Образование кислорода в природе и получение его в технике. Как получить кислород из углекислого газа


Образование кислорода в природе и получение его в технике

Миллионы лет непрерывно происходит потребление кислорода.

Он в огромных количествах расходуется на медленное и быстрое окисление, на горение и взрыв, а состав воздуха остается неизменным, содержание кислорода в нем не уменьшается.

Как же воздух пополняется кислородом?

Еще в конце XVIII века был поставлен опыт, который поможет нам ответить на этот вопрос.

Под стеклянный колпак была помещена зажженная свеча. Некоторое время свеча горела, но вскоре погасла:

кислород воздуха под колпаком был весь израсходован. Время горения свечи было зафиксировано.

Предполагая, что растения играют какую-то роль в образовании кислорода, опыт был повторен. Рядом с зажженной свечой положили пучок мяты. Горящую свечу и мяту накрыли тем же колпаком. Лучи солнечного света, проникая через стекло колпака, падали на растение, освещая его зеленые листья. Прошло много времени — больше, чем в первом опыте, — но свеча не гасла и продолжала гореть обычным пламенем. Так было установлено, что зеленые листья растений изменяют состав воздуха и на свету выделяют кислород. Одновременно было открыто, что растения извлекают из воздуха углекислый газ.

Никто в то время не мог еще объяснить суть этого замечательного явления. Честь открытия роли растений в жизни нашей планеты принадлежит великому русскому ученому Клименту Аркадьевичу Тимирязеву.

Если посмотреть через микроскоп на срез зеленого листа, то в клетках, похожих на пчелиные соты, можно увидеть зеленые зерна — хлоропласты. Их также называют хлорофилловыми зернами. В каждой клеточке листа содержится от 25 до 50 хлорофилловых зерен. Это о ник говорил Тимирязев: «Хлорофилловое зерно — тот фокус, та точка в мировом пространстве, где солнечный луч, превращаясь в химическую энергию, становится источником всей жизни на земле».

Что же происходит в зеленых листьях растений? В листьях имеются многочисленные отверстия — устьица, которые служат растению для дыхания и питания. Через эти устьица из воздуха в листья проникает углекислый газ. Своими корнями растение всасывает влагу из земли и подает ее к листьям по тонким капиллярам ствола и стеблей.

Под влиянием света и тепла солнечных лучей в хлорофилловых зернах листа между водой и углекислотой происходит сложная химическая реакция — фотосинтез. В результате образуются продукты, переходящие в виноградный сахар и кислород.

Виноградный сахар имеет особое название — глюкоза, которое произошло от греческого слова «глюкос», означающего «сладкий».

Молекулы глюкозы состоят из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. На образование 1 молекулы глюкозы необходимо 6 молекул углекислого газа (СO2) и 6 молекул воды (Н2O). При этом должно выделиться 6 молекул кислорода. Следовательно, когда образуется 1 грамм глюкозы, освобождается более 1 грамма, или около 900 кубических сантиметров, чистого кислорода.

Так под влиянием солнечного света и тепла в хлорофилловых зернах растений, живущих на земле и под водой, происходит образование кислорода, которым непрерывно пополняется наша планета.

Растения являются неиссякаемым источником необходимого для жизни кислорода, и их по праву можно назвать «зеленой фабрикой кислорода».

До последнего времени считали, что кислород, который выделяется из растений при фотосинтезе, отщепляется от углекислого газа. Полагали, что в хлорофилловых зернах под действием света происходит расщепление молекулы углекислого газа на кислород и углерод. Углерод, вступая в реакцию с водой, образует, в конечном счете, глюкозу, а кислород выделяется в атмосферу.

В настоящее время существует другая теория. Считают, что в хлорофилловых зернах под действием солнечных лучей происходит распад не молекулы углекислого газа, а молекулы воды. При этом образуется кислород, который выделяется в атмосферу, и водород, который в соединении с углекислым газом дает глюкозу.

Теория эта получила свое экспериментальное подтверждение в 1941 году в опытах А. П. Виноградова, который впервые применил для изучения фотосинтеза тяжелый изотоп кислорода О18.

Поливая растение водой, содержащей тяжелый изотоп О18, А. П. Виноградов наблюдал, что чем больше тяжелого изотопа кислорода О18 содержалось в воде, которой поливали растение, тем больше его находили в выделяющемся кислороде.

Если поливать растение обычной водой и поместить его в атмосферу углекислого газа, содержащего тяжелый изотоп кислорода О18, то в выделяющемся при фотосинтезе кислороде изотоп О18 не обнаруживается.

Эти опыты убедительно показали, что при фотосинтезе в зеленых листьях растений кислород получается не за счет углекислого газа, а за счет разложения воды. Водород, входящий в состав воды, вместе с углекислотой идет на образование глюкозы.

Глюкоза в листьях не остается. Она, как растворимое питательное вещество, разносится по всему растению и служит ему пищей и строительным материалом для образования клетчатки. Из клетчатки состоят корни, стволы, стебли и листья растений.

Часть глюкозы превращается в крахмал и откладывается в плодах и зернах.

Для жизни и развития растения необходимы солнечный свет и непрерывное поступление к нему углекислого газа и воды. В процессе питания растения воздух вокруг него обогащается кислородом и обедняется углекислым газом. Благодаря работе ветра воздух перемешивается, и таким образом у листьев растения поддерживается постоянная концентрация углекислого газа.

А как же обеспечивается подача углекислого газа к листьям в жаркую безветренную погоду? В такую погоду молекулы углекислого газа, беспорядочно двигаясь в воздушном пространстве, очутившись около зеленого листа, вдруг резко поворачивают к нему.

Какая сила заставляет их свернуть к листу?

Если наполнить двумя различными газами сосуд, разделенный перегородкой, и затем осторожно вынуть ее, газы перемешаются, образуя однородную смесь. Такое же явление можно наблюдать, если привести в соприкосновение два различных раствора.

Если разделить между собой два различных газа или раствора, поместив между ними перегородку из желатины, кожи или другого мелкопористого материала, можно заметить, как через некоторое время по обеим сторонам перегородки концентрации газов или растворов будут одинаковы.

Процессы самопроизвольного перемешивания газов или жидкостей, а также проникновение их через полупроницаемые перегородки называются диффузией.

Скорость диффузии тем больше, чем больше разница в концентрациях диффундирующих веществ.

Вот почему, как только концентрация углекислого газа у зеленого листа становится меньше, чем на некотором расстоянии от него, воздух около листа пополняется молекулами углекислого газа из близлежащих слоев атмосферы. Их места занимают сотни, тысячи и миллионы молекул углекислого газа из более отдаленных частей пространства.

Одновременно с процессом диффузии углекислого газа идет процесс диффузии кислорода от зеленого листа в более отдаленные пространства, где концентрация его меньше.

Под водой, как и на суше, растения питаются углекислым газом и вырабатывают глюкозу и крахмал, освобождая кислород.

Откуда же берется углекислый газ в воде. Он образуется при дыхании животных и растений, живущих под водой. Кроме того, он попадает туда из воздуха, растворяясь в поверхностных слоях воды. Перемешиванием, или диффузией, углекислый газ проникает вглубь.

Углекислый газ хорошо растворяется в воде. Его растворимость при низких температурах в 35 раз больше растворимости кислорода. В литре воды при температуре 0° и давлении 760 миллиметров растворяется 50 кубических сантиметров кислорода, а углекислого газа — более 1700 кубических сантиметров. Хотя при температуре воды 20° углекислого газа в литре растворится примерно половина от этого количества, но и этого достаточно, чтобы растения, находящиеся под водой, не испытывали недостатка в углекислом газе. На зеленой поверхности подводных растений происходит тот же процесс усвоения углерода, что и на воздухе.

Налейте в стакан обыкновенной водопроводной воды и пропустите через нее углекислый газ. Опустите в воду растение и накройте его воронкой. На узкую часть воронки наденьте пробирку, наполненную водой. Вынесите стакан с растением на солнечный свет. Через несколько часов в пробирке соберется заметное количество газа. Снимите пробирку с узкой части воронки и под водой

Растение, находясь под водой, при питании выделяет кислород.

заткните ее пробкой. Теперь можно вынуть пробирку из воды и опрокинуть ее пробкой вверх. Оставшаяся в пробирке вода опустится на дно, а газ окажется над водой. Откройте пробку. Так как плотность кислорода несколько больше плотности воздуха, кислород некоторое время (пока не продиффундирует в воздух) останется в пробирке. Опустите в пробирку тлеющую лучинку, и вы убедитесь в том, что газ, который выделился из растения, — кислород.

Образующийся в воде кислород равномерно распределяется по всей толще воды, насыщая ее. Если кислорода окажется больше, чем его может раствориться в воде при данной температуре, избыток его уйдет в воздух. Если его будет меньше, то недостающее количество кислорода дополнится из воздуха.

Не совсем верно утверждать, что кислород равномерно распределяется по всей толще воды. На разной глубине вода имеет различную температуру. А мы знаем, что чем выше температура, тем меньше растворится в ней кислорода. Поэтому в разное время года, на различных глубинах концентрация растворенного в воде кислорода различна. В неглубоких водоемах разница в количестве растворенного кислорода в верхних и нижних слоях не очень велика, и ею можно пренебречь.

Растения, живущие на земле или под водой, не только выделяют кислород, но и поглощают его. Как и любой живой организм, растения дышат. Часть кислорода, которая образуется при питании растений, потребляется ими при дыхании.

Если после долгой зимней ночи войти в закрытое помещение, где находилось много цветов, чувствуется такая духота, как будто здесь долгое время находилось много людей. Растения израсходовали часть кислорода воздуха на дыхание, и в помещении образовался избыток углекислого газа.

Итак, кислород в природе совершает непрерывный круг. При дыхании человека, животных и растений, при горении твердого и жидкого топлива кислород расходуется и образуется углекислый газ. Этот газ идет на питание растений, которые возвращают кислород обратно в воздух.

Растения играют важную роль в жизни человека. Они не только кормят и согревают нас — они веками обеспечивают постоянное содержание кислорода в воздухе, без чего невозможна жизнь на Земле.

А не меняется ли содержание кислорода в воздухе зимой, когда остаются зелеными только хвойные деревья?

Зимой количество кислорода, выделяемого растениями, сокращается, но запасы его в атмосфере чрезвычайно велики. Если бы в течение тысячи или даже двух тысяч лет вообще не было никакого возвращения кислорода, а происходило только его потребление, то общее количество израсходованного кислорода не превысило бы 0,1 процента всего запаса кислорода в атмосфере. Запасы кислорода в воздухе неисчислимы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Электролит для электрохимической регенерации кислорода из углекислого газа

 

Союз Советских

Социалистических

Республик

Зависимое от авт; свидетельства №

Заявлено 09.1Ч.1970 (№ 1426269/23-26) с присоединением заявки №

Приоритет

Опубликовано 31.VIII.1971. Бюллетень ¹ 26

Дата опубликования описания 15.Х,1971

МПК В OII 3/12

Н Olm 11/00

Комитет по делам изобретений и открытий при Совете Министров

СССР

УДК 621.3.035.45 (088.8) Авторы изобретения

М. В. Смирнов, Л. А. Циовкина и И. Я. Любимцева

Заявитель

Институт электрохимии Уральского филиала АН СССР

ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОИ РЕГЕНЕРАЦИИ

КИСЛОРОДА ИЗ УГЛЕКИСЛОГО ГАЗА

Изобретение относится к регенерации кислорода из углекислого газа в системах жизнеобеспечения с замкнутым циклом.

Известно, что для регенерации кислорода из углекислого газа в качестве электролита используют расплавленную смесь карбонатов натрия, калия и лития, а также карбонат лития с добавками фторидов лития и калия.

При пропускании тока через эти расплавы на катоде выделяется углерод или окись углерода в зависимости от температуры электролиза, а на аноде — смесь углекислого газа и кислорода. Состав этой смеси колеблется по содержанию кислорода в ней от 33 до 70—

80 об. %.

Недостатком таких электролитов является то, что окись лития, образующаяся на катоде при электролизе, выделяется в твердом виде, так как растворимость ее в смесях этих солей невелика. Углекислый газ плохо поглощается электролитом из-за того, что реакция взаимодействия его с окисью лития, находящейся в твердой фазе, затруднена. Для лучшего поглощения углекислый газ нужно многократно барботировать через расплав. В результа. ге накопления окиси лития электролит претерлевает изменения в составе, температура плавления его повышается и течение процесса сильно затрудняется.

Для получения чистого кислорода и увеличения стабильности электролита в качестве последнего предлагается применять систему карбонат лития — окись лития. При температуре 750 С карбонат лития растворяет до

8 вес. % окиси лития. Электролпз таких смесей показывает, что на угольном катоде выделяется углерод, а на аноде из золота при плотностях тока 0,01 — 5 а/с,я- — кислород

10 (98 — 99% ) .

Углекислый газ из внешней системы быстро и no. Ho norton,aeTcH o c uHo-карбонатным расплавом, вследствие чего состав электролита не меняется в ходе электролиза. Образую15 щаяся на катоде окись лития растворяется в электролите. На аноде получают чистый кислород, в то время как известные электролиты дают смесь кислорода и углекислого газа.

20 Для уменьшения коррозионной активности электролита концентрацию окиси лития следует уменьшить. Однако нижний предел ограничен тем, что при высоких плотностях тока на аноде возможно выделение углекислоты.

25 Поэтому в качестве электролита предлагается смесь 96 — 97 вес. % карбоната лития с 3—

4 вес. окиси лития, Анодная плотность тока в таких электролитах 0,01 — 5 а/см2. Катодная плотность тока

30 меняется от 0,01 до 5 а/см . При всех плотно3 стях тока на катоде выделяется углерод. Температура электролиза 740 — 760 С.

Предмет изобретения

1. Электролит для электрохимической регенерации кислорода из углекислого газа на основе расплавленного карбоната лития, отли312621 чающийся тем, что, с целью получения чистого кислорода и увеличения стабильности электролита, в его состав введена окись лития.

2. Электролит по п. 1, отличающийся тем, 5 что его компоненты взяты в следующих количествах: карбонат лития 96 — 97 вес. о7о, окись лития 3 — 4 вес. jo.

Составитель А. Б. Груздев

Редактор Н. Л. Корченко Тсхред Е. Борисова Корректор Л. Б. Бадылама

Заказ 288474 Изд. № 1196 Тираж 473 Подписное

ЦНИИПИ Комитета по делам изобретений и открытий при Совете Министров СССР

Москва, Ж-35, Раушская наб., д, 4/5

Типография, пр. Сапунова, 2

Электролит для электрохимической регенерации кислорода из углекислого газа Электролит для электрохимической регенерации кислорода из углекислого газа 

www.findpatent.ru

Углекислый газ в кислороде - Справочник химика 21

    Большая часть химических синтезов на основе пропилена (получение изопропилового спирта, получение окиси пропилена методом хлоргидринирования, оксосинтез,алкилирование, олигомеризация и т. д.) может быть проведена со смесями пропан-пропилен. Для некоторых же синтезов (например, получение полипропилена,, сополимера этилена с пропиленом, акрилонитрила, акролеина, аллил-хлорида) необходим пропилен высокой степени чистоты. Применяемые при получении полипропилена катализаторы отравляются содержащимися в пропилене кислородом, окисью углерода и углекислым газом, а также соединениями серы и водой. Кристалличность и молекулярный вес полимеров сильно изменяются под влиянием посторонних олефинов. [c.47]

    При горении свечи израсходован весь кислород, а образовался углекислый газ СО2 [c.372]

    Химия перестала быть мешаниной названий времен алхимии (см, гл. 2), когда каждый химик, используя собственную систему, мог поставить в тупик коллег. Была разработана система, основанная на логических принципах. По названиям соединений, предложенных этой номенклатурой, можно было определить те элементы, из которых оно состоит. Например, оксид кальция состоит из кальция и кислорода, хлорид натрия — из натрия и хлора, сульфид водорода — из водорода и серы и т. д. Четкая система приставок и суффиксов была разработана таким образом, что стало возможным судить о соотношении входящих в состав веществ элементов. Так, углекислый газ (диоксид углерода) богаче кислородом, чем угарный газ (монооксид углерода). В то же время хлорат калия содержит больше кислорода, чем хлорит калия, в перхлорате калия содержание кислорода еще выше, тогда как хлорид калия совсем не содержит кислорода. [c.50]

    Продукты полного горения топлива состоят из углекислого газа, сернистого газа, паров воды, избыточного кислорода и азота. При неполном горении в продуктах горения могут также присутствовать окись углерода, углеводороды, водород и элементарный углерод — сажа. [c.110]

    Так, например, при образовании углекислого газа 3 части углерода (по весу) соединяются с 8 частями кислорода, а 3 части углерода и 4 части кислорода дают угарный газ (моноксид углерода). Соот- [c.55]

    Химические формулы можно объединять в химические уравнения, описывающие реакции. С помощью такого уравнения можно, например, показать, что углерод соединяется о кислородом и образует углекислый газ  [c.65]

    Когда органическая молекула полностью окислена, все ее атомы углерода превращаются в двуокись углерода, или углекислый газ. Его молекула состоит из одного атома углерода и двух атомов кислорода. А водородные атомы, входившие в состав органического вещества, превращаются в воду, молекулы которой состоят из двух молекул водорода и одной молекулы кислорода. [c.83]

    Вдыхая воздух, мы втягиваем в легкие кислород. Из легких он всасывается в кровь и разносится по всем уголкам тела. Там он соединяется с органическими соединениями, которые организм получает со съеденной и переваренной пищей. Выделяемая энергия используется, а образующийся углекислый газ удаляется с выдыхаемым воздухом. [c.84]

    Тетранитрометан (N02)4 является перспективным окислителем, более эффективным, чем концентрированная азотная кислота. В молекуле тетранитрометана содержится большое количество активного кислорода. Тетранитрометан — тяжелая подвижная жидкость зеленоватого цвета с резким запахом. Чистый тетранитрометан имеет плотность 1,643 при температуре 20° С, кипит при 125° С и замерзает при 13,8° С. Тетранитрометан при обычной температуре является стабильным веществом и может храниться годами без заметного изменения. Лишь при нагревании выше 100° С он частично разлагается с образованием окислов азота и углекислого газа. В воде он растворяется очень плохо. Важным преимуществом тетранитрометана перед азотной кислотой является его малая коррозионная активность по отношению к металлам и сплавам. Стекло, нержавеющая сталь, алюминий и свинец не коррозируют в тетранитрометане. [c.127]

    Примем, что 10% кислорода топлива дадут ири сухом разложении углекислый газ по реакции [c.285]

    Цех очистки этилена был предназначен для очисгки этанэтиленовой фракции от углекислого газа и серосодержащих соединений 10%-ным раствором едкого натра, от метана и окиси углерода ректификацией и от ацетилена и кислорода методом гидрирования метан-водородной фракции на катализаторе. Реактор гидрирования представлял собой аппарат колонного типа высотой 6800 мм, диаметром 800 мм толщина стенок обечайки составляла 15 мм. Объем реактора 3,85 м . [c.334]

    При расчете принять, что 50% кислорода топлива переходят в водяные пары и 40%—в углекислый газ 15% водорода топлива переходят в метан и 5 о —в этилен азот весь переходит в азот-газ выход смолы при газификации составляет 5 /о от рабочего топлива в уксус переходит 1,76% углерода, 3,67% водорода и 3,78% кислорода топлива. [c.323]

    Еще одной отрицательной стороной воздействия на биосферу является сжигание топлива, приводящее не только к загрязнению воздуха, воды, почвы, но и к таким изменениям атмосферы, которые в дальнейшем могут привести и к изменениям климата и ко многим другим, иногда трудно прогнозируемым последствиям. В настоящее время ежегодно сжигается около 2,5 млрд. т нефти и более 20 млрд. т каменного угля. Это приводит к расходу не менее 15 млрд. т свободного кислорода, взамен которого в атмосферу поступает около 25 млрд. т углекислого газа. В результате подобной деятельности человека за последние 50 лет было использовано кислорода столько же, сколько за всю предыдущую историк человечества [1.11]- [c.3]

    При контактировании с сырьем воздействие катализатора на углеводороды довольно быстро уменьшается вследствие отложения, кокса в его порах. Для восстановления активности, временно потерянной из-за отложения кокса в порах, катализатор должен быть освобожден от кокса. Сжигая кокс и превращая его в газообразные легко отделяемые от катализатора продукты сгорания, восстанавливают активность катализатора. Процесс восстановления активности катализатора носит название регенерации Образующиеся при этом газы называют газами регенерации. Они представляют собой в основном смесь нескольких газов — азота, кислорода (не вступившего в соединения), углекислого газа, окиси углерода и водяного пара. В противоположность газам регенерации газы крекинга состоят преимущественно из легких парафиновых и олефиновых углеводородов (метан, этан, этилен, пропан, пропилен и др.). [c.15]

    Кокс удаляют путем сжигания его кислородом воздуха в регенераторе непрерывного действия с зонами сжигания и зонами охлаждения. Кокс состоит в основном из углерода (89—92%) и водорода (8—10%). Образующийся при переработке сернистых дестиллатов кокс содержит также некоторое количество серы. При сжигании кокса углерод окисляется в углекислый газ и окись углерода, водород в пары воды, а сера в двуокись серы. [c.88]

    На сжигание 1 кг кокса расходуется 13—18 кг воздуха. Расход воздуха в значительной степени зависит от полноты сжигания углерода кокса. При регенерации не весь углерод кокса окисляется до углекислого газа (СОа), часть его сгорает только до окиси углерода (СО). В то же время выходящие из регенератора газы содержат небольшое количество кислорода. Расход воздуха тем выше, чем большее количество углерода кокса окисляется до углекислого газа. В последнее время на некоторых установках за регенератором стали устанавливать паровые котлы с целью дожигания окиси углерода и более полного использования тепла горячих газов регенерации для дополнительного производства водяного нара. [c.92]

    Ядро клетки по своему составу представляет ту же протоплазму, только более уплотненную и с прибавлением небольшого количества фосфорных соединений. Кроме того, клетки содержат в себе некоторые специализированные скопления белка — пластиды, представляющие собой как бы лабораторию органической химии, в которой происходят выработка и преобразование различного рода органических соединений. К пластидам относятся, например, хлорофилловые зерна растений, поглощающих угольную кислоту и обладающих способностью разлагать ее на свету на ее составные элементы, причем кислород возвращается в воздух, а углерод усваивается и отлагается в растениях в виде углеводов крахмала, сахара и пр. Усвоение углерода путем расщепления, углекислого газа происходит по уравнению  [c.22]

    СО. СО, 0 и N2 — содержание (в % объ-змн.) соответственно углекислого газа, окиси углерода, кислорода и азота в сухих газах. [c.280]

    В этих случаях горение углеводородов происходит упорядоченно. Достаточная подача кислорода воздуха обеспечивает превращение самых разнообразных радикалов в углекислый газ и водяной пар и выделение при этом значительного количества тепла. [c.475]

    С кислородом углерод образует диоксид (илн двуокись) углерода СО2, часто называемый также углекислым газом, и оксид углерода . ), или окись углерода, СО. [c.437]

    Уголь — это главным образом углерод (С). При сгорании углерода он соединяется с кислородом (О2) воздуха, в результате получается диоксид углерода (СО2), или углекислый газ. Записав формулы исходных веществ (С и [c.106]

    Мышь израсходовала кислород, выделив углекислый газ [c.372]

    Лавуазье был убежден (и, надо сказать, совершенно справедливо), что жизнь поддерживается процессом, сходным с процессом горения ибо мы вдыхаем воздух, богатый кислородом и бедньп углекислым газом, а выдыхаем воздух, бедный кислородом и значительно обогащенный углекислым газом. Он и его коллега Пьер Симон де Лаплас (1749—1827), впоследствии известный астроном, попытались измерить количество вдыхаемого животным кислорода и выдыхаемого ими углекислого газа. Результаты оказались озадачивающими — часть вдыхаемого кислорода не превратилась в выдыхаемый углекислый газ. [c.49]

    Растение расходует углекислый газ и производит кислород, позволяющий дышать мыши и гореть свече [c.372]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

    Солнечное излучение вместе с земной атмосферой поддерживают на нашей планете климат, пригодный для жизни. Атмосфера дает кислород, которым мы дышим, и делает выдыхаемый углекислый газ пригодным для фото- [c.396]

    Сущность метода заключается в сжигании испытуемого нефтепродукта в калориметрической бомбе в растворе углекислого натрия в атмосфере кислорода и последующем титровании раствором азотнокислой окисной ртути в присутствии индикатора дифенил-карбазона. [c.541]

    Лавуазье, узнав об этом опыте, назвал газ Кавендиша водородом ( образующим воду ) и отметил, что водород горит, соединяясь с кислородом, и, следовательно, вода является соединением водорода и кислорода. Лавуазье также полагал, что пищевая субстанци и живая ткань представляют собой множество различных соедине ний углерода и водорода, поэтому при вдыхании воздуха кислоро/ расходуется на образование не только углекислого газа из углерода но и воды из водорода. Таким образом Лавуазье объяснил, куд расходуется та часть кислорода, которую он никак не мог учестг в своих первых опытах по изучению дыхания .  [c.49]

    С помощью химических символов легко показать количество атомов в молекуле. Так, молекулу водорода, состоящую из двух атомов водорода, записывают как Нг, а молекулу воды, содержащую два атома водорода и один атом кислорода,— как НаО. (Знак без числового индекса, это легко увидеть, означает единичный атом.) Углекислый газ — это СОа, серная кислота — HaSOi, а хлорид [c.64]

    В 80-х годах XVIII столетия Лавуазье пытался определить относительное содержание углерода и водорода в органических соединениях. Он сжигал изучаемое соединение и взвешивал выделившиеся углекислый газ и воду. Результаты такого определения были не очень точными. В первые годы XIX в. Гей-Люссак (автор закона объемных отношений, см. гл. 5) и его коллега французский химик Луи Жак Тенар (1777—1857) усовершенствовал этот метод. Они сначала смешивали изучаемое органическое соединение с окислителем и лишь потом сжигали. Окислитель, например хлорат калия, при нагревании выделяет кислород, который хорошо смешивается с органическим веществом, в результате чего сгорание происходит быстрее и полнее. Собирая выделяющиеся при сгорании углекислый газ и воду, Гей-Люссак и Тенар могли определить соотношение углерода и водорода в исходном соединении. С помощью усовершенствованной к тому времени теории Дальтона это соотношение можно было выразить в атомных величинах. [c.74]

    Сдвоенная система — просто новообразованная бисистема. Чтобы получить новое качество, нужно обеспечить взаимодействие между частями би-теплицы , или взаимодействие между находящимися в би-теплице растениями. Максимум взаимодействия — если растения в чем-то противоположны. Ответ инверсная бисистема. В одном отсеке растения, поглощающие углекислоту и выделяющие кислород в другом — растения, поглощающие кислород и выделяющие углекислый газ (а. с. 950241). [c.96]

    Хранение циркулирующего раствора МЭА в емкостях без подушки 1шертного газа приводит к тому, что при взаимодействии МЭА с кислородом и СО2, содержащимися в воздухе, образуются нежелательные побочные соединения, наиример углекислые соли этилен-диамина. Внешне процесс карбонизации характеризуется потемнением МЭА. В результате длительного контакта с воздухом он становится почти черным. Примеси углекислого газа усиливают сероводородную коррозию, особенно при повышенных температурах, как это имеет место в рибойлере и теплообменниках раствора МЭА. [c.150]

    Общий газовый анализ применяется для определения концентрации наиболее часто встречающихся компонентов газовых смесей. К их числу относятся прежде всего азот и кислород. Наличие кислорода и азота в таком же соотношении, как в воздухе, свидетельствует о попадании воздуха в анализируемый газ. Другим часто встречающимся компонентом газовых смесей является углекислый газ, образующийся при сгорании различных видов топлива, химической переработки нефтяного сырья. Природные и промышленные нефтяные газы состоят в основном из углеводородов. При общем газовом анализе определяют содержание таких компонентов, как СО2, С0иК2,02, Н2, суммы предельных и суммы непредельных углеводородов. Азот, будучи инертным газом, при общем анализе определяется по разности как остаток после удаления других газов. При наличии в анализируемом газе азота атмосферного происхождения ему всегда сопутствует аргон (около 1% по отношению к азоту) и весьма небольшие количества других редких газов Не, N6, Кг, Хе. [c.240]

    Для нормального протекания процесса самоочищения прежде всего необходимо наличие в водоеме после спуска в него сточных вод запаса растворенного кислорода. Химическое или бактериальное окпслсние органических веществ, содержащихся в сточных водах, приводит к снижению концентрации растворенного в воде кислорода (в 1 л воды содержится всего 8—9 мл растворенного кислорода, в 1 л воздуха — 210 мл кислорода). Влияние дезоксигенизирующих (снижающих содержание кислорода) агентов выражается в замене нормальной флоры и фауны водоема примитивной, приспособленной к существованию в анаэробных условиях. Органические вещества, взаимодействуя с растворенным кислородом, окисляются до углекислого газа и воды, потребляя различное количество кислорода. Поэтому введен обобщенный показатель, позволяющий оценить суммарное количество загрязнений в воде по поглощению кислорода. [c.76]

    В последующие годы Генри Кавендиш открыл водород (1766), Да-ниель Резерфорд-азот (1772), а Джозеф Пристли изобрел насыщенную углекислым газом воду и открыл моноксид азота ( веселящий газ ), диоксид азота, моноксид углерода, диоксид серы, хлористый водород, аммиак и кислород. В 1781 г. Кавендиш доказал, что вода состоит только из водорода и кислорода, после того как он наблюдал, как Пристли взорвал эти два газа (Пристли впоследствии вспоминал об этом как о случайном эксперименте для развлечения нескольких философствующих друзей ). Открытие кислорода (рис. 6-2) заставило Антуана Лавуазье отказаться от господствовавшей в химии XVIII в. флогистонной теории горения. История крушения этой теории показывает важность количественных измерений в химии. [c.272]

    Таким образом, 1.857—0,998 = 0,859 кг-моль, или 0,859-32,0 = -275 кг кислорода уходит со смолой, переходит в пирогенетиче-скую влагу, теряется с углекислым газом надсмольных вод и т. д. [c.310]

    Пример 10 Определить объемы и веса газов регенерации, образующихся прв сжигании 1 кг кокса, и найти расход воздуха в кг час, исходя из следующих данных количество сжигаемого кокса 0 = 5 тп1час элементарный состав кокса углерода Ср = = 90% вес., водорода Нр = 10% Bei. содержание в (ухих газах регенерации углекислого газа 12Уообъзмн., кислорода 0,4% объемн.  [c.281]

    При сжигании метана будет происходить его соединение с кислородом при образовании новых продуктов. Именно кислород, соединяясь с углеродом метана, образует углекислый газ, а его соединение с водородом даст воду. При этом для сжигания одной молекулы метана потребуется две молекулы или четыре атома кислорода, а именно для того чтобы превратить углерод в СО2, потребуется одпа молекула кислорода, и для превращения четырех атемов водорода в Н2О потребуется тоже одна молекула кислорода, а всего четыре атома кислорода. Для дальнейшего расчета применяют формулу Торнтона  [c.68]

    При выборе величины отношения углеводород кислород должна учйТываться способность углеводородов образовывать с кислородом или воздухом взрывчатые смеси.. Это создает ряд трудностей при разработке процессов неполного окисления углеводородов. Пределы воспламеняемости, особенно высший предел, зависят от температуры смеси и давления. Однако влияние температуры и давления в некоторой степени может быть снижено дабавлением в газо-воздушную смесь инертного газа. Этим часто пользуются в промышленной практике для создания безопасных условий работы. Экономичнее разбавление проводить газами, сильно отличающимися по теплоемкости от кислорода или азота (например, углекислым газом).  [c.85]

    Природный газ перерабатывают в синтез-газ различными методами, которые можно разбить на следующие три группы 1) конверсия с водяным паром, с углекислым газом или с их смесью 2) окислительная конверсия при помощи кислорода или воздуха 3) смешанная паро-кислородпая конверсия. [c.101]

    Дымовые газы, состоящие из углекислого газа (СОа), водяного пара (НаО), сернистого ангидрида (ЗОа), азота (N3), кислорода (О2), имеют высокую температуру и также излучают тепло. Но если излучение трехато11ных газов (СО2, Н2О, ЗОг) достаточно велико, то излучение двухатолшых газов (N3, О2) ничтожно. Поток дымовых газов по мере движения к перевальной стене вызывает циркуляцию частиц газа у поверхностп радиаптных труб, и будучи более нагретым, чем радиантные трубы печи, отдает часть своего тепла и путем принудительной конвекции. [c.88]

chem21.info

Ученые предложили добывать кислород из атмосферы Марса

Европейские физики предложили получать кислород на Марсе с помощью плазмохимического разложения углекислого газа.

Планы по освоению Марса есть и у Европейского космического агентства (программа ExoMars), и у NASA и SpaxeX (Red Dragon): первую пилотируемую миссию планируют уже на 2022 год; с нее должна начаться колонизация Красной планеты. Атмосфера Марса непригодна для дыхания, поэтому одной из первых проблем, которую предстоит решить организаторам марсианских экспедиций, станет проблема источника кислорода. Группа физиков из университетов Порту и Лозанны предложила элегантное решение: получать кислород из углекислого газа Марса с помощью низкотемпературной плазмы.

При взаимодействии с низкотемпературной плазмой химические связи между атомами в молекуле углекислого газа рвутся с образованием ионов, которые затем рекомбинируют с образованием других соединений. При определенных условиях продуктами становятся кислород (O2) и угарный газ (монооксид углерода, CO). Этот процесс авторы работы, опубликованной в Plasma Sources Science and Technology, предлагают использовать для получения кислорода непосредственно из атмосферы Красной планеты. Сырья на Марсе достаточно: углекислый газ (CO2) составляет 96% марсианской атмосферы.

На Земле для проведения этой реакции нужны низкие температура и давление. Авторы статьи отмечают, что марсианские условия отличаются от земных: давление у поверхности планеты составляет 1/110 земного, а средняя температура — –60°С, поэтому ни холодильники, ни камеры низкого давления для получения кислорода из углекислого газа не потребуются. Это важно: чем меньше энергоемких приборов, тем легче придется будущим колонистам.

Генератор, получающий разряды постоянного тока, создает ионизированный газ, заряженные частицы которого разрушают двойную связь C=O в молекуле углекислого газа двумя способами: (1) полностью разрывая ее за счет кулоновского притяжения зарядов, либо (2) повышая кинетическую энергию отдельных атомов, тем самым стимулируя антисимметричное колебание атомов кислорода относительно центрального атома углерода и разрыв одной из двойных связей с последующим образованием молекул кислорода и угарного газа. В низкотемпературной плазме при пониженном давлении энергия заряженных частиц, как правило, недостаточно велика для первого процесса, поэтому плазмохимический процесс направляется по второму пути. Холод и низкое давление Марса также должны направить процесс в сторону образования кислорода и угарного газа; это подтвердили эксперименты в установках с условиями, приближенными к марсианским.

Авторы исследования отмечают, что побочный продукт реакции, монооксид углерода, можно использовать как ракетное топливо. Кроме того, холод и низкое давление на Марсе замедлят процесс обратного окисления угарного газа до углекислого, который представляет некоторую проблему в земных условиях.

Как сообщал Соцпортал, доказана эффективность средства от старения.

Це може бути цікавим

Дивіться, що пишуть

socportal.info