Способы сварки рельсов (Электроконтактная, электродуговая, газопрессовая и алюмотермитная сварка), страница 4. Алюмотермитная сварка


Алюмотермитная смесь для сварки стальных элементов и способ алюмотермитной сварки стальных элементов

Изобретение может быть использовано для жесткого долговременного соединения алюмотермитной сваркой стальных элементов, предпочтительно рельсов. Алюмотермитная смесь для сварки стальных элементов содержит прокаленную железную окалину, порошок алюминия и легирующие присадки. В качестве легирующих присадок использованы ферромарганец, и/или ферромолибден, и/или ферроникель, и/или феррохром, и/или феррованадий. Железная окалина предварительно измельчена и прокалена для перевода окислов металлов в высшие степени окисления. В смеси использованы фракции измельченной и прокаленной железной окалины, разделенные на ситах 0,25 мм, 0,45 мм, 0,65 мм, смешанные в заданном соотношении для получения максимального теплового эффекта. Изобретение обеспечивает повышение качества алюмотермитного сварного шва за счет обеспечения постоянства его состава. 2 н. и 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к области алюмотермитной сварки стальных элементов, предпочтительно рельсов, и может быть использовано в различных областях техники для жесткого долговременного соединения стальных элементов.

Известен (RU, заявка 97121417, опубл. 10.10.1999) состав алюмотермической смеси, содержащий алюминий, оксиды железа и феррохромную лигатуру, в состав которой входят железо, углерод, кремний и хром, при этом оксиды железа содержат пременные по качественному и количественному составу легирующие примеси.

Недостатком известного алюмотермитного состава следует признать значительный разброс параметров сварного шва, получаемого с использованием указанной алюмотермитной смеси из-за качественных и количественных различий в ее составе.

Известна (GB, патент 1223977, опубл. 01.04.1971) алюминотермитная реакционная смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащая в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов, и стальной наполнитель, при этом для сокращения времени реакции смесь содержит оксид железа и оксиды других металлов в виде пудры.

Недостатком известной смеси является то, что в используемой в ее составе окалине присутствует закись железа FeO, снижающая качество выплавляемой стали по следующим причинам: истинная температура разливки стали составляет примерно 1550°C; следовательно, пленка закиси железа (FeO), плавящаяся при температуре 1370°C, будет сильно перегрета и, обладая большой жидкоподвижностью, легко проникает в поры формы и вступает в химическое соединение с материалом формы с образованием пригара, образует шлак, пригорающий к отливке, что нарушает качество металла сварного шва. Кроме того, добавка оксида железа в виде пудры не обеспечивает равномерность волны горения, стабильность экзотермической реакции, а сокращение времени реакции нарушает процесс выплавки качественной стали для промежуточного литья. Из-за неравномерного распределения легирующих добавок, а также из-за уноса части этих добавок со шлаком снижается качество выплавляемой стали для промежуточного литья.

Наиболее близким аналогом алюмотермитной смеси разработанного состава можно признать (RU, патент 2446928, опубл. 10.04.2012) алюминотермитную реакционную смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащей в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов и стальной наполнитель, причем в качестве оксидов железа она содержит окалину, модифицированную в полном объеме прокаливанием при температуре в интервале 150-1000°C с одновременной продувкой воздухом, при этом все компоненты смеси перемешаны до равномерного распределения компонентов в объеме смеси и образования связнодисперсной структурированной системы, которая стабилизирована путем вакуумирования в эластичной воздухонепроницаемой упаковке. Предпочтительно известная смесь содержит окалину с однородными по размеру частицами, выбранными из диапазона частиц с размером 0,1-5 мм, обеспечивающими заданную скорость реакции и интервал времени для выплавки стали.

Недостатком известного состава алюмотермитной смеси следует признать разброс параметров получаемого с его использованием сварного шва из-за неоднозначности его состава, который может содержать как окись, так и закись железа в произвольном соотношении, кроме того, неопределенный состав легирующих примесей и металлов не позволяет получить сварной шов с постоянными параметрами.

Данный источник информации использован в качестве ближайшего аналога для объекта изобретения алюмотермитная смесь для сварки стальных элементов.

Известен (RU, патент 2349433, опубл. 20.03.2009) способ алюминотермитной сварки рельсов с предварительным высокотемпературным подогревом, необходимым для расплавления торцов рельсов после заливки в зазор между рельсами перегретого термитного металла, при охлаждении металла сварного шва ниже 800°C головку рельсов в стыке дополнительно охлаждают воздушно-водяной смесью с целью проведения поверхностной закалки, несколько повышающей твердость металла на поверхности катания.

Недостатком известного способа следует признать его технологическую сложность, а также недостаточную прочность сварного шва.

Известен (RU, патент 2163184, опубл. 20.02.2001) способ алюмотермитной сварки рельсов, при котором устанавливают концы рельсов с образованием между их торцами сварочного зазора, размещают вокруг концов рельсов в зоне сварочного зазора разъемную форму, уплотняют контакт разъемной формы с концами рельсов, устанавливают над формой реакционный тигель, заполненный дозой алюминотермитного состава, нагревают концы рельсов и разъемную форму до температуры в диапазоне (1000-1500)°C, поджигают дозу алюминотермитного состава и разогревают его до образования расплавленного металла, подают из реакционного тигля расплавленный металл в среднюю часть разъемной формы, после заполнения ее нижней части, дополнительно нагревают концы рельсов и залитый в сварочный зазор расплавленный металл до температуры не ниже 800°C в конце подачи расплавленного металла в разъемную форму путем подачи последних порций расплавленного металла в пространство над головками рельсов, выдерживают расплавленный металл до затвердевания и образования сварного шва, удаляют с головки сваренного рельса прибыльную часть сварного шва, после чего затвердевший сварной шов и область, близлежащую к последнему, охлаждают струей сжатого воздуха до температуры (250-300)°C, затем - на воздухе.

Недостатком способа является низкая твердость сварного шва, а также сложность технологии. Снижение физико-механических свойств обусловлено медленным охлаждением зоны сварного стыка.

Наиболее близким к предлагаемому объекту изобретения способом алюмотермитной сварки стальных элементов можно признать способ ремонта рельсов, применение которого позволяет восстанавливать рельсы железнодорожного пути без удаления их с полотна (RU, патент 2119854, опубл. 10.10.98 г.). Согласно известному способу устанавливают концы рельса на одном уровне с образованием между их торцами сварного зазора, размещают вокруг концов рельсов разъемную форму, нагревают концы рельса и разъемную форму до температуры свыше 1000 до 1500°C, помещают в тигель, установленный над формой алюмотермитную смесь и инициируют горение алюмотермитной смеси, заливают расплавленный металл, получаемый из алюмотермитной смеси, в разъемную форму с подачей части расплавленного металла в среднюю часть сварного зазора после заполнения его нижней части разъемной формы. В конце заливки осуществляют дополнительный нагрев всего места сварки до температуры не ниже 800°C путем подачи последних порций расплавленного металла в пространство над головками концов рельса. После затвердевания расплавленного металла удаляют с головки сваренного рельса прибыльную часть сварного шва.

Недостатком этого способа является снижение прочности сварного шва при его остывании под действием окружающего воздуха и, как следствие, невыполнение условия равнопрочности восстановленного участка рельса.

Техническая задача, решаемая посредством разработанного технического решения, состоит в обеспечении максимального теплового эффекта реакции с алюминием.

Технический результат, получаемый при реализации разработанного технического решения, состоит в повышении качества алюмотермитного сварного шва за счет обеспечения постоянства его состава.

Для достижения указанного технического результата применительно к объекту «алюмотермитная смесь» предложено использовать состав алюмотермитной смеси, содержащий железную окалину, предварительно измельченную и прокаленную для перевода оксидов металлов в высшие степени окисления, порошок алюминия и легирующие присадки, причем в качестве легирующих присадок использованы ферромарганец, и/или ферромолибден, и/или ферроникель, и/или феррохром, и/или феррованадий в количестве, обеспечивающем содержание каждого их них в алюмотермитной смеси от 0,1% до 10%, при этом использована железная окалина, разделенная на фракции, смешаные в следующем соотношении: от 0,25 до 0,45 мм 20-35%, от 0,45 до 0,65 - 20-35%, свыше 0,65 мм - 20-40% из условия максимального теплового эффекта.

Предпочтительно легирующие добавки использованы в виде порошка с размером частиц не более 0,65 мм.

Для достижения указанного технического результата при реализации объекта изобретения «способ» предложено использовать разработанный способ, включающий размещение на свариваемых концах стальных элементов литейной формы, нагрев свариваемых концов стальных элементов в течение заданного интервала времени, помещение на литейную форму реакционного тигеля с термитной смесью и заполнение промежутка между концами свариваемых стальных элементов расплавом металла, полученным в тигле путем алюмотермитной реакции, отличающийся тем, что используют алюмотермитную смесь состава, приведенного выше.

Достижение указанного технического результата обусловлено, кроме использования указанных легирующих добавок, использованием только оксидов железа Fe2O3 и Fe3O4, а также фракционированием прокаленной железной окалины, содержащей только высшие оксиды металлов, с использованием смеси фракций, обеспечивающей в каждом конкретном случае максимальный теплотворный эффект реакции с алюминием.

В процессе производства железную окалину измельчают, затем проводят доокисление ее в проходной печи при температуре не ниже 850°C, после чего подвергают разделению на фракции, проходящие через сита 0,25; 0,45; 0,65. Полученные фракции, кроме фракции - менее 0,25 мм - смешивают в пропорции, обеспечивающей максимальный теплотворный эффект. Как отмечено ранее, фракции предпочтительно смешивают в соотношении от 0,25 до 0,45 мм - от 20 до 35%, от 0,45 до 0,65 мм - от 20 до 35, свыше 0,65 - от 20 до 40%. Для создания алюмотермитной смеси обычно используют алюминиевые порошки марок: ПА-1, ПА-2, ПА-3, ПА-4, (Гост 6058-73), АПЖ и АКП по ТУ 1791-99-023-99, Ту-48-5-38-78. Для достижения необходимой твердости алюмотермитного сварного шва используют легирующие присадки: ферромарганец до содержания в алюмотермитной смеси от 0,1 до 10%, ферромолибден до содержания в алюмотермитной смеси от 0,1 до 10%, ферроникель до содержания в алюмотермитной смеси от 0,1 до 10%, феррохром до содержания в алюмотермитной смеси от 0,1 до 10%, феррованадий до содержания в алюмотермитной смеси от 0,1 до 10%. Использование легирующих добавок может происходит как совместно, так и по отдельности или в любом сочетании. Выбор и количество легирующих добавок зависит от назначения свариваемого соединения.

Состав металла алюмотермитого шва (%), обеспечивающий разрушающую нагрузку на сварной стык не менее 135 тонн (1350 кН), приведен в табл. 1.

Табл. 1.

При этом необходимо отметить, что медь и никель поступили в металл сварного шва из железной окалины или как примесь легирующих присадок.

Разработанное техническое решение реализуют следующим образом.

Из собранной на металлургическом производстве железной окалины любым известным способом (в частности, магнитный сепаратор) отделяют инородные примеси. Затем отобранную железную окалину измельчают и пропускают через проходную печь, иногда с принудительной подачей воздуха, для перевода всех присутствующих в окалине окислов металлов в высшие формы окисления. Обработаную железную окалину на ситовом разделителе разделяют на фракции 0,25-0,45 мм, 0,45-0,65 мм и свыше 0,65 мм. Для кажого конкретного случая применения алюмотермической сварки стальных элементов (учитывая массу свариваемых элементов, величину зазора между ними, внешние условия и т.д.) составляют наиболее предпочтительную смесь фракций для получения максимального теплового эффекта. В полученную смесь добавляют рецептурное количество порошка алюминия и рецептурные количества легирующих добавок и тщательно перемешивают. Термитная смесь готова к использованию.

Разработанный способ алюмотермитной сварки будет проиллюстрирован на примере сварки железнодорожных рельсов. Два рельса размещают на одной линии с зазором относительно друг друга. Размещают на свариваемых концах стальных рельсов литейную форму, нагревают внешним источником тепла концы свариваемых рельсов в течение заданного интервала времени до разогрева концов рельсов до температуры не менее 900°C, помещают на литейную форму реакционный тигель с ранее полученной алюмотермитной смесью, инициируют поджиг алюмотермитной смеси с заполнением полученным в тигле путем алюмотермической реакцией расплавом металла из литейной формы промежутка между концами свариваемых стальных элементов с получением сварного шва.

Для получения алюмотермитной смеси было использовано железной окалины, прокаленой в проходной печи при 850°C в течение 25 мин фракции 0,25-0,45 мм 2 кг, фракции 0,45-0,65 мм 2 кг и фракции свыше 0,65 мм 4 кг, алюминиевого порошка 2,3 кг, ферромарганца, измельченного до частиц размером 0,65 мм 0,3 кг, феррохрома, измельченного до частиц 0,65 мм 0,1 кг, ферроникеля, измельченного до частиц размером 0,65 мм 0.1 кг, ферромолибдена, измельченного до частиц размером 0,65 мм 0,1 кг. Полученую смесь тщательно перемешали. Свариваемые концы рельсов разместили на расстоянии 25 мм друг от друга, поместили на них литейную форму, с использованием газовой горелки нагрели свариваемые концы рельсов до температуры 900°C. Поместили в литейную форму тигель с 11,9 кг термитной смеси и инициировали горение алюмотермитной смеси. Расплавленный металл заполнил зазор между рельсами с образованием сварного шва. Количественный и качественный состав металла сварного шва приведен в табл. 2.

Полученное сварное соединение не содержит раковин и трещин, прочность на разрыв не менее (1350 кН).

1. Алюмотермитная смесь для сварки стальных элементов, содержащая железную окалину, предварительно измельченную и прокаленную для перевода оксидов металлов в высшие степени окисления, порошок алюминия и легирующие присадки, отличающаяся тем, что легирующие присадки выбраны из группы: ферромарганец, ферромолибден, ферроникель, феррохром и феррованадий, и введены в количестве, обеспечивающем содержание каждой из них в алюмотермитной смеси от 0,1% до 10%, при этом использована железная окалина, разделенная на фракции, смешанные в следующем соотношении: от 0,25 до 0,45 мм 20-35%, от 0,45 до 0,65 20-35%, свыше 0,65 мм 20-40% из условия получения максимального теплового эффекта.

2. Смесь по п. 1, отличающаяся тем, что легирующие добавки использованы в виде порошка с размером частиц не более 0,65 мм.

3. Способ алюмотермитной сварки стальных элементов, включающий размещение на свариваемых концах стальных элементов литейной формы, нагрев свариваемых концов стальных элементов в течение заданного интервала времени, помещение на литейную форму реакционного тигля с термитной смесью и заполнение промежутка между концами свариваемых стальных элементов расплавом металла, полученным в тигле путем алюмотермитной реакции, отличающийся тем, что используют алюмотермитную смесь по п. 1.

www.findpatent.ru

Способы сварки рельсов (Электроконтактная, электродуговая, газопрессовая и алюмотермитная сварка), страница 3

Технология позволяет сваривать новые или старогодные железнодорожные рельсы типа Р65, Р50 не закаленные, объемно-закаленные, либо с закаленной головкой (с мелкоперлитной структурой металла) с временными сопротивлениями соответственно не менее 900 Н/мм2, 1200 Н/мм2 и 900 Н/мм2.

Минимальная длина свариваемых рельсов должна быть не менее 6 метров для главных путей всех классов и не менее 3 метров на стрелочных переводах и остальных путях всех классов.

Каждый из предлагаемых процессов алюмотермитной сварки характеризуется следующими последовательными этапами:

1.  Подготовительный этап, на котором осуществляются операции: подготовка рельсов к резке, обрезка концов рельсов на требуемую величину зазора, зачистка рельсов в зоне стыка, выравнивание положения концов рельсов, установка универсального приспособления и форм, уплотнение форм песком, подготовка термитных порций и тигля к работе.

2.  Проведение термитной сварки, состоящей из операций: подогрев концов рельсов, поджиг термита и термитная реакция, автоматический выпуск стали из тигля и заливка ее в форму, выдержка стали в форме (приложение 2).

3.  Послесварочная обработка стыка, где проводятся операции: разборка форм и снятие грата, предварительная шлифовка стыка, нормализация (если необходимо) сварного шва, чистовая шлифовка и окончательные операции.  

Рис.7.4: Готовый отшлифованный сварной шов для ширины рельсового зазора 75 мм по методу SkV

                                       Рис.7.5: Схема сварочного процесса SkV

7.6.  Алюмотермитная сварка стрелочных переводов

          Одним из способов усиления  путей является ликвида­ция рельсовых стыков. К началу 1980 гг. доля станционных путей с рельсами типов Р50 и тяжелее составила 60 %, а с балластом из щебня, сортированного гравия и асбеста, где разрешалось сваривать рельсы в плети, — 40 % общей длины станционных путей; бесстыковой путь составлял не более 2 %.

          Следует отметить, что опыт применения бесстыкового пути на станциях в СССР имелся. В 1960-х гг. на станционных путях проводи­лась сварка рельсов, возможности для этого при рельсах легких типов, песчаном балласте и костыльных скреплениях были ограничены.

          Усиление станционных путей укладкой старогодных рельсов         тяжелых типов, снятых с главного пути, позволило вновь вернуться к идее бесстыковых станционных путей. В опреде­ленных эксплуатационных и климатических условиях возможно использование бесстыкового пути облегченной (по сравнению с типовой для перегонов) конструкции, что позволяет расширить сферы применения бесстыкового пути до 70—75 % протяженности станционных путей.

            Опыт термитной сварки насчитывает более 100 лет. За рубежом традиционно алюминотермитной сваркой изготавливают рельсовые плети для бесстыкового пути. Рельсовые плети и стре­лочные переводы, сваренные таким способом, эк­сплуатируются на магистралях со скоростями движения 300 км/ч и на дорогах с осевыми на­грузками 400 кН. Существует практика сварки всех стрелочных переводов в пределах станции. Термитной сваркой был сварен путь в тоннеле под проливом Ла-Манш. Этот вид сварки исполь­зуется на железных дорогах многих стран, в том числе с тропическим и холодным климатом.

          В СССР термитная сварка рельсов стала при­меняться, начиная с 30-х годов XX в. В 1960-е гг. в ЦНИИ МПС велись исследования по повышению качества термитной сварки, разрабатывались тех­нологии ремонта этим способом рельсовых пле­тей. Однако показатели прочности и пластичности соединений, выполненных термитной сваркой, были хуже, чем при электроконтактной. Кроме того, термитная сварка дороже. Путевое хозяйство нуждалось в больших объемах сварных рельсов и ориентировалось на электроконтактную сварку, ус­пешно применялись высокотехнологичные пере­движные рельсосварочные машины и массовая сварка рельсов в условиях рельсосварочных поез­дов. Широкое внедрение термитной сварки рель­сов приостановилось.

          В настоящее время для решения проблемы сварки стыков стрелочных переводов в пути на отечественных дорогах используют опыт ведущих зарубежных фирм. Ученые ВНИИЖТа адаптирова­ли технологии фирм «Электро-Термит» (Германия), «Снага» (Словакия) и «Рельтех» (Франция) для климатических условий России и особенностей конструкции отечествен­ных стрелочных переводов.

          За рубежом рельсы сваривают сплошь, включая в плети стрелоч­ные переводы. Для сварки используют термитный и даже электроду­говой способы. ВНИИЖТ совместно со стрелочными заводами и кон­структорскими бюро ведет разработку технических и технологических вопросов сварки рельсов внутри стрелочных переводов и с примыкающими к ним плетями бесстыкового пути.             

          При  проектировании  и строительстве  линий  стрелочные  переводы

рассматриваются как препятствие, влияющее на длину рельсовых сварных плетей. Для решения этой проблемы на железных дорогах  МПС РФ внедряется новое поколение стрелочных переводов на железобетонных брусьях. Повышенные требования к пути на линиях для скоростного движения определили конструктивные особенности переводов. Переводы  нового поколения имеют улучшенную динамику за счет использования  гибких остряков и крестовин с гибко-поворотным сердечником с удлиненными рельсовыми окончаниями и стыками накладочного типа, упругих клемм скреплений, подрельсовых прокла­док различной жесткости, меньшего количества стыков. Снижение динамических эффектов  при прохождении подвижного состава по зоне стрелочного перевода достигается вваркой перевода в бесстыко­вой путь и сваркой стыковых зазоров на самом переводе. На стрелоч­ных заводах сварка при изготовлении элементов стрелочных перево­дов выполняется электроконтактным способом.

vunivere.ru

алюмотермитная смесь для сварки стальных элементов и способ алюмотермитной сварки стальных элементов - патент РФ 2578271

Изобретение может быть использовано для жесткого долговременного соединения алюмотермитной сваркой стальных элементов, предпочтительно рельсов. Алюмотермитная смесь для сварки стальных элементов содержит прокаленную железную окалину, порошок алюминия и легирующие присадки. В качестве легирующих присадок использованы ферромарганец, и/или ферромолибден, и/или ферроникель, и/или феррохром, и/или феррованадий. Железная окалина предварительно измельчена и прокалена для перевода окислов металлов в высшие степени окисления. В смеси использованы фракции измельченной и прокаленной железной окалины, разделенные на ситах 0,25 мм, 0,45 мм, 0,65 мм, смешанные в заданном соотношении для получения максимального теплового эффекта. Изобретение обеспечивает повышение качества алюмотермитного сварного шва за счет обеспечения постоянства его состава. 2 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к области алюмотермитной сварки стальных элементов, предпочтительно рельсов, и может быть использовано в различных областях техники для жесткого долговременного соединения стальных элементов.

Известен (RU, заявка 97121417, опубл. 10.10.1999) состав алюмотермической смеси, содержащий алюминий, оксиды железа и феррохромную лигатуру, в состав которой входят железо, углерод, кремний и хром, при этом оксиды железа содержат пременные по качественному и количественному составу легирующие примеси.

Недостатком известного алюмотермитного состава следует признать значительный разброс параметров сварного шва, получаемого с использованием указанной алюмотермитной смеси из-за качественных и количественных различий в ее составе.

Известна (GB, патент 1223977, опубл. 01.04.1971) алюминотермитная реакционная смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащая в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов, и стальной наполнитель, при этом для сокращения времени реакции смесь содержит оксид железа и оксиды других металлов в виде пудры.

Недостатком известной смеси является то, что в используемой в ее составе окалине присутствует закись железа FeO, снижающая качество выплавляемой стали по следующим причинам: истинная температура разливки стали составляет примерно 1550°C; следовательно, пленка закиси железа (FeO), плавящаяся при температуре 1370°C, будет сильно перегрета и, обладая большой жидкоподвижностью, легко проникает в поры формы и вступает в химическое соединение с материалом формы с образованием пригара, образует шлак, пригорающий к отливке, что нарушает качество металла сварного шва. Кроме того, добавка оксида железа в виде пудры не обеспечивает равномерность волны горения, стабильность экзотермической реакции, а сокращение времени реакции нарушает процесс выплавки качественной стали для промежуточного литья. Из-за неравномерного распределения легирующих добавок, а также из-за уноса части этих добавок со шлаком снижается качество выплавляемой стали для промежуточного литья.

Наиболее близким аналогом алюмотермитной смеси разработанного состава можно признать (RU, патент 2446928, опубл. 10.04.2012) алюминотермитную реакционную смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащей в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов и стальной наполнитель, причем в качестве оксидов железа она содержит окалину, модифицированную в полном объеме прокаливанием при температуре в интервале 150-1000°C с одновременной продувкой воздухом, при этом все компоненты смеси перемешаны до равномерного распределения компонентов в объеме смеси и образования связнодисперсной структурированной системы, которая стабилизирована путем вакуумирования в эластичной воздухонепроницаемой упаковке. Предпочтительно известная смесь содержит окалину с однородными по размеру частицами, выбранными из диапазона частиц с размером 0,1-5 мм, обеспечивающими заданную скорость реакции и интервал времени для выплавки стали.

Недостатком известного состава алюмотермитной смеси следует признать разброс параметров получаемого с его использованием сварного шва из-за неоднозначности его состава, который может содержать как окись, так и закись железа в произвольном соотношении, кроме того, неопределенный состав легирующих примесей и металлов не позволяет получить сварной шов с постоянными параметрами.

Данный источник информации использован в качестве ближайшего аналога для объекта изобретения алюмотермитная смесь для сварки стальных элементов.

Известен (RU, патент 2349433, опубл. 20.03.2009) способ алюминотермитной сварки рельсов с предварительным высокотемпературным подогревом, необходимым для расплавления торцов рельсов после заливки в зазор между рельсами перегретого термитного металла, при охлаждении металла сварного шва ниже 800°C головку рельсов в стыке дополнительно охлаждают воздушно-водяной смесью с целью проведения поверхностной закалки, несколько повышающей твердость металла на поверхности катания.

Недостатком известного способа следует признать его технологическую сложность, а также недостаточную прочность сварного шва.

Известен (RU, патент 2163184, опубл. 20.02.2001) способ алюмотермитной сварки рельсов, при котором устанавливают концы рельсов с образованием между их торцами сварочного зазора, размещают вокруг концов рельсов в зоне сварочного зазора разъемную форму, уплотняют контакт разъемной формы с концами рельсов, устанавливают над формой реакционный тигель, заполненный дозой алюминотермитного состава, нагревают концы рельсов и разъемную форму до температуры в диапазоне (1000-1500)°C, поджигают дозу алюминотермитного состава и разогревают его до образования расплавленного металла, подают из реакционного тигля расплавленный металл в среднюю часть разъемной формы, после заполнения ее нижней части, дополнительно нагревают концы рельсов и залитый в сварочный зазор расплавленный металл до температуры не ниже 800°C в конце подачи расплавленного металла в разъемную форму путем подачи последних порций расплавленного металла в пространство над головками рельсов, выдерживают расплавленный металл до затвердевания и образования сварного шва, удаляют с головки сваренного рельса прибыльную часть сварного шва, после чего затвердевший сварной шов и область, близлежащую к последнему, охлаждают струей сжатого воздуха до температуры (250-300)°C, затем - на воздухе.

Недостатком способа является низкая твердость сварного шва, а также сложность технологии. Снижение физико-механических свойств обусловлено медленным охлаждением зоны сварного стыка.

Наиболее близким к предлагаемому объекту изобретения способом алюмотермитной сварки стальных элементов можно признать способ ремонта рельсов, применение которого позволяет восстанавливать рельсы железнодорожного пути без удаления их с полотна (RU, патент 2119854, опубл. 10.10.98 г.). Согласно известному способу устанавливают концы рельса на одном уровне с образованием между их торцами сварного зазора, размещают вокруг концов рельсов разъемную форму, нагревают концы рельса и разъемную форму до температуры свыше 1000 до 1500°C, помещают в тигель, установленный над формой алюмотермитную смесь и инициируют горение алюмотермитной смеси, заливают расплавленный металл, получаемый из алюмотермитной смеси, в разъемную форму с подачей части расплавленного металла в среднюю часть сварного зазора после заполнения его нижней части разъемной формы. В конце заливки осуществляют дополнительный нагрев всего места сварки до температуры не ниже 800°C путем подачи последних порций расплавленного металла в пространство над головками концов рельса. После затвердевания расплавленного металла удаляют с головки сваренного рельса прибыльную часть сварного шва.

Недостатком этого способа является снижение прочности сварного шва при его остывании под действием окружающего воздуха и, как следствие, невыполнение условия равнопрочности восстановленного участка рельса.

Техническая задача, решаемая посредством разработанного технического решения, состоит в обеспечении максимального теплового эффекта реакции с алюминием.

Технический результат, получаемый при реализации разработанного технического решения, состоит в повышении качества алюмотермитного сварного шва за счет обеспечения постоянства его состава.

Для достижения указанного технического результата применительно к объекту «алюмотермитная смесь» предложено использовать состав алюмотермитной смеси, содержащий железную окалину, предварительно измельченную и прокаленную для перевода оксидов металлов в высшие степени окисления, порошок алюминия и легирующие присадки, причем в качестве легирующих присадок использованы ферромарганец, и/или ферромолибден, и/или ферроникель, и/или феррохром, и/или феррованадий в количестве, обеспечивающем содержание каждого их них в алюмотермитной смеси от 0,1% до 10%, при этом использована железная окалина, разделенная на фракции, смешаные в следующем соотношении: от 0,25 до 0,45 мм 20-35%, от 0,45 до 0,65 - 20-35%, свыше 0,65 мм - 20-40% из условия максимального теплового эффекта.

Предпочтительно легирующие добавки использованы в виде порошка с размером частиц не более 0,65 мм.

Для достижения указанного технического результата при реализации объекта изобретения «способ» предложено использовать разработанный способ, включающий размещение на свариваемых концах стальных элементов литейной формы, нагрев свариваемых концов стальных элементов в течение заданного интервала времени, помещение на литейную форму реакционного тигеля с термитной смесью и заполнение промежутка между концами свариваемых стальных элементов расплавом металла, полученным в тигле путем алюмотермитной реакции, отличающийся тем, что используют алюмотермитную смесь состава, приведенного выше.

Достижение указанного технического результата обусловлено, кроме использования указанных легирующих добавок, использованием только оксидов железа Fe 2O3 и Fe3O4, а также фракционированием прокаленной железной окалины, содержащей только высшие оксиды металлов, с использованием смеси фракций, обеспечивающей в каждом конкретном случае максимальный теплотворный эффект реакции с алюминием.

В процессе производства железную окалину измельчают, затем проводят доокисление ее в проходной печи при температуре не ниже 850°C, после чего подвергают разделению на фракции, проходящие через сита 0,25; 0,45; 0,65. Полученные фракции, кроме фракции - менее 0,25 мм - смешивают в пропорции, обеспечивающей максимальный теплотворный эффект. Как отмечено ранее, фракции предпочтительно смешивают в соотношении от 0,25 до 0,45 мм - от 20 до 35%, от 0,45 до 0,65 мм - от 20 до 35, свыше 0,65 - от 20 до 40%. Для создания алюмотермитной смеси обычно используют алюминиевые порошки марок: ПА-1, ПА-2, ПА-3, ПА-4, (Гост 6058-73), АПЖ и АКП по ТУ 1791-99-023-99, Ту-48-5-38-78. Для достижения необходимой твердости алюмотермитного сварного шва используют легирующие присадки: ферромарганец до содержания в алюмотермитной смеси от 0,1 до 10%, ферромолибден до содержания в алюмотермитной смеси от 0,1 до 10%, ферроникель до содержания в алюмотермитной смеси от 0,1 до 10%, феррохром до содержания в алюмотермитной смеси от 0,1 до 10%, феррованадий до содержания в алюмотермитной смеси от 0,1 до 10%. Использование легирующих добавок может происходит как совместно, так и по отдельности или в любом сочетании. Выбор и количество легирующих добавок зависит от назначения свариваемого соединения.

Состав металла алюмотермитого шва (%), обеспечивающий разрушающую нагрузку на сварной стык не менее 135 тонн (1350 кН), приведен в табл. 1.

Табл. 1.

При этом необходимо отметить, что медь и никель поступили в металл сварного шва из железной окалины или как примесь легирующих присадок.

Разработанное техническое решение реализуют следующим образом.

Из собранной на металлургическом производстве железной окалины любым известным способом (в частности, магнитный сепаратор) отделяют инородные примеси. Затем отобранную железную окалину измельчают и пропускают через проходную печь, иногда с принудительной подачей воздуха, для перевода всех присутствующих в окалине окислов металлов в высшие формы окисления. Обработаную железную окалину на ситовом разделителе разделяют на фракции 0,25-0,45 мм, 0,45-0,65 мм и свыше 0,65 мм. Для кажого конкретного случая применения алюмотермической сварки стальных элементов (учитывая массу свариваемых элементов, величину зазора между ними, внешние условия и т.д.) составляют наиболее предпочтительную смесь фракций для получения максимального теплового эффекта. В полученную смесь добавляют рецептурное количество порошка алюминия и рецептурные количества легирующих добавок и тщательно перемешивают. Термитная смесь готова к использованию.

Разработанный способ алюмотермитной сварки будет проиллюстрирован на примере сварки железнодорожных рельсов. Два рельса размещают на одной линии с зазором относительно друг друга. Размещают на свариваемых концах стальных рельсов литейную форму, нагревают внешним источником тепла концы свариваемых рельсов в течение заданного интервала времени до разогрева концов рельсов до температуры не менее 900°C, помещают на литейную форму реакционный тигель с ранее полученной алюмотермитной смесью, инициируют поджиг алюмотермитной смеси с заполнением полученным в тигле путем алюмотермической реакцией расплавом металла из литейной формы промежутка между концами свариваемых стальных элементов с получением сварного шва.

Для получения алюмотермитной смеси было использовано железной окалины, прокаленой в проходной печи при 850°C в течение 25 мин фракции 0,25-0,45 мм 2 кг, фракции 0,45-0,65 мм 2 кг и фракции свыше 0,65 мм 4 кг, алюминиевого порошка 2,3 кг, ферромарганца, измельченного до частиц размером 0,65 мм 0,3 кг, феррохрома, измельченного до частиц 0,65 мм 0,1 кг, ферроникеля, измельченного до частиц размером 0,65 мм 0.1 кг, ферромолибдена, измельченного до частиц размером 0,65 мм 0,1 кг. Полученую смесь тщательно перемешали. Свариваемые концы рельсов разместили на расстоянии 25 мм друг от друга, поместили на них литейную форму, с использованием газовой горелки нагрели свариваемые концы рельсов до температуры 900°C. Поместили в литейную форму тигель с 11,9 кг термитной смеси и инициировали горение алюмотермитной смеси. Расплавленный металл заполнил зазор между рельсами с образованием сварного шва. Количественный и качественный состав металла сварного шва приведен в табл. 2.

Полученное сварное соединение не содержит раковин и трещин, прочность на разрыв не менее (1350 кН).

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Алюмотермитная смесь для сварки стальных элементов, содержащая железную окалину, предварительно измельченную и прокаленную для перевода оксидов металлов в высшие степени окисления, порошок алюминия и легирующие присадки, отличающаяся тем, что легирующие присадки выбраны из группы: ферромарганец, ферромолибден, ферроникель, феррохром и феррованадий, и введены в количестве, обеспечивающем содержание каждой из них в алюмотермитной смеси от 0,1% до 10%, при этом использована железная окалина, разделенная на фракции, смешанные в следующем соотношении: от 0,25 до 0,45 мм 20-35%, от 0,45 до 0,65 20-35%, свыше 0,65 мм 20-40% из условия получения максимального теплового эффекта.

2. Смесь по п. 1, отличающаяся тем, что легирующие добавки использованы в виде порошка с размером частиц не более 0,65 мм.

3. Способ алюмотермитной сварки стальных элементов, включающий размещение на свариваемых концах стальных элементов литейной формы, нагрев свариваемых концов стальных элементов в течение заданного интервала времени, помещение на литейную форму реакционного тигля с термитной смесью и заполнение промежутка между концами свариваемых стальных элементов расплавом металла, полученным в тигле путем алюмотермитной реакции, отличающийся тем, что используют алюмотермитную смесь по п. 1.

www.freepatent.ru

Алюмотермитная смесь для сварки стальных элементов и способ алюмотермитной сварки стальных элементов

Изобретение может быть использовано для жесткого долговременного соединения алюмотермитной сваркой стальных элементов, предпочтительно рельсов. Алюмотермитная смесь для сварки стальных элементов содержит прокаленную железную окалину, порошок алюминия и легирующие присадки. В качестве легирующих присадок использованы ферромарганец, и/или ферромолибден, и/или ферроникель, и/или феррохром, и/или феррованадий. Железная окалина предварительно измельчена и прокалена для перевода окислов металлов в высшие степени окисления. В смеси использованы фракции измельченной и прокаленной железной окалины, разделенные на ситах 0,25 мм, 0,45 мм, 0,65 мм, смешанные в заданном соотношении для получения максимального теплового эффекта. Изобретение обеспечивает повышение качества алюмотермитного сварного шва за счет обеспечения постоянства его состава. 2 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к области алюмотермитной сварки стальных элементов, предпочтительно рельсов, и может быть использовано в различных областях техники для жесткого долговременного соединения стальных элементов.

Известен (RU, заявка 97121417, опубл. 10.10.1999) состав алюмотермической смеси, содержащий алюминий, оксиды железа и феррохромную лигатуру, в состав которой входят железо, углерод, кремний и хром, при этом оксиды железа содержат пременные по качественному и количественному составу легирующие примеси.

Недостатком известного алюмотермитного состава следует признать значительный разброс параметров сварного шва, получаемого с использованием указанной алюмотермитной смеси из-за качественных и количественных различий в ее составе.

Известна (GB, патент 1223977, опубл. 01.04.1971) алюминотермитная реакционная смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащая в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов, и стальной наполнитель, при этом для сокращения времени реакции смесь содержит оксид железа и оксиды других металлов в виде пудры.

Недостатком известной смеси является то, что в используемой в ее составе окалине присутствует закись железа FeO, снижающая качество выплавляемой стали по следующим причинам: истинная температура разливки стали составляет примерно 1550°C; следовательно, пленка закиси железа (FeO), плавящаяся при температуре 1370°C, будет сильно перегрета и, обладая большой жидкоподвижностью, легко проникает в поры формы и вступает в химическое соединение с материалом формы с образованием пригара, образует шлак, пригорающий к отливке, что нарушает качество металла сварного шва. Кроме того, добавка оксида железа в виде пудры не обеспечивает равномерность волны горения, стабильность экзотермической реакции, а сокращение времени реакции нарушает процесс выплавки качественной стали для промежуточного литья. Из-за неравномерного распределения легирующих добавок, а также из-за уноса части этих добавок со шлаком снижается качество выплавляемой стали для промежуточного литья.

Наиболее близким аналогом алюмотермитной смеси разработанного состава можно признать (RU, патент 2446928, опубл. 10.04.2012) алюминотермитную реакционную смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащей в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов и стальной наполнитель, причем в качестве оксидов железа она содержит окалину, модифицированную в полном объеме прокаливанием при температуре в интервале 150-1000°C с одновременной продувкой воздухом, при этом все компоненты смеси перемешаны до равномерного распределения компонентов в объеме смеси и образования связнодисперсной структурированной системы, которая стабилизирована путем вакуумирования в эластичной воздухонепроницаемой упаковке. Предпочтительно известная смесь содержит окалину с однородными по размеру частицами, выбранными из диапазона частиц с размером 0,1-5 мм, обеспечивающими заданную скорость реакции и интервал времени для выплавки стали.

Недостатком известного состава алюмотермитной смеси следует признать разброс параметров получаемого с его использованием сварного шва из-за неоднозначности его состава, который может содержать как окись, так и закись железа в произвольном соотношении, кроме того, неопределенный состав легирующих примесей и металлов не позволяет получить сварной шов с постоянными параметрами.

Данный источник информации использован в качестве ближайшего аналога для объекта изобретения алюмотермитная смесь для сварки стальных элементов.

Известен (RU, патент 2349433, опубл. 20.03.2009) способ алюминотермитной сварки рельсов с предварительным высокотемпературным подогревом, необходимым для расплавления торцов рельсов после заливки в зазор между рельсами перегретого термитного металла, при охлаждении металла сварного шва ниже 800°C головку рельсов в стыке дополнительно охлаждают воздушно-водяной смесью с целью проведения поверхностной закалки, несколько повышающей твердость металла на поверхности катания.

Недостатком известного способа следует признать его технологическую сложность, а также недостаточную прочность сварного шва.

Известен (RU, патент 2163184, опубл. 20.02.2001) способ алюмотермитной сварки рельсов, при котором устанавливают концы рельсов с образованием между их торцами сварочного зазора, размещают вокруг концов рельсов в зоне сварочного зазора разъемную форму, уплотняют контакт разъемной формы с концами рельсов, устанавливают над формой реакционный тигель, заполненный дозой алюминотермитного состава, нагревают концы рельсов и разъемную форму до температуры в диапазоне (1000-1500)°C, поджигают дозу алюминотермитного состава и разогревают его до образования расплавленного металла, подают из реакционного тигля расплавленный металл в среднюю часть разъемной формы, после заполнения ее нижней части, дополнительно нагревают концы рельсов и залитый в сварочный зазор расплавленный металл до температуры не ниже 800°C в конце подачи расплавленного металла в разъемную форму путем подачи последних порций расплавленного металла в пространство над головками рельсов, выдерживают расплавленный металл до затвердевания и образования сварного шва, удаляют с головки сваренного рельса прибыльную часть сварного шва, после чего затвердевший сварной шов и область, близлежащую к последнему, охлаждают струей сжатого воздуха до температуры (250-300)°C, затем - на воздухе.

Недостатком способа является низкая твердость сварного шва, а также сложность технологии. Снижение физико-механических свойств обусловлено медленным охлаждением зоны сварного стыка.

Наиболее близким к предлагаемому объекту изобретения способом алюмотермитной сварки стальных элементов можно признать способ ремонта рельсов, применение которого позволяет восстанавливать рельсы железнодорожного пути без удаления их с полотна (RU, патент 2119854, опубл. 10.10.98 г.). Согласно известному способу устанавливают концы рельса на одном уровне с образованием между их торцами сварного зазора, размещают вокруг концов рельсов разъемную форму, нагревают концы рельса и разъемную форму до температуры свыше 1000 до 1500°C, помещают в тигель, установленный над формой алюмотермитную смесь и инициируют горение алюмотермитной смеси, заливают расплавленный металл, получаемый из алюмотермитной смеси, в разъемную форму с подачей части расплавленного металла в среднюю часть сварного зазора после заполнения его нижней части разъемной формы. В конце заливки осуществляют дополнительный нагрев всего места сварки до температуры не ниже 800°C путем подачи последних порций расплавленного металла в пространство над головками концов рельса. После затвердевания расплавленного металла удаляют с головки сваренного рельса прибыльную часть сварного шва.

Недостатком этого способа является снижение прочности сварного шва при его остывании под действием окружающего воздуха и, как следствие, невыполнение условия равнопрочности восстановленного участка рельса.

Техническая задача, решаемая посредством разработанного технического решения, состоит в обеспечении максимального теплового эффекта реакции с алюминием.

Технический результат, получаемый при реализации разработанного технического решения, состоит в повышении качества алюмотермитного сварного шва за счет обеспечения постоянства его состава.

Для достижения указанного технического результата применительно к объекту «алюмотермитная смесь» предложено использовать состав алюмотермитной смеси, содержащий железную окалину, предварительно измельченную и прокаленную для перевода оксидов металлов в высшие степени окисления, порошок алюминия и легирующие присадки, причем в качестве легирующих присадок использованы ферромарганец, и/или ферромолибден, и/или ферроникель, и/или феррохром, и/или феррованадий в количестве, обеспечивающем содержание каждого их них в алюмотермитной смеси от 0,1% до 10%, при этом использована железная окалина, разделенная на фракции, смешаные в следующем соотношении: от 0,25 до 0,45 мм 20-35%, от 0,45 до 0,65 - 20-35%, свыше 0,65 мм - 20-40% из условия максимального теплового эффекта.

Предпочтительно легирующие добавки использованы в виде порошка с размером частиц не более 0,65 мм.

Для достижения указанного технического результата при реализации объекта изобретения «способ» предложено использовать разработанный способ, включающий размещение на свариваемых концах стальных элементов литейной формы, нагрев свариваемых концов стальных элементов в течение заданного интервала времени, помещение на литейную форму реакционного тигеля с термитной смесью и заполнение промежутка между концами свариваемых стальных элементов расплавом металла, полученным в тигле путем алюмотермитной реакции, отличающийся тем, что используют алюмотермитную смесь состава, приведенного выше.

Достижение указанного технического результата обусловлено, кроме использования указанных легирующих добавок, использованием только оксидов железа Fe2O3 и Fe3O4, а также фракционированием прокаленной железной окалины, содержащей только высшие оксиды металлов, с использованием смеси фракций, обеспечивающей в каждом конкретном случае максимальный теплотворный эффект реакции с алюминием.

В процессе производства железную окалину измельчают, затем проводят доокисление ее в проходной печи при температуре не ниже 850°C, после чего подвергают разделению на фракции, проходящие через сита 0,25; 0,45; 0,65. Полученные фракции, кроме фракции - менее 0,25 мм - смешивают в пропорции, обеспечивающей максимальный теплотворный эффект. Как отмечено ранее, фракции предпочтительно смешивают в соотношении от 0,25 до 0,45 мм - от 20 до 35%, от 0,45 до 0,65 мм - от 20 до 35, свыше 0,65 - от 20 до 40%. Для создания алюмотермитной смеси обычно используют алюминиевые порошки марок: ПА-1, ПА-2, ПА-3, ПА-4, (Гост 6058-73), АПЖ и АКП по ТУ 1791-99-023-99, Ту-48-5-38-78. Для достижения необходимой твердости алюмотермитного сварного шва используют легирующие присадки: ферромарганец до содержания в алюмотермитной смеси от 0,1 до 10%, ферромолибден до содержания в алюмотермитной смеси от 0,1 до 10%, ферроникель до содержания в алюмотермитной смеси от 0,1 до 10%, феррохром до содержания в алюмотермитной смеси от 0,1 до 10%, феррованадий до содержания в алюмотермитной смеси от 0,1 до 10%. Использование легирующих добавок может происходит как совместно, так и по отдельности или в любом сочетании. Выбор и количество легирующих добавок зависит от назначения свариваемого соединения.

Состав металла алюмотермитого шва (%), обеспечивающий разрушающую нагрузку на сварной стык не менее 135 тонн (1350 кН), приведен в табл. 1.

Табл. 1.

При этом необходимо отметить, что медь и никель поступили в металл сварного шва из железной окалины или как примесь легирующих присадок.

Разработанное техническое решение реализуют следующим образом.

Из собранной на металлургическом производстве железной окалины любым известным способом (в частности, магнитный сепаратор) отделяют инородные примеси. Затем отобранную железную окалину измельчают и пропускают через проходную печь, иногда с принудительной подачей воздуха, для перевода всех присутствующих в окалине окислов металлов в высшие формы окисления. Обработаную железную окалину на ситовом разделителе разделяют на фракции 0,25-0,45 мм, 0,45-0,65 мм и свыше 0,65 мм. Для кажого конкретного случая применения алюмотермической сварки стальных элементов (учитывая массу свариваемых элементов, величину зазора между ними, внешние условия и т.д.) составляют наиболее предпочтительную смесь фракций для получения максимального теплового эффекта. В полученную смесь добавляют рецептурное количество порошка алюминия и рецептурные количества легирующих добавок и тщательно перемешивают. Термитная смесь готова к использованию.

Разработанный способ алюмотермитной сварки будет проиллюстрирован на примере сварки железнодорожных рельсов. Два рельса размещают на одной линии с зазором относительно друг друга. Размещают на свариваемых концах стальных рельсов литейную форму, нагревают внешним источником тепла концы свариваемых рельсов в течение заданного интервала времени до разогрева концов рельсов до температуры не менее 900°C, помещают на литейную форму реакционный тигель с ранее полученной алюмотермитной смесью, инициируют поджиг алюмотермитной смеси с заполнением полученным в тигле путем алюмотермической реакцией расплавом металла из литейной формы промежутка между концами свариваемых стальных элементов с получением сварного шва.

Для получения алюмотермитной смеси было использовано железной окалины, прокаленой в проходной печи при 850°C в течение 25 мин фракции 0,25-0,45 мм 2 кг, фракции 0,45-0,65 мм 2 кг и фракции свыше 0,65 мм 4 кг, алюминиевого порошка 2,3 кг, ферромарганца, измельченного до частиц размером 0,65 мм 0,3 кг, феррохрома, измельченного до частиц 0,65 мм 0,1 кг, ферроникеля, измельченного до частиц размером 0,65 мм 0.1 кг, ферромолибдена, измельченного до частиц размером 0,65 мм 0,1 кг. Полученую смесь тщательно перемешали. Свариваемые концы рельсов разместили на расстоянии 25 мм друг от друга, поместили на них литейную форму, с использованием газовой горелки нагрели свариваемые концы рельсов до температуры 900°C. Поместили в литейную форму тигель с 11,9 кг термитной смеси и инициировали горение алюмотермитной смеси. Расплавленный металл заполнил зазор между рельсами с образованием сварного шва. Количественный и качественный состав металла сварного шва приведен в табл. 2.

Полученное сварное соединение не содержит раковин и трещин, прочность на разрыв не менее (1350 кН).

bankpatentov.ru

АЛЮМОТЕРМИТНАЯ СМЕСЬ ДЛЯ СВАРКИ СТАЛЬНЫХ ЭЛЕМЕНТОВ И СПОСОБ АЛЮМОТЕРМИТНОЙ СВАРКИ СТАЛЬНЫХ ЭЛЕМЕНТОВ

Изобретение относится к области алюмотермитной сварки стальных элементов, предпочтительно рельсов, и может быть использовано в различных областях техники для жесткого долговременного соединения стальных элементов.

Известен (RU, заявка 97121417, опубл. 10.10.1999) состав алюмотермической смеси, содержащий алюминий, оксиды железа и феррохромную лигатуру, в состав которой входят железо, углерод, кремний и хром, при этом оксиды железа содержат пременные по качественному и количественному составу легирующие примеси.

Недостатком известного алюмотермитного состава следует признать значительный разброс параметров сварного шва, получаемого с использованием указанной алюмотермитной смеси из-за качественных и количественных различий в ее составе.

Известна (GB, патент 1223977, опубл. 01.04.1971) алюминотермитная реакционная смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащая в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов, и стальной наполнитель, при этом для сокращения времени реакции смесь содержит оксид железа и оксиды других металлов в виде пудры.

Недостатком известной смеси является то, что в используемой в ее составе окалине присутствует закись железа FeO, снижающая качество выплавляемой стали по следующим причинам: истинная температура разливки стали составляет примерно 1550°C; следовательно, пленка закиси железа (FeO), плавящаяся при температуре 1370°C, будет сильно перегрета и, обладая большой жидкоподвижностью, легко проникает в поры формы и вступает в химическое соединение с материалом формы с образованием пригара, образует шлак, пригорающий к отливке, что нарушает качество металла сварного шва. Кроме того, добавка оксида железа в виде пудры не обеспечивает равномерность волны горения, стабильность экзотермической реакции, а сокращение времени реакции нарушает процесс выплавки качественной стали для промежуточного литья. Из-за неравномерного распределения легирующих добавок, а также из-за уноса части этих добавок со шлаком снижается качество выплавляемой стали для промежуточного литья.

Наиболее близким аналогом алюмотермитной смеси разработанного состава можно признать (RU, патент 2446928, опубл. 10.04.2012) алюминотермитную реакционную смесь для сварки железнодорожных рельсов методом промежуточного литья, содержащей в стехиометрическом соотношении оксиды железа в виде промышленных отходов, металлический алюминий в качестве восстановителя, легирующие добавки в виде ферросплавов и металлов и стальной наполнитель, причем в качестве оксидов железа она содержит окалину, модифицированную в полном объеме прокаливанием при температуре в интервале 150-1000°C с одновременной продувкой воздухом, при этом все компоненты смеси перемешаны до равномерного распределения компонентов в объеме смеси и образования связнодисперсной структурированной системы, которая стабилизирована путем вакуумирования в эластичной воздухонепроницаемой упаковке. Предпочтительно известная смесь содержит окалину с однородными по размеру частицами, выбранными из диапазона частиц с размером 0,1-5 мм, обеспечивающими заданную скорость реакции и интервал времени для выплавки стали.

Недостатком известного состава алюмотермитной смеси следует признать разброс параметров получаемого с его использованием сварного шва из-за неоднозначности его состава, который может содержать как окись, так и закись железа в произвольном соотношении, кроме того, неопределенный состав легирующих примесей и металлов не позволяет получить сварной шов с постоянными параметрами.

Данный источник информации использован в качестве ближайшего аналога для объекта изобретения алюмотермитная смесь для сварки стальных элементов.

Известен (RU, патент 2349433, опубл. 20.03.2009) способ алюминотермитной сварки рельсов с предварительным высокотемпературным подогревом, необходимым для расплавления торцов рельсов после заливки в зазор между рельсами перегретого термитного металла, при охлаждении металла сварного шва ниже 800°C головку рельсов в стыке дополнительно охлаждают воздушно-водяной смесью с целью проведения поверхностной закалки, несколько повышающей твердость металла на поверхности катания.

Недостатком известного способа следует признать его технологическую сложность, а также недостаточную прочность сварного шва.

Известен (RU, патент 2163184, опубл. 20.02.2001) способ алюмотермитной сварки рельсов, при котором устанавливают концы рельсов с образованием между их торцами сварочного зазора, размещают вокруг концов рельсов в зоне сварочного зазора разъемную форму, уплотняют контакт разъемной формы с концами рельсов, устанавливают над формой реакционный тигель, заполненный дозой алюминотермитного состава, нагревают концы рельсов и разъемную форму до температуры в диапазоне (1000-1500)°C, поджигают дозу алюминотермитного состава и разогревают его до образования расплавленного металла, подают из реакционного тигля расплавленный металл в среднюю часть разъемной формы, после заполнения ее нижней части, дополнительно нагревают концы рельсов и залитый в сварочный зазор расплавленный металл до температуры не ниже 800°C в конце подачи расплавленного металла в разъемную форму путем подачи последних порций расплавленного металла в пространство над головками рельсов, выдерживают расплавленный металл до затвердевания и образования сварного шва, удаляют с головки сваренного рельса прибыльную часть сварного шва, после чего затвердевший сварной шов и область, близлежащую к последнему, охлаждают струей сжатого воздуха до температуры (250-300)°C, затем - на воздухе.

Недостатком способа является низкая твердость сварного шва, а также сложность технологии. Снижение физико-механических свойств обусловлено медленным охлаждением зоны сварного стыка.

Наиболее близким к предлагаемому объекту изобретения способом алюмотермитной сварки стальных элементов можно признать способ ремонта рельсов, применение которого позволяет восстанавливать рельсы железнодорожного пути без удаления их с полотна (RU, патент 2119854, опубл. 10.10.98 г.). Согласно известному способу устанавливают концы рельса на одном уровне с образованием между их торцами сварного зазора, размещают вокруг концов рельсов разъемную форму, нагревают концы рельса и разъемную форму до температуры свыше 1000 до 1500°C, помещают в тигель, установленный над формой алюмотермитную смесь и инициируют горение алюмотермитной смеси, заливают расплавленный металл, получаемый из алюмотермитной смеси, в разъемную форму с подачей части расплавленного металла в среднюю часть сварного зазора после заполнения его нижней части разъемной формы. В конце заливки осуществляют дополнительный нагрев всего места сварки до температуры не ниже 800°C путем подачи последних порций расплавленного металла в пространство над головками концов рельса. После затвердевания расплавленного металла удаляют с головки сваренного рельса прибыльную часть сварного шва.

Недостатком этого способа является снижение прочности сварного шва при его остывании под действием окружающего воздуха и, как следствие, невыполнение условия равнопрочности восстановленного участка рельса.

Техническая задача, решаемая посредством разработанного технического решения, состоит в обеспечении максимального теплового эффекта реакции с алюминием.

Технический результат, получаемый при реализации разработанного технического решения, состоит в повышении качества алюмотермитного сварного шва за счет обеспечения постоянства его состава.

Для достижения указанного технического результата применительно к объекту «алюмотермитная смесь» предложено использовать состав алюмотермитной смеси, содержащий железную окалину, предварительно измельченную и прокаленную для перевода оксидов металлов в высшие степени окисления, порошок алюминия и легирующие присадки, причем в качестве легирующих присадок использованы ферромарганец, и/или ферромолибден, и/или ферроникель, и/или феррохром, и/или феррованадий в количестве, обеспечивающем содержание каждого их них в алюмотермитной смеси от 0,1% до 10%, при этом использована железная окалина, разделенная на фракции, смешаные в следующем соотношении: от 0,25 до 0,45 мм 20-35%, от 0,45 до 0,65 - 20-35%, свыше 0,65 мм - 20-40% из условия максимального теплового эффекта.

Предпочтительно легирующие добавки использованы в виде порошка с размером частиц не более 0,65 мм.

Для достижения указанного технического результата при реализации объекта изобретения «способ» предложено использовать разработанный способ, включающий размещение на свариваемых концах стальных элементов литейной формы, нагрев свариваемых концов стальных элементов в течение заданного интервала времени, помещение на литейную форму реакционного тигеля с термитной смесью и заполнение промежутка между концами свариваемых стальных элементов расплавом металла, полученным в тигле путем алюмотермитной реакции, отличающийся тем, что используют алюмотермитную смесь состава, приведенного выше.

Достижение указанного технического результата обусловлено, кроме использования указанных легирующих добавок, использованием только оксидов железа Fe2O3 и Fe3O4, а также фракционированием прокаленной железной окалины, содержащей только высшие оксиды металлов, с использованием смеси фракций, обеспечивающей в каждом конкретном случае максимальный теплотворный эффект реакции с алюминием.

В процессе производства железную окалину измельчают, затем проводят доокисление ее в проходной печи при температуре не ниже 850°C, после чего подвергают разделению на фракции, проходящие через сита 0,25; 0,45; 0,65. Полученные фракции, кроме фракции - менее 0,25 мм - смешивают в пропорции, обеспечивающей максимальный теплотворный эффект. Как отмечено ранее, фракции предпочтительно смешивают в соотношении от 0,25 до 0,45 мм - от 20 до 35%, от 0,45 до 0,65 мм - от 20 до 35, свыше 0,65 - от 20 до 40%. Для создания алюмотермитной смеси обычно используют алюминиевые порошки марок: ПА-1, ПА-2, ПА-3, ПА-4, (Гост 6058-73), АПЖ и АКП по ТУ 1791-99-023-99, Ту-48-5-38-78. Для достижения необходимой твердости алюмотермитного сварного шва используют легирующие присадки: ферромарганец до содержания в алюмотермитной смеси от 0,1 до 10%, ферромолибден до содержания в алюмотермитной смеси от 0,1 до 10%, ферроникель до содержания в алюмотермитной смеси от 0,1 до 10%, феррохром до содержания в алюмотермитной смеси от 0,1 до 10%, феррованадий до содержания в алюмотермитной смеси от 0,1 до 10%. Использование легирующих добавок может происходит как совместно, так и по отдельности или в любом сочетании. Выбор и количество легирующих добавок зависит от назначения свариваемого соединения.

Состав металла алюмотермитого шва (%), обеспечивающий разрушающую нагрузку на сварной стык не менее 135 тонн (1350 кН), приведен в табл. 1.

Табл. 1.

При этом необходимо отметить, что медь и никель поступили в металл сварного шва из железной окалины или как примесь легирующих присадок.

Разработанное техническое решение реализуют следующим образом.

Из собранной на металлургическом производстве железной окалины любым известным способом (в частности, магнитный сепаратор) отделяют инородные примеси. Затем отобранную железную окалину измельчают и пропускают через проходную печь, иногда с принудительной подачей воздуха, для перевода всех присутствующих в окалине окислов металлов в высшие формы окисления. Обработаную железную окалину на ситовом разделителе разделяют на фракции 0,25-0,45 мм, 0,45-0,65 мм и свыше 0,65 мм. Для кажого конкретного случая применения алюмотермической сварки стальных элементов (учитывая массу свариваемых элементов, величину зазора между ними, внешние условия и т.д.) составляют наиболее предпочтительную смесь фракций для получения максимального теплового эффекта. В полученную смесь добавляют рецептурное количество порошка алюминия и рецептурные количества легирующих добавок и тщательно перемешивают. Термитная смесь готова к использованию.

Разработанный способ алюмотермитной сварки будет проиллюстрирован на примере сварки железнодорожных рельсов. Два рельса размещают на одной линии с зазором относительно друг друга. Размещают на свариваемых концах стальных рельсов литейную форму, нагревают внешним источником тепла концы свариваемых рельсов в течение заданного интервала времени до разогрева концов рельсов до температуры не менее 900°C, помещают на литейную форму реакционный тигель с ранее полученной алюмотермитной смесью, инициируют поджиг алюмотермитной смеси с заполнением полученным в тигле путем алюмотермической реакцией расплавом металла из литейной формы промежутка между концами свариваемых стальных элементов с получением сварного шва.

Для получения алюмотермитной смеси было использовано железной окалины, прокаленой в проходной печи при 850°C в течение 25 мин фракции 0,25-0,45 мм 2 кг, фракции 0,45-0,65 мм 2 кг и фракции свыше 0,65 мм 4 кг, алюминиевого порошка 2,3 кг, ферромарганца, измельченного до частиц размером 0,65 мм 0,3 кг, феррохрома, измельченного до частиц 0,65 мм 0,1 кг, ферроникеля, измельченного до частиц размером 0,65 мм 0.1 кг, ферромолибдена, измельченного до частиц размером 0,65 мм 0,1 кг. Полученую смесь тщательно перемешали. Свариваемые концы рельсов разместили на расстоянии 25 мм друг от друга, поместили на них литейную форму, с использованием газовой горелки нагрели свариваемые концы рельсов до температуры 900°C. Поместили в литейную форму тигель с 11,9 кг термитной смеси и инициировали горение алюмотермитной смеси. Расплавленный металл заполнил зазор между рельсами с образованием сварного шва. Количественный и качественный состав металла сварного шва приведен в табл. 2.

Полученное сварное соединение не содержит раковин и трещин, прочность на разрыв не менее (1350 кН).

edrid.ru

Способы сварки рельсов (Электроконтактная, электродуговая, газопрессовая и алюмотермитная сварка), страница 4

          Геометрия стрелочных переводов такова, что применение в пути сварочных машин для электроконтактной сварки затруднено, поэтому для сварки стыков в зоне перевода применяется термитная сварка, выполняемая с использованием специальной оснастки.

          Стыки в пределах стрелочных переводов проектов 2726, 2728. 2750 и 2799 подлежат алюминотермитной сварке в соответствии с ТУ «Алюминотермитная сварка рельсов в пределах стрелочных переводов»  1997 г.

          Для погашения продольных температурных сил, возникающих в рельсовых плетях, стрелочные переводы отделяются от бесстыкового пути двумя парами уравнительных рельсов с каждой стороны перево­да. Это типовое решение, написанное в ТУ-2000, не может быть ис­пользовано на участках, примыкающих к сварным стрелочным пере­водам на скоростных линиях.           

           На базе Экспериментального кольца ВНИИЖТа проводились опытные работы с использованием алюминотермитной сварки рельсовых элементов типов Р65 и Р50, полигонные и эксплуатационные испытания стрелочных переводов со сварными стыками. Во время полигонных испытаний алюминотермитных сварных соединений здесь было пропущено около 310 млн. т груза брутто.

          Установленный гарантийный срок службы сварных стыков стрелочных переводов, выполненных алюми­нотермитным способом, для рельсов типа Р65 составляет 100 млн. т брутто пропущенного по ним груза, но не более трех лет со дня проведения сварочных работ.           

          Сварка стыков (кроме изолирующих) стрелоч­ных переводов, уложенных на деревянных или же­лезобетонных брусьях, в главных, приемо-отправочных, станционных и горочных путях применяется на железных дорогах Российской Федерации с 1996 г. В Департаменте пути и сооружений разра­ботаны и утверждены Технические условия на алюминотермитную сварку рельсов в пределах стре­лочных переводов.

          В настоящее время на Экспериментальном кольце продолжают совершенствовать технологии алюминотермитной сварки рельсовых элементов стрелочных переводов вместе с фирмами «Элект­ро-Термит» и «Рельтех». Алюминотермитная сварка внедряется в метрополитенах для соединения пу­тевых и контактного рельсов. В то же время про­водятся научные исследования, направленные на создание отечественной технологии и материалов для ее реализации.

         Преимущества сварных стыков, выполненных по данной технологии, такие как: высокие прочностные характеристики, однородность структуры стали, повышенная прямолинейность подтверждены актами ВНИИЖТ и актами проверок качества сварки стыков стрелочных переводов на линии С.Петербург-Москва.

          В основе алюминотермитной сварки лежит хи­мическая реакция, происходящая с большим вы­делением тепла между основными частями тер­митной порции (окись железа и высокочистый алюминий тонкого помола) после ее точечного поджига с кислородом. К основным составным частям добавляются частицы стали для демпфи­рования реакции, а также в зависимости от свари­ваемого материала различные легирующие до­бавки (С, Mn, Cr, V, Мо). В результате образуется сталь определенного качества для сварки и шлак.

          Алюминотермитная сварка осуществляется путем нагрева и расплавления свариваемых металлов теплом термитов порошкообразных горящих смесей металлов с окислами металлов, главным образом, алюминиевого термита (смесь 22 % алюминия и 78 % железной окалины).

          Алюминотермитная сварка рельсов состоит из следующих операций:

-  рихтовка зазора между свариваемыми торцами рельсов;

-  формовка места сварки при помощи огнеупор­ных материалов;

-  прогрев рельсов;

-  заливка термитной стали в форму;

-  выдержка стали в форме;

-  удаление сварочной формы;

-  обработка сварного шва;

-  прогрев шва;

-  шлифовка рельсов в зоне сварки.

          Алюминотермитная сварка рельсов может применяться для сваривания объемнозакаленных рельсов с рельсами, имеющими поверхностную закалку, или поверхностно закаленных рельсов между собой, а также с термически неупрочненными.  При этом применяется термит повышенной прочности марки 1200 (с временным сопротивлением литого металла 1200 кН/мм). При сварке термически неупрочненных рельсов применяется термит обычной прочности марки 900.

          Алюминотермитная сварка  производится  при  положительной температуре воздуха не ниже +5°С. При отрицательной температуре требуется дополнительный прогрев концов рельсов на длине 1м от стыка.

Рис. 7.6.  Термическая обработка стыка.

В таблице 7.3 приведены наименьшие приемочные значения показателей прочности и пластичности рельсов, сваренных термитом, при статическом поперечном изгибе. При испытании образцов рельсов, сваренных по технологиям фирм «Электро-Термит» и «Рельтех», минимальные значения разрушающей нагрузки и стрелы прогиба соответствуют или превышают наименьшие приемочные значения показателей прочности и пластичности.

Таблица 7.3.

Наименьшие значения прочности и пластичности рельсов, при статическом поперечном изгибе.

     Зона растяжения образцов на пролете 1 м.

Разрушающая нагрузка, кН, для рельсов типа

Стрела прогиба, мм, для рельсов типа

Р65

Р50

Р65

Р50

Подошва (нагружение на головку)

1500

1000

20

20

Головка (нагружение на подошву)

1250

850

15

15

vunivere.ru

Термитная сварка — WiKi

Фейерверк от термитной сварки

Термитная сварка — способ сварки, при котором для нагрева металла используется термит, состоящий из порошкообразной смеси металлического алюминия или магния и железной окалины.

При использовании термита на основе алюминия соединяемые детали заформовывают огнеупорным материалом, подогревают, место сварки заливают расплавленным термитом, который предварительно зажигают (электродугой или запалом). Жидкое железо, сплавляясь с основным металлом, даёт прочное соединение. Сварка термитом на основе алюминия применяется для соединения стальных и чугунных деталей — стыковки рельсов, труб, заварки трещин, наплавки поверхностей при ремонте, для соединения разнообразных изделий (например, элементов заземляющего контура).

Термит на основе магния используется в основном для соединения телефонных и телеграфных проводов, жил кабелей и т. п. Из термитной смеси изготовляют цилиндрические шашки с осевым каналом для провода и выемкой с торца для запала. Подлежащие сварке концы проводов заводят в шашку, после чего шашку зажигают и провода осаживают. Термит на основе магния может быть использован также для сварки труб небольших диаметров.

Термитная (алюминотермитная) сварка применяется при сварке рельсов - для сварки применяется термит, расфасованный определенными порциями. Работу выполняет бригада из двух-трех человек. Общий вес используемого оборудования не превышает 350 – 400 кг. При выполнении сварки и сопутствующих технологических операций используются автономные источники энергии.

Алюминотермитная сварка рельсов имеет ряд преимуществ перед контактной сваркой: она не требует сложного дорогостоящего оборудования, большого количества рабочих, продолжительных перерывов в движении поездов. Кроме того она может применяться при сварке на стрелочных переводах. Процесс сварки одного рельсового стыка занимает около 50 минут, а благодаря возможности работы нескольких бригад одновременно, можно добиться большей производительности в «окно». Например, за двухчасовое «окно» силами трех бригад можно изготовить до 12 стыков.

ru-wiki.org