обычный батарейный и работает в автономном режиме. В режиме поддержки сети гибридный инвертор имеет дополнительно режим продажи “SELL”в котором он может не только приоритетно питать нагрузку от возобновляемого источника, но и поставлять излишки(если они имеются) в сеть. При этом нужно иметь двунаправленный счетчик электроэнергии, способный «отматывать назад». В противном случае счетчик будет стоять на месте, а еще хуже если будет считать и отданную в сеть энергию. На фото можно видеть лучшие сетевые инверторы от ведущих производителей.

 

 

ИнверторИнверторИнверторИнверторИнвертор

Резюмируя, обобщим наиболее важные параметры для выбора инвертора:

• -Номинальная мощность инвертора – эта характеристика определяется долговременной мощностью нагрузки;• -Пиковая мощность инвертора – этот параметр должен превышать максимальную нагрузку с учетом пусковых мощностей приборов;• -По возможности стоит выбирать инвертор с чистым синусом;• -Зарядное устройство(для ББП) должно иметь достаточную мощность для заряда аккумуляторного блока за приемлемое время, а также быть достаточно интеллектуальным, чтобы правильно заряжать данный тип АКБ;• -Если это ББП, то должна быть настройка напряжения "отсечки", т.е. низкого уровня напряжения АКБ, при котором прекращается генерация, во избежание глубокого разряда АКБ;• -Зарядное устройство должно иметь выносной датчик температуры для температурной компенсации зарядный напряжений заряда в зависимости от температуры АКБ;• -Если система автономная, то желательно наличие у инвертора малого потребления на холостом ходу, а также спящего режима. Подобный режим позволит снизить потребление у увеличить эффективность системы.

  Максимальной надежностью и наиболее гибкими настройками обладают инверторы Xtender, SMA, Victron, Xantrex, OutBack, Magnum, TBS Electronic и некоторыe другие. Бюджетным и одновременно надежным выбором будет инвертор/зарядное устройство американской компании TrippLite. Опять же для ограниченного бюджета неплохо себя зарекомендовали продукты MeanWell(Тайвань). Невозможность плавной регулировки тока заряда в TrippLite иногда является его недостатком, а малый зарядный ток и отсутствие его регулировки величины зарядного тока недостаток MeanWell. Инверторы COTEK также имеют репутацию надежных приборов. Ознакомиться с нашим ассортиментом инверторов можете в "Каталог инверторов". При обсуждении проекта заказчику могут быть предложены инверторы и других производителей.

 

ИнверторыИнверторыИнверторыИнверторыИнверторыИнверторыИнверторыИнверторыИнверторы

 

 

www.solbat.su