Электрический генератор. Генераторы эл


Электронный генератор - это... Что такое Электронный генератор?

Электронный генератор

Электронные генераторы — большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром.

Виды электронных генераторов

  • По форме выходного сигнала:
  • По частотному диапазону:
    • Низкочастотные
    • Высокочастотные
  • По принципу работы:
  • По назначению:

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы. Мощные преобразователи называются силовыми инверторами и относятся к силовой электронике.

Генераторы гармонических колебаний

Блок схема генератора

Генератор (производитель) электрических колебаний представляет собой усилитель с положительной обратной связью. Усилитель с отрицательной обратной связью является дискриминатором (подавителем, активным фильтром). Усилитель генератора может быть как однокаскадным, так и многокаскадным.

Типовой график зависимости амплитуды выходного сигнала генератора от частоты LC-генератор с перекрёстными связями на кольце из двух инверторов

Цепи положительной обратной связи выполняют две функции: сдвиг сигнала по фазе для получения петлевого сдвига близкого к n*2π и фильтра, пропускающего нужную частоту. Функции сдвига фазы и фильтра могут быть распределены на две составные части генератора - на усилитель и на цепи положительной обратной связи или целиком возложены на цепи положительной обратной связи. В цепи положительной обратной связи могут стоять усилители.

Необходимыми условиями для возникновения гармонических незатухающих колебаний являются:1. петлевой сдвиг фазы равный n*360°±90°,2. петлевое усиление >1,3. рабочая точка усилительного каскада в середине диапазона входных значений.Необходимость третьего условия.Петлевой сдвиг фазы и в триггере и в генераторе равен около 360°. Петлевое усиление в триггере почти вдвое больше, чем в генераторе, но триггер не генерирует, т.к. рабочие точки каскадов в триггере смещены на края диапазона входных значений и эти состояния в триггере устойчивы, а состояние со средней величиной входных значений - неустойчиво. Такой характеристикой обладает компаратор.В гармоническом генераторе среднее состояние устойчивое, а отклонения от среднего состояния неустойчивые.

История

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку.[4]

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема ("индуктивная трёхточка"). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера.

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. Существует ряд формул для определения ёмкостей делителя, чтобы не сорвалась генерация, но запас устойчивости по фазе составляет менее 30°, что образно похоже на корабль плывущий с креном 60° и более градусов.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор будет излучать одну частоту, то есть будет подобен монохроматорам в оптике, и будет иметь наибольший запас устойчивости по фазе (± 90°), что образно похоже на корабль плывущий без крена.

Применение

См. также

Ссылки

  • Шамшин И. Г., История технических средств коммуникации. Учеб. пособие., 2003. Дальневосточный Государственный Технический Университет.
  1. ↑ http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm На рис.8.1.а) изображён генератор Мейснера, а не генератор Хартлея
  2. ↑ http://radiomaster.ru/stati/radio/gen.php Рис.1.7 RC-генератор на транзисторе. Рис.1.8 RC-генератор с мостом Вина.
  3. ↑ http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm Рис.8.9. RC-генератор с трёхзвенной фазосдвигающей цепочкой (а) и осциллограмма выходного сигнала (б)
  4. ↑ http://historic.ru/books/item/f00/s00/z0000027/st054.shtml Радиотехника и радиофизика

dic.academic.ru

Электронный генератор Википедия

Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например усилителя охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра)

Генераторы электрических колебаний

  • По форме выходного сигнала:

Существуют также генераторы более сложных сигналов, таких, как телевизионная испытательная таблица

  • По частотному диапазону:
    • Низкочастотные
    • Высокочастотные
  • По принципу работы:
  • По назначению:

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы.

Генераторы гармонических колебаний

Блок схема генератора

Генератор гармонических колебаний представляет собой усилитель с положительной обратной связью. Термин положительная обратная связь означает, что фазовый сдвиг в петле обратной связи близок к 2π{\displaystyle 2\pi }, т. е. цепь обратной связи не инвертирует сигнал.

LC-генератор с перекрёстными связями. В этом генераторе синусоидальность выходного сигнала обеспечивается колебательным контуром в стоках транзисторов.

Необходимыми условиями для возникновения гармонических незатухающих колебаний с малыми искажениями синусоиды являются:

  1. петлевой сдвиг фазы равен 360°,
  2. обратная связь резонансная или квазирезонансная, как, например, в генераторе с мостом Вина, или сам усилитель является частотноизбирательным (резонансным).
  3. петлевое усиление точно равно 1,
  4. рабочая точка усилительного каскада находится на его линейном или приблизительно линейном участке.

Пояснения необходимости 2-го и 3-го условий.

Если петлевое усиление ниже 1 - то колебания затухают. Если петлевое усиление больше 1 - то колебания нарастают до физического ограничения, так, амплитуда выходного напряжения усилителя не может быть больше напряжения питания[4], при таком ограничении форма синусоидального напряжения искажается.

Примером структур с положительной обратной связью может служить мультивибратор, или иные релаксационные генераторы, но в таких схемах применены частотно-неизбирательные обратные связи и усилители, поэтому генерируемые ими колебания далеки от синусоидальных.

История

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку.[5]

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема («индуктивная трёхточка»). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. При оптимально рассчитанном емкостном делителе запас устойчивости по фазе составляет менее 30°.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор излучает одну частоту и имеет наибольший запас устойчивости по фазе (± 90°).

Применение

Далеко не полный список устройств, в которых применяются генераторы сигналов:

  • Устройства связи — радиоприемники (гетеродин в супергетеродинных радиоприёмниках), телевизионные приемники, мобильные телефоны, приёмопередатчики, аппаратура передачи данных и др.
  • Цифровая и вычислительная техника обязательно содержит генератор тактовых импульсов.
  • Импульсные источники питания, инверторы, источники бесперебойного электропитания.
  • Измерительные приборы — осциллографы, измерительные вольтметры, амперметры и др.
  • Медицинское оборудование — электрокардиографы, томографы, рентгенографы, электронные тонометры, аппараты для ультразвукового исследования (УЗИ), физиотерапевтические приборы и др.
  • Эхолоты.
  • Бытовая техника — программируемые стиральные машины, СВЧ-печи, посудомоечные машины и др.

Электромагнитная совместимость

Устройства, имеющие в своём составе генератор сигналов, потенциально способны создавать электромагнитные помехи другим электронным устройствам, поэтому при их разработке и эксплуатации приходится учитывать вопросы электромагнитной совместимости.

См. также

Примечания

Литература

  • Шамшин И. Г., История технических средств коммуникации. Учеб. пособие., 2003. Дальневосточный Государственный Технический Университет.

Ссылки

wikiredia.ru

Электронный генератор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Электронный генератор

Cтраница 1

Электронный генератор - это устройство, преобразующее электрическую энергию источника постоянного тока в энергию незатухающих электрических колебаний заданной формы и частоты.  [1]

Электронные генераторы классифицируются по ряду признаков.  [2]

Электронные генераторы могут работать в любом из классов А, В или С.  [4]

Электронные генераторы используют колебания свободных электронов или ионов, находящихся между электродами лампы.  [5]

Электронные генераторы используют колебания свободных электронов или ионов, находящихся между электродами лампы. Частота колебаний этих генераторов зависит от времени пролета электронов или ионов между определенными точками в лампе, которое в свою очередь зависит от величины приложенного напряжения и напряженности магнитного поля. Колебательная система в таком генераторе обеспечивает синфазность колебаний всех электронов.  [6]

Электронный генератор 3 - 1 состоит из триода ( электронной лампы) с колебательным контуром L2C2 в анодной цепи.  [8]

Электронные генераторы применяют для получения переменных токов высокой и повышенной частоты. Для высоких напряжений применяют преимущественно ламповые генераторы, а для низких напряжений - ламповые и транзисторные генераторы. Электронные генераторы являются устройствами, преобразующими постоянный ток в переменный ток определенной частоты.  [10]

Электронные генераторы имеют неоспоримые преимущества перед машинными преобразователями вследствие сравнительной простоты устройства, исключительно широкого диапазона частот колебаний от нескольких периодов в секунду до многих миллионов герц. Они являются основным оборудованием радиотехнических устройств и широко используются также в промышленных установках для нагрева металлических изделий и неметаллических материалов токами высокой частоты.  [11]

Электронные генераторы подразделяются на пять разновидностей: генераторы основных колебаний с возбудителями на контурах LC; генераторы основных колебаний с возбудителями на контурах RC; гетеродинные) генераторы с ручным управлением; гетеродинные генераторы с качающейся частотой; генераторы с дискретной сеткой ( растром) сигналов образцовых частот.  [12]

Электронный генератор представляет собой схему электронного усилителя ( на электронных лампах или на транзисторах) с положительной обратной связью, величина которой равна критическому значению.  [13]

Электронный генератор - это устройство, преобразующее электрическую энергию источника постоянного тока в анергию незатухающих электрических колебаний требуемой формы, частоты и мощности.  [14]

Электронные генераторы бывают с внешним и внутренним возбуждением. Генераторы с внешним возбуждением управляются от постороннего источника сигналов, а генераторы с внутренним возбуждением - автогенераторы - возбуждаются самостоятельно. Для объяснения работы любого электронного генератора его структурную схему представляют в виде усилителя и цепи положительной обратной связи ( см. гл. Сос Л / ( 1 - Kft) При К [ введение положительной обратной связи увеличивает коэффициент усиления усилителя. Однако если произведение / ( р приближается к единице, положение меняется - на выходе усилителя наблюдаются колебания даже при отсутствии сигнала на входе. Происходит самовозбуждение усилителя - превращение усилителя в генератор. Электронный автогенератор работает следующим образом. Это начальное напряжение усиливается усилителем и через цепь обратной связи в фазе подается на вход усилителя.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Электрический генератор - это... Что такое Электрический генератор?

Основная статья: Электрогенераторы и электродвигатели

Электрогенераторы в начале XX века

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История

Русский ученый Э.Х.Ленц еще в 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г. А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Динамо-машина Йедлика

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Основная статья Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Pixii Ипполит Пикси в 1832.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация

Электромеханические индукционные генераторы

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

 — устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
  • По виду выходного электрического тока
      • Трёхфазный генератор
        • С включением обмоток звездой
        • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также

Ссылки

brokgauz.academic.ru

Электрогенератор - Википедия

Электрогенераторы в начале XX века. Гиндукушская ГЭС, на реке Мургаб, бывшая во время ввода в эксплуатацию мощнейшей в Российской империи. Сделано в Венгрии: Компания , 1909 год.[1] Фотография Прокудина-Горского, 1911 год. У этого термина существуют и другие значения, см. Генератор.

Электри́ческий генера́тор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История[ | ]

Динамо-машина Йедлика[ | ]

В 1827 венгерский физик Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершён между 1853 и 1856 годами) и стационарная, и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея[ | ]

В 1831 году Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина[ | ]

Динамо-машины больше не используются для выработки электроэнергии из-за их размеров и сложности коммутаторов. Эта большая приводимая в действие ременной передачей сильноточная динамо-машина выдавала ток 310 ампер и напряжение 7 вольт или 2170 ватт, когда вращалась с частотой 1400 об/мин.

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Её работа основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832 году.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создаёт постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создаётся одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока в сетях электропитания и электронных постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Обратимость электрических машин

Русский учёный Э. Х. Ленц ещё 1833 году указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 году Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 году парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укреплённых неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжён устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 году, был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 года) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 году.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением даёт ток и тогда, когда его запускают из состояния покоя. В 1866—1867 годах ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 году бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 году А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укреплённый на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щёток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 году демонстрировались две одинаковые машины Грамма, соединённые проводами длиной 1 километр. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух принципов:

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Другие электрические генераторы, использующие вращение[ | ]

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор[ | ]

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация[ | ]

Электромеханические индукционные генераторы[ | ]

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

E=−dΦdt{\displaystyle E=-{\frac {d\Phi }{dt}}} — устанавливает связь между ЭДС и скоростью изменения магнитного потока Φ{\displaystyle \Phi } пронизывающего обмотку генератора.

Классификация электромеханических генераторов[ | ]

  • По типу первичного двигателя:
  • По виду выходного электрического тока:
  • Вид соединения обмоток:
    • С включением обмоток звездой
    • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также[ | ]

Примечания[ | ]

Ссылки[ | ]

encyclopaedia.bid

Электрический генератор — википедия фото

Динамо-машина Йедлика

В 1827 венгерский физик Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершён между 1853 и 1856 годами) и стационарная, и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

В 1831 году Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

  Динамо-машины больше не используются для выработки электроэнергии из-за их размеров и сложности коммутаторов. Эта большая приводимая в действие ременной передачей сильноточная динамо-машина выдавала ток 310 ампер и напряжение 7 вольт или 2170 ватт, когда вращалась с частотой 1400 об/мин.

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Её работа основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832 году.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создаёт постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создаётся одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока в сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Обратимость электрических машин

Русский учёный Э. Х. Ленц ещё 1833 году указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 году Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 году парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укреплённых неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжён устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 году, был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 года) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 году.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением даёт ток и тогда, когда его запускают из состояния покоя. В 1866—1867 годах ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 году бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 году А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укреплённый на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щёток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 году демонстрировались две одинаковые машины Грамма, соединённые проводами длиной 1 километр. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух принципов:

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

org-wikipediya.ru

Электрический генератор — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Генератор.

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История

Динамо-машина Йедлика

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1853 и 1856) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

В 1831 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Обратимость электрических машин

Русский учёный Э. Х. Ленц ещё 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866—1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 г. А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация

Электромеханические индукционные генераторы

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

<math>E=-\frac{d\Phi}{dt}</math> — устанавливает связь между ЭДС и скоростью изменения магнитного потока <math>\Phi</math> пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
  • По виду выходного электрического тока
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также

Напишите отзыв о статье "Электрический генератор"

Примечания

  1. ↑ Studiolum: [wangfolyo.com/2015/09/ganz-abraham-hindukushnal.html Abraham Ganz at the Hindukush] (англ.).

Ссылки

  • [www.computerra.ru/think/kafedra/316331/ Униполярный генератор], Компьютерра
  • [www.elektromehanicka.narod.ru Конструкции электрических машин]

Отрывок, характеризующий Электрический генератор

– А наш чайный столик? – О, да! – Отчего вы никогда не бывали у Annette? – спросила маленькая княгиня у Анатоля. – А я знаю, знаю, – сказала она, подмигнув, – ваш брат Ипполит мне рассказывал про ваши дела. – О! – Она погрозила ему пальчиком. – Еще в Париже ваши проказы знаю! – А он, Ипполит, тебе не говорил? – сказал князь Василий (обращаясь к сыну и схватив за руку княгиню, как будто она хотела убежать, а он едва успел удержать ее), – а он тебе не говорил, как он сам, Ипполит, иссыхал по милой княгине и как она le mettait a la porte? [выгнала его из дома?] – Oh! C'est la perle des femmes, princesse! [Ах! это перл женщин, княжна!] – обратился он к княжне. С своей стороны m lle Bourienne не упустила случая при слове Париж вступить тоже в общий разговор воспоминаний. Она позволила себе спросить, давно ли Анатоль оставил Париж, и как понравился ему этот город. Анатоль весьма охотно отвечал француженке и, улыбаясь, глядя на нее, разговаривал с нею про ее отечество. Увидав хорошенькую Bourienne, Анатоль решил, что и здесь, в Лысых Горах, будет нескучно. «Очень недурна! – думал он, оглядывая ее, – очень недурна эта demoiselle de compagn. [компаньонка.] Надеюсь, что она возьмет ее с собой, когда выйдет за меня, – подумал он, – la petite est gentille». [малютка – мила.] Старый князь неторопливо одевался в кабинете, хмурясь и обдумывая то, что ему делать. Приезд этих гостей сердил его. «Что мне князь Василий и его сынок? Князь Василий хвастунишка, пустой, ну и сын хорош должен быть», ворчал он про себя. Его сердило то, что приезд этих гостей поднимал в его душе нерешенный, постоянно заглушаемый вопрос, – вопрос, насчет которого старый князь всегда сам себя обманывал. Вопрос состоял в том, решится ли он когда либо расстаться с княжной Марьей и отдать ее мужу. Князь никогда прямо не решался задавать себе этот вопрос, зная вперед, что он ответил бы по справедливости, а справедливость противоречила больше чем чувству, а всей возможности его жизни. Жизнь без княжны Марьи князю Николаю Андреевичу, несмотря на то, что он, казалось, мало дорожил ею, была немыслима. «И к чему ей выходить замуж? – думал он, – наверно, быть несчастной. Вон Лиза за Андреем (лучше мужа теперь, кажется, трудно найти), а разве она довольна своей судьбой? И кто ее возьмет из любви? Дурна, неловка. Возьмут за связи, за богатство. И разве не живут в девках? Еще счастливее!» Так думал, одеваясь, князь Николай Андреевич, а вместе с тем всё откладываемый вопрос требовал немедленного решения. Князь Василий привез своего сына, очевидно, с намерением сделать предложение и, вероятно, нынче или завтра потребует прямого ответа. Имя, положение в свете приличное. «Что ж, я не прочь, – говорил сам себе князь, – но пусть он будет стоить ее. Вот это то мы и посмотрим». – Это то мы и посмотрим, – проговорил он вслух. – Это то мы и посмотрим. И он, как всегда, бодрыми шагами вошел в гостиную, быстро окинул глазами всех, заметил и перемену платья маленькой княгини, и ленточку Bourienne, и уродливую прическу княжны Марьи, и улыбки Bourienne и Анатоля, и одиночество своей княжны в общем разговоре. «Убралась, как дура! – подумал он, злобно взглянув на дочь. – Стыда нет: а он ее и знать не хочет!» Он подошел к князю Василью. – Ну, здравствуй, здравствуй; рад видеть. – Для мила дружка семь верст не околица, – заговорил князь Василий, как всегда, быстро, самоуверенно и фамильярно. – Вот мой второй, прошу любить и жаловать. Князь Николай Андреевич оглядел Анатоля. – Молодец, молодец! – сказал он, – ну, поди поцелуй, – и он подставил ему щеку. Анатоль поцеловал старика и любопытно и совершенно спокойно смотрел на него, ожидая, скоро ли произойдет от него обещанное отцом чудацкое. Князь Николай Андреевич сел на свое обычное место в угол дивана, подвинул к себе кресло для князя Василья, указал на него и стал расспрашивать о политических делах и новостях. Он слушал как будто со вниманием рассказ князя Василья, но беспрестанно взглядывал на княжну Марью. – Так уж из Потсдама пишут? – повторил он последние слова князя Василья и вдруг, встав, подошел к дочери. – Это ты для гостей так убралась, а? – сказал он. – Хороша, очень хороша. Ты при гостях причесана по новому, а я при гостях тебе говорю, что вперед не смей ты переодеваться без моего спроса. – Это я, mon pиre, [батюшка,] виновата, – краснея, заступилась маленькая княгиня. – Вам полная воля с, – сказал князь Николай Андреевич, расшаркиваясь перед невесткой, – а ей уродовать себя нечего – и так дурна. И он опять сел на место, не обращая более внимания на до слез доведенную дочь. – Напротив, эта прическа очень идет княжне, – сказал князь Василий. – Ну, батюшка, молодой князь, как его зовут? – сказал князь Николай Андреевич, обращаясь к Анатолию, – поди сюда, поговорим, познакомимся. «Вот когда начинается потеха», подумал Анатоль и с улыбкой подсел к старому князю. – Ну, вот что: вы, мой милый, говорят, за границей воспитывались. Не так, как нас с твоим отцом дьячок грамоте учил. Скажите мне, мой милый, вы теперь служите в конной гвардии? – спросил старик, близко и пристально глядя на Анатоля. – Нет, я перешел в армию, – отвечал Анатоль, едва удерживаясь от смеха. – А! хорошее дело. Что ж, хотите, мой милый, послужить царю и отечеству? Время военное. Такому молодцу служить надо, служить надо. Что ж, во фронте? – Нет, князь. Полк наш выступил. А я числюсь. При чем я числюсь, папа? – обратился Анатоль со смехом к отцу. – Славно служит, славно. При чем я числюсь! Ха ха ха! – засмеялся князь Николай Андреевич. И Анатоль засмеялся еще громче. Вдруг князь Николай Андреевич нахмурился. – Ну, ступай, – сказал он Анатолю. Анатоль с улыбкой подошел опять к дамам. – Ведь ты их там за границей воспитывал, князь Василий? А? – обратился старый князь к князю Василью. – Я делал, что мог; и я вам скажу, что тамошнее воспитание гораздо лучше нашего. – Да, нынче всё другое, всё по новому. Молодец малый! молодец! Ну, пойдем ко мне. Он взял князя Василья под руку и повел в кабинет. Князь Василий, оставшись один на один с князем, тотчас же объявил ему о своем желании и надеждах. – Что ж ты думаешь, – сердито сказал старый князь, – что я ее держу, не могу расстаться? Вообразят себе! – проговорил он сердито. – Мне хоть завтра! Только скажу тебе, что я своего зятя знать хочу лучше. Ты знаешь мои правила: всё открыто! Я завтра при тебе спрошу: хочет она, тогда пусть он поживет. Пускай поживет, я посмотрю. – Князь фыркнул. – Пускай выходит, мне всё равно, – закричал он тем пронзительным голосом, которым он кричал при прощаньи с сыном. – Я вам прямо скажу, – сказал князь Василий тоном хитрого человека, убедившегося в ненужности хитрить перед проницательностью собеседника. – Вы ведь насквозь людей видите. Анатоль не гений, но честный, добрый малый, прекрасный сын и родной. – Ну, ну, хорошо, увидим. Как оно всегда бывает для одиноких женщин, долго проживших без мужского общества, при появлении Анатоля все три женщины в доме князя Николая Андреевича одинаково почувствовали, что жизнь их была не жизнью до этого времени. Сила мыслить, чувствовать, наблюдать мгновенно удесятерилась во всех их, и как будто до сих пор происходившая во мраке, их жизнь вдруг осветилась новым, полным значения светом. Княжна Марья вовсе не думала и не помнила о своем лице и прическе. Красивое, открытое лицо человека, который, может быть, будет ее мужем, поглощало всё ее внимание. Он ей казался добр, храбр, решителен, мужествен и великодушен. Она была убеждена в этом. Тысячи мечтаний о будущей семейной жизни беспрестанно возникали в ее воображении. Она отгоняла и старалась скрыть их. «Но не слишком ли я холодна с ним? – думала княжна Марья. – Я стараюсь сдерживать себя, потому что в глубине души чувствую себя к нему уже слишком близкою; но ведь он не знает всего того, что я о нем думаю, и может вообразить себе, что он мне неприятен». И княжна Марья старалась и не умела быть любезной с новым гостем. «La pauvre fille! Elle est diablement laide», [Бедная девушка, она дьявольски дурна собою,] думал про нее Анатоль. M lle Bourienne, взведенная тоже приездом Анатоля на высокую степень возбуждения, думала в другом роде. Конечно, красивая молодая девушка без определенного положения в свете, без родных и друзей и даже родины не думала посвятить свою жизнь услугам князю Николаю Андреевичу, чтению ему книг и дружбе к княжне Марье. M lle Bourienne давно ждала того русского князя, который сразу сумеет оценить ее превосходство над русскими, дурными, дурно одетыми, неловкими княжнами, влюбится в нее и увезет ее; и вот этот русский князь, наконец, приехал. У m lle Bourienne была история, слышанная ею от тетки, доконченная ею самой, которую она любила повторять в своем воображении. Это была история о том, как соблазненной девушке представлялась ее бедная мать, sa pauvre mere, и упрекала ее за то, что она без брака отдалась мужчине. M lle Bourienne часто трогалась до слез, в воображении своем рассказывая ему , соблазнителю, эту историю. Теперь этот он , настоящий русский князь, явился. Он увезет ее, потом явится ma pauvre mere, и он женится на ней. Так складывалась в голове m lle Bourienne вся ее будущая история, в самое то время как она разговаривала с ним о Париже. Не расчеты руководили m lle Bourienne (она даже ни минуты не обдумывала того, что ей делать), но всё это уже давно было готово в ней и теперь только сгруппировалось около появившегося Анатоля, которому она желала и старалась, как можно больше, нравиться. Маленькая княгиня, как старая полковая лошадь, услыхав звук трубы, бессознательно и забывая свое положение, готовилась к привычному галопу кокетства, без всякой задней мысли или борьбы, а с наивным, легкомысленным весельем. Несмотря на то, что Анатоль в женском обществе ставил себя обыкновенно в положение человека, которому надоедала беготня за ним женщин, он чувствовал тщеславное удовольствие, видя свое влияние на этих трех женщин. Кроме того он начинал испытывать к хорошенькой и вызывающей Bourienne то страстное, зверское чувство, которое на него находило с чрезвычайной быстротой и побуждало его к самым грубым и смелым поступкам. Общество после чаю перешло в диванную, и княжну попросили поиграть на клавикордах. Анатоль облокотился перед ней подле m lle Bourienne, и глаза его, смеясь и радуясь, смотрели на княжну Марью. Княжна Марья с мучительным и радостным волнением чувствовала на себе его взгляд. Любимая соната переносила ее в самый задушевно поэтический мир, а чувствуемый на себе взгляд придавал этому миру еще большую поэтичность. Взгляд же Анатоля, хотя и был устремлен на нее, относился не к ней, а к движениям ножки m lle Bourienne, которую он в это время трогал своею ногою под фортепиано. M lle Bourienne смотрела тоже на княжну, и в ее прекрасных глазах было тоже новое для княжны Марьи выражение испуганной радости и надежды. «Как она меня любит! – думала княжна Марья. – Как я счастлива теперь и как могу быть счастлива с таким другом и таким мужем! Неужели мужем?» думала она, не смея взглянуть на его лицо, чувствуя всё тот же взгляд, устремленный на себя. Ввечеру, когда после ужина стали расходиться, Анатоль поцеловал руку княжны. Она сама не знала, как у ней достало смелости, но она прямо взглянула на приблизившееся к ее близоруким глазам прекрасное лицо. После княжны он подошел к руке m lle Bourienne (это было неприлично, но он делал всё так уверенно и просто), и m lle Bourienne вспыхнула и испуганно взглянула на княжну. «Quelle delicatesse» [Какая деликатность,] – подумала княжна. – Неужели Ame (так звали m lle Bourienne) думает, что я могу ревновать ее и не ценить ее чистую нежность и преданность ко мне. – Она подошла к m lle Bourienne и крепко ее поцеловала. Анатоль подошел к руке маленькой княгини. – Non, non, non! Quand votre pere m'ecrira, que vous vous conduisez bien, je vous donnerai ma main a baiser. Pas avant. [Нет, нет, нет! Когда отец ваш напишет мне, что вы себя ведете хорошо, тогда я дам вам поцеловать руку. Не прежде.] – И, подняв пальчик и улыбаясь, она вышла из комнаты.

wiki-org.ru