Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо. Atx на tl494
Простая переделка питателя ATX TL494 на 15-30 Вольт
Смотрите новое на видеоканале
Внимание! Перед переделкой следует убедиться, что БП полностью исправен; иначе сначала следует его отремонтировать, и только затем переделывать. Особенно стоит убедиться в исправности трансформаторов.В этой статье описано, как несложным путем доработать стандартный источник питания компьютера, чтобы получить высококачественный блок питания для общих применений. |
Сегодня можно в любой компьютерной фирме, занимающейся апгрейдом, купить за 100-200 руб неисправный блок питания ATX мощностью 300-400 Вт. В большинстве случаев неисправности этих БП, связаны со вздувшимися(высохшими) конденсаторами вторичных цепей питания. Вот на базе такого «бросового» блока можно сделать универсальный мощный блок питания для различной аппаратуры…
Схема предоставлена итальянским специалистом и повторялась многими радиолюбителями в сети интернет, и нашей лаборатории.
Преимущество этой реализации простота и великолепная повторяемость, из тех же отпаянных и ненужных более деталей. Главной изюминкой этой схемотехники является отсутствие необходимости перемотки трансформаторов.
Обычные дешевые ATX БП схемотехникой отличаются мало, с ШИМ-контроллером на микросхеме TL494 . Это очень простой ШИМ-контроллер, тем не менее, обладающий всеми необходимыми характеристиками. Полные аналоги TL494: KA7500, DBL494, M5T494P и подобные. Улучшенные аналоги — TL594 (содержит усиленные выходные ключи) и TL598 (уже содержит внутри кристалла двухтактные выходные каскады).
Первым делом с платы выпаиваются все вторичные цепи.
Оставляем только «дежурку» 12в и сам ШИМ-контроллер. И распаиваем новую схему в БП (выделено красным цветом).
Рекомендации:
- Если появится свист, то подбирайте RC-цепочку с 15-й ноги TL494 на землю.
- R17 лучше уменьшить до 1к.
Варианты простых доработок:
По токоограничению:
texvedkom.org
Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо / Хабр
Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).
В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.
Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.
Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.
Схема БП ATX Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах). Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.
Ссылка на схему в полном размере
Структурно разделим БП на следующие блоки: — выпрямитель сетевого напряжения с фильтром — источник дежурного питания(+5V standby) — основной источник питания(+12V,-12V,+3.3V,+5V,-5V) — схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ
Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.
Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.
Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.
Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.
Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.
Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.
ШИМ контроллер TL494. Давайте разберемся как же устроен ШИМ контроллер TL494. Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf
Начнем, как это ни странно, с конца — с выходной части микросхемы. Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом). Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2. Вариант управления задаётся через пин 13(Output control).
Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов. Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).
Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.
Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time. Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.
Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.
Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.
Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты. На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.
С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.
Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в. Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.
Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.
Обратная связь. Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.
Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.
Компенсация обратной связи Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.
К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.
У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.
Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам… Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1. С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя. Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.
Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).
Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1
От теории к практике Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:
Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:
Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.
Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.
Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.
Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!
По этой схеме лазерным утюгом была изготовлена плата:
Она встраивается в БП вот таким образом:
В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.
Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.
Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper'a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.
Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.
В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.
Будущее уже рядом Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!
Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.
Не переключайте канал, должно быть интересно.
Кстати, обещанная в начале книга: Куличков А.В. «Импульсные блоки питания для IBM PC»radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu
P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.
Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру
habr.com
Импульсный блок питания TL494 | Все своими руками
Обнаружена недоработка, прошу прощения, но поищите пока себе что то другое!Один товарищ попросил сделать для него импульсный блок питания для какой то штуки у него в гараже. Как бы питание у этого приборчика не стандартное и нужно 17-18В током до 5 А. Что бы собрать этот блок питания, решил использовать запчасти от старых разобранных ATX, трансформаторов таких у меня просто куча и есть с чего выбрать. Схему питальника использовал ту же, что и в прошлый раз собирал, вот ссылка на ИИП из ATX, только немного ее переделал.Первым делом что я сделал, это немного переделал схему. Пересчитал делители на ОУ под нужные выходные напряжения, убрал фильтр на входе, ну а все остальные компоненты остались такие же.
Вот схема силовой части и драйвераВот схема управляющей части на TL494
Разберусь с используемыми компонентами, большинство были заказаны с Китая. Цены на товар с Китая в десятки раз дешевле чем заказывать в интернет магазинах России
Диодный мост KBU1010 заказан был с КитаяДве емкости 330мкФ 200В и шунтирующие конденсаторы 0.1мкФ 1000В из блока питания ATX, они еще нормально себя чувствуютСиловые ключи использовал 13007 вот ссылка, мелкие 2SC945 вот ссылкаСиловой XZYEI-28C и развязывающий трансформаторWYEE-16C из ATXВыходной сдвоенный диод S10C40 на 10А 40В из того же ATXДроссель для стабилизации размотал и намотал 24 витка проводом 1ммВсе резисторы из Китая, 0,25Вт ссылка, 2Вт ссылка, подстроечный резистор 1кОм ссылка, токоизмерительный резистор 0,1Ом ссылкаКонденсаторы электролитические разной емкости ссылка, а так же пленочные ссылкаНу и диоды 1N4148 тоже Китай ссылка, остальные диоды были выбраны из всякого хламаУправляющая TL494 заказана с Китая
Когда все детали определены, пора перейти к разводке печатной платы. Снял все размеры компонентов и принялся за разводку печатки, все заняло часа 3-4.
Печатная плата силовой части и драйвераВот печатная плата управляющей частиСиловая часть схемы и развязывающий драйвер буду собирать на печатной плате размером 80*101мм, управляющая часть собрана на отдельном куске текстолита размерами 45*50мм.Скачать печатную платуПрочитайте Получить пароль от архива
Печатные платы изготавливал методом лазерной утюжки, травил раствором медного купороса на все было потрачено около часа. Причем больше времени заняла сама травка платы на подогреваемом растворе. Раствор стоит подогревать для ускорения процесса
Ну и пора переходить к сборке, печатных плат. На это было потрачено еще пару часов.Первый пуск источника питания как всегда через лампу, я тут описывал для чего это нужно. Далее испытания проводил уже без лампы, но через предохранитель 1,5А. Вот что у меня получилось
С помощью подстроечного резистора установил напряжение 17,5В, в качестве нагрузки пока выступает вентилятор 12В через балластный резистор 33Ом. Забыл на плате разместить этот балластный резистор, поэтому придется навесом его оставить
Расположение всех компонентов на плате выглядит так, для разрядки высоковольтных конденсаторов балластные резисторы по 120кОм установлены с другой стороны на вывод конденсаторов
Управляющая плата установлена на коротких проводниках из медной проволоки, на плате есть переменный резистор для точной настройки выходного напряжения
Диод и силовые ключи установлены на общий радиатор через прокладки для гальванической развязки, одного радиатора при принудительном охлаждения будет достаточно
Вот перемотанный дроссель для стабилизации напряжения
Две платы собранны максимально плотным монтажем, проверенны в условиях мастерской и готовы отправится в гараж знакомого
С ув. Эдуард
Полезные материалы по этой теме:
rustaste.ru
Лабораторный блок питания из компьютерного блока на TL494
Сегодня у нас неоднозначная заметка. Многие сочтут эту статейку невостребованной, но данный материал рассчитан, прежде всего, на новичков, которые хотят собрать простой лабораторный блок питания из компьютерного блока на TL494.
Ковыряясь в плате старого блока питания ПК, изменяя цепочки обратной связи и удаляя ненужные детали, всегда присутствует риск удалить что-то лишнее. Сделав ошибку на монтаже платы, шансов получить годное устройство, практически нет, лишь многократно возрастает риск спалить безвозвратно блок.
Немного подумав, как можно легко сделать лабораторный блок питания своими руками, мы создали адаптер для ШИМ TL494, на такую же TL494. Звучит немного глупо, но адаптер включает в себя ШИМ с новой обвязкой, которая уже разведена для контроля выходного напряжения и тока, а ковырять сам блок абсолютно ненужно. Достаточно удалить микросхему, установить и подключить адаптер – лабораторный блок практически готов.
Лабораторный блок питания из компьютерного блока на TL494
Схема адаптера для сборки лабораторного блока питания включает в себя минимальную обвязку ШИМ для ее работы.
Печатку этой для этой платы можно будет скачать в конце статьи. Она не содержит дефицитных компонентов и может быть собрана своими руками буквально за вечер.
За регулировку напряжение отвечает резистор R4, от позволяет регулировать выходное напряжение в диапазоне 0-17 В. Ток регулируется резистором R10 в пределах 0-10 А. В качестве шунта используются два резистора по 0,1 Ом х 10 Вт. По сути, с панели, где стояла микросхема, берется питание для адаптера, а возвращаются в блок лишь сигналы для транзисторов раскачки.
Если использовать три резистора по 0,1 Ом х 10 Вт в качестве шунта, то максимальный выходной ток будет достигать 15 А.
Вот так выглядит наш тестовый образец адаптера, установленный вместо стандартной микросхемы.
Плата-адаптер подойдет практически к любому блоку на основе TL494 в независимости от наличия дополнительных супервизоров, которые могут быть установлены производителем. При желании ненужные компоненты в блоке можно удалить, но если берут сомнения в правильности действий, то можно их и оставить.
Тесты лабораторного блока питания
Ну, и на закуску – финальные тесты после подключения вольтамперметра. Максимальное напряжение 17,1 В, а ток 9,89 А.
Важно! Необходимо учесть при сборке блока пару моментов:
- Штатные выходные конденсаторы по шине +12 В имеют максимально рабочее напряжение 16 В, их следует заменить, поставить новые с рабочим напряжением 25 В.
- Силовые диоды на очень старых и дешевых блоках могут не выдержать ток 10 А, это надо учесть, и при необходимости их заменить.
Выше описанный переходник по нашим наброскам изготовил и предоставил фотоматериалы Виталий Ликин из Волгограда. Скачать печатку в формате lay можно тут:
VK
Odnoklassniki
comments powered by HyperCommentsdiodnik.com
Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо / СоХабр
Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).
В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.
Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.
Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.
Схема БП ATX Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах). Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.
Ссылка на схему в полном размере
Структурно разделим БП на следующие блоки: — выпрямитель сетевого напряжения с фильтром — источник дежурного питания(+5V standby) — основной источник питания(+12V,-12V,+3.3V,+5V,-5V) — схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ
Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.
Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.
Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.
Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.
Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.
Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.
ШИМ контроллер TL494. Давайте разберемся как же устроен ШИМ контроллер TL494. Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf
Начнем, как это ни странно, с конца — с выходной части микросхемы. Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом). Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2. Вариант управления задаётся через пин 13(Output control).
Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов. Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).
Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.
Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time. Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.
Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.
Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.
Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты. На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.
С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.
Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в. Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.
Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.
Обратная связь. Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.
Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.
Компенсация обратной связи Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.
К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.
У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.
Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам… Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1. С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя. Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.
Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).
Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1
От теории к практике Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:
Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:
Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.
Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.
Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.
Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!
По этой схеме лазерным утюгом была изготовлена плата:
Она встраивается в БП вот таким образом:
В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.
Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.
Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper'a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.
Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.
В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.
Будущее уже рядом Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!
Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.
Не переключайте канал, должно быть интересно.
Кстати, обещанная в начале книга: Куличков А.В. «Импульсные блоки питания для IBM PC»radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu
P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.
sohabr.net
Замена SG6105 на TL494 с помощью платы-переходника
Когда радиолюбители берутся за переделки блоков питания от компьютера, блоки с ШИМ SG6105 и его аналогами стараются обходить стороной. Встроенные системы защиты в эту микросхему не дают возможности легко производить манипуляции с выходными напряжениями. Сегодня мы покажем, каким способом возможна замена SG6105 на TL494 с помощью простого переходника и продемонстрируем его в работе.
Замена SG6105 на TL494 с помощью платы-переходника
Особенностью ШИМ SG6105 является целый ряд встроенных защит, из-за чего производители обожают его использовать в своих блоках. SG6105 сразу может выключать блок при превышении (или при снижении) напряжения даже на одной из силовых шин, контролирует наличие отрицательных напряжений на выходе БП. А также имеет отдельные выходы для детекции перегрузки или другой нештатной аварийной ситуации. По сути, SG6105 имеет в своем составе TL494, два TL431 и кучу другой начинки, которая отвечает за вышеперечисленные защиты.
Популярный в народе TL494 легко поддается манипуляциям и имеет огромный потенциал для разного рода переделок. Сможет ли он полноценно заменить SG6105, сейчас увидим. Для этого мы набросали схему переходника, что бы лучше было понятно, как заменить ШИМ SG6105 на TL494.
Плата имеет компактные габариты 40х35 мм и встает на штатное место SG6105, для удобства лучше использовать панельку. Необходимо учесть, что блок питания запуститься сразу при включении в сеть и все защиты от короткого замыкания и перегрузки работать не будут!! Ссылка на печатку будет в конце статьи!Далее изготовили плату–переходник с одной микросхемы на другую. Как видим, такой переходник имеет на борту TL494 с минимальной обвязкой для работы, а также две TL431. В некоторых блоках встроенные TL431 в SG6105 не задействованы, но в других отвечают за формирование напряжений по шине 3,3 В, а также дежурных 5 В.
Прототип по нашим эскизам изготовил Виталий Ликин из Волгограда. При создании прототипа платы решено было пренебречь двумя TL431 из за особенностей этого блока. К стати, полезной фишкой такой платы является то, что если заменить R4 на переменный резистор с номиналом 10 кОм, можно уже получить уже блок питания с регулировкой напряжения от 0 В до 16,5 В.
Важно! При установке такого переходника необходимо учитывать некоторые нюансы, связанные с питанием SG6105 и Tl494. Для нормальной работы Tl494 питание должно быть в диапазоне 7-40 В; для SG6105 — напряжения питания составляет 5 В. В большинстве случаев 20 ножка SG6105 подключена к дежурке с напряжением 5 В, что недостаточно для нормальной работы TL494. Необходимо изменить подачу питания на 20 ножку согласно схеме.Переключив питание на другую обмотку дежурки, мы получаем напряжение питание ШИМ около 15—17 В, что достаточно для нормальной работы Tl494.
Подобный переходник имеет огромный потенциал т.к. он сможет упростить переделку блока на основе SG6105 и его аналогов ATE6105, FSP3529Z, HS8108, IW1688, SC6105, должен подходить практически ко всем блокам на основе этих МС. Ну, и конечно смотрим видео демонстрацию работы самого первого образца платы.
Как выяснилось позже из-за различных вариаций блоков на основе SG6105 наш самый первый образец не работал на некоторых моделях. Вникнув в особенности таких блоков мы видоизменили схему и дополнили ее так, что бы полностью унифицировать плату. В итоге наша схема заработала на всех моделях не зависимо от их схематических отличий, а наглядную работу самого первого варианта платы мы как раз и видим на видео.Если Вам понравились подобные эксперименты над блоками — ставьте лайк и поделитесь материалом с другими! Как и обещали, печатку платы можно скачать тут:
Вконтакте
Одноклассники
comments powered by HyperCommentsdiodnik.com
Зарядное из АТ блока питания 200 Вт на TL494
При переделке некоторых старых блоков АТ в зарядные устройства, можно столкнуться с некоторыми проблемами, в которых новичку тяжело разобраться. Мы попытаемся сегодня уделить немного времени таким моментам и расскажем, как можно сделать зарядное из АТ блока питания 200 Вт на основе ШИМ TL494. Опытом переделки поделится с вами Ильсур Валитов с Ульяновска.
Зарядное из АТ блока питания 200 Вт на TL494
Немножко теории. ШИМ TL494 был, есть и будет популярен среди радиолюбителей, на его основе очень часто встречаются как старые АТ блоки, так и современные АТХ. Вся суть переделок подобных БП заключается в корректировке режима работы TL494 для поднятия выходного напряжения блока до 14,4 В.
Если смотреть типовую схему включения TL494, то выходное напряжение блока будет зависеть от делителя, состоящего с резисторов R8 и R9. Увеличивая сопротивление R8, можно увеличивать и выходное напряжение БП. Проще говоря, ШИМ будет стараться поддерживать опорное напряжение 2,5 В на этом делителе, к которому подключена 1-я ножка TL494.
Все было бы хорошо, но существуют АТ блоки, где такой делитель подключен только к шине + 5 В.В таком блоке питания получается, что стабилизирована только шина +5 В. Если мы, с помощью резистора R7 (см. уже схему блока) увеличивая его сопротивление, добьемся выходного напряжения 14,4 В на шине +12 В, то при подключении АКБ зарядный ток будет составлять лишь 1-1,5 А. Этого явно мало, т.к. блок способен выдать больше. Для этого нам нужно стабилизировать шину +12 В, к которой будем подключать АКБ.
Выпаиваем R7 (нумерация деталей на схеме не совпадает с нумерацией на плате, но номиналы деталей соответствуют схеме).
Вместо него устанавливаем подстроечный резистор. Ножку резистора, которая шла на шину +5 В, подключаем к шине +12 В.
Подстроечный резистор настраиваем на 24 кОм, т.к. при таком его сопротивлении TL494 необходимо будет подать 14,4 В на выход БП, чтобы на делителе получилось 2,5 В.
Теперь с помощью подстроечного резистора можно немного откорректировать выходное напряжение.
Зарядное из АТ блока питания готово. Ну и, конечно, финальное фото процесса зарядки. При подключении сильно посаженной АКБ зарядные токи могут достигать 5 -7 А и выше, по мере заряда батареи ток будет падать.
Процесс зарядки можно будет считать оконченным, когда зарядный ток снизится до 0,5 А.
Вконтакте
Одноклассники
comments powered by HyperCommentsdiodnik.com