КИСЛОРОД И УГЛЕКИСЛЫЙ ГАЗ: ДВА РАВНОЦЕННЫХ КОМПОНЕНТА ДЫХАНИЯ. Кислород и углекислый газ
Кислород и углекислый газ. Проблема баланса
Кислород и углекислый газ. Проблема баланса
Бутейко был не единственным человеком, который заметил, что глубокое дыхание наносит вред организму. Об этом говорил еще в 1871 г. голландский врач Де Коста. Сочетание симптомов, возникающих в результате глубокого дыхания, получило название гипервентиляционного синдрома.
Русский физиолог Б. Ф. Вериго и датский ученый Н. Бор одновременно открыли явление, ставшее известным как «эффект Вериго-Бора». Они пришли к парадоксальному, на первый взгляд, выводу, что переизбыток кислорода и недостаток углекислого газа ведут к кислородному голоданию.
Дело в том, что глубокое дыхание насыщает легкие кислородом, а значит, вытесняет углекислый газ. Чтобы компенсировать потерю углекислого газа, сосуды сжимаются. Соответственно, уменьшается и поступление кислорода, поскольку он проникает в ткани организма по тем же сосудам, по которым оттуда выводится углекислый газ.
Получается, что для нормального функционирования организма необходимо поддерживать установленный природой баланс углекислого газа и кислорода. Стремление увеличить содержание кислорода за счет глубокого дыхания приводит к кислородному голоданию.
Поделитесь на страничкеСледующая глава >
med.wikireading.ru
ДВА РАВНОЦЕННЫХ КОМПОНЕНТА ДЫХАНИЯ. Как вылечиться от разных болезней. Рыдающее дыхание. Дыхание Стрельниковой. Дыхание йогов
КИСЛОРОД И УГЛЕКИСЛЫЙ ГАЗ: ДВА РАВНОЦЕННЫХ КОМПОНЕНТА ДЫХАНИЯ
В процессе газообмена первостепенное значение имеют кислород и углекислый газ.
Кислород поступает в организм вместе с воздухом, через бронхи, затем попадает в легкие, оттуда – в кровь, а из крови – в ткани.
Углекислый газ проходит эту цепочку в обратном направлении: образуется в тканях, затем поступает в кровь и оттуда через дыхательные пути выводится из организма.
У здорового человека эти два процесса находятся в состоянии постоянного равновесия, когда соотношение углекислого газа и кислорода составляет пропорцию 3:1.
Углекислый газ, вопреки широко распространенному мнению, необходим организму не меньше, чем кислород. Давление углекислого газа влияет на кору головного мозга, дыхательный и сосудо-двигательный центры, углекислый газ также обеспечивает тонус и определенную степень готовности к деятельности различных отделов центральной нервной системы, отвечает за тонус сосудов, бронхов, обмен веществ, секрецию гормонов, электролитный состав крови и тканей. А значит, опосредованно влияет на активность ферментов и скорость почти всех биохимических реакций организма. Кислород же служит энергетическим материалом, и его регулирующие функции ограниченны.
Следующая глава >
med.wikireading.ru
кислород (02) и углекислый газ (С02). Учимся понимать свои анализы
Перенос кислорода
Для выживания человек должен быть способен поглощать кислород из атмосферы и транспортировать его клеткам, где он используется в метаболизме. Некоторые клетки могут короткое время вырабатывать небольшое количество энергии без участия кислорода (анаэробный метаболизм). Другие органы (например, головной мозг) состоят из клеток, которые могут существовать только при наличии постоянного снабжения кислородом (аэробный метаболизм). Различные ткани имеют различную степень толерантности к аноксии (отсутствию кислорода). Мозг и сердце - наиболее уязвимые органы. В начале недостаток кислорода поражает функцию органа, а с течением времени вызывает и необратимые морфологические изменения (в случае с мозгом это происходит в течение считанных минут), когда восстановление функции невозможно.
В покое клетки нашего тела потребляют около 300 л кислорода в сутки, или 250 мл в минуту. При физических упражнениях илиработе потребность в нем может возрасти в 10—15 раз. Если бы кислород, приносимый кровью тканям, был просто растворен в плазме, крови нужно было бы циркулировать в организме, даже находящемся в состоянии покоя, со скоростью 180 л в минуту, чтобы доставить достаточное количество этого газа клеткам, так как кислород не особенно хорошо растворим в плазме. В действительности, когда человек отдыхает, кровь циркулирует в его сосудах со скоростью около 5 л в минуту и переносит весь кислород, необходимый клеткам. Разница между 180 и 5 л в минуту обусловлена функцией гемоглобина.
Гемоглобин - это пигмент красных кровяных клеток, осуществляющий перенос почти всего кислорода и большей части углекислоты. Кровь, находящаяся в равновесии с альвеолярным воздухом, находящимся в легких, может содержать в растворе только 0,25 мл кислорода и 2,7 дл углекислоты на 100 мл, но благодаря гемоглобину 100 мл крови могут нести около 20 мл кислорода и 50—60 мл углекислоты.
Примерно 2% кислорода крови растворено в плазме, остальное же количество находится в соединении с гемоглобином. После того как кислород входит в кровь легочных капилляров, он диффундирует из плазмы в эритроциты и соединяется с гемоглобином - одна молекула кислорода присоединяется к одной молекуле гемоглобина с образованием молекулы оксигемоглобина.
ГЕМОГЛОБИН < - > ОКСИГЕМОГЛОБИН
Стрелки показывают, что эта реакция обратима, т. е. она может идти в любом направлении в зависимости от условий. Гемоглобин, разумеется, приносил бы организму мало пользы, если бы он мог только принимать кислород, но не отдавал бы его там, где это необходимо. В легких реакция идет слева направо, с образованием оксигемоглобина, а в тканях - справа налево, с освобождением кислорода . Различный цвет артериальной и венозной крови обусловлен тем, что оксигемоглобин имеет ярко-красную окраску, а гемоглобин - пурпурную . Соединение кислорода с гемоглобином и расщепление оксигемоглобина регулируется двумя факторами: прежде всего количеством присутствующего кислорода и в меньшей степени - количеством углекислоты . В легких концентрация кислорода относительно высока, и там образуется оксигемоглобин. Выйдя из легких, кровь проходит через сердце и артерии, где концентрация кислорода почти не меняется, к тканям, которые бедны кислородом. Здесь оксигемоглобин расщепляется, освобождая кислород, который диффундирует в тканевые клетки.
Углекислота, соединяясь с водой, образует угольную кислоту Н2С03; поэтому при повышении концентрации С02 кислотность крови возрастает . Способность гемоглобина переносить кислород при этом уменьшается; таким образом, соединение гемоглобина с кислородом отчасти регулируется количеством С02. Это создает чрезвычайно эффективную систему переноса. В капиллярах тканей концентрация углекислоты высока; действие низкого напряжения 02 в сочетании с действием высокого напряжения С02 ведет к освобождению кислорода гемоглобином. В капиллярах легких (или жабр у рыб) напряжение С02 ниже, и под действием высокого напряжения 02 и низкого напряжения С02 гемоглобин присоединяет к себе кислород. Важно помнить, что чем больше в крови углекислоты, тем более кислую реакцию имеет кровь, а в кислом растворе способность гемоглобина переносить кислород понижена.
Направление и скорость диффузии фактически определяются парциальным давлением, или напряжением, данного газа . В газовой смеси каждый газ производит независимо от остальных газов то же самое давление, которое он создавал бы один. На уровне моря, где общее давление воздуха равно 760 мм рт. ст., кислород создает давление 150 мм рт. ст . Иными словами, парциальное давление (напряжение) кислорода в атмосфере равно 150 мм рт. ст. Так как в альвеолярном воздухе кислорода меньше, чем в атмосферном, то парциальное давление кислородав альвеолах составляет около 105 мм рт . ст . Кровь проходит через легочные капилляры слишком быстро, чтобы прийти в полное равновесие с альвеолярным воздухом, так что давление кислородав артериальной крови несколько ниже -около 100 мм рт. ст.Парциальное давление кислорода в тканях колеблется от 0 до 40 мм рт ст., поэтому кислород диффундирует из капилляров в ткани .Однако из крови выходит не весь кислород, кровь протекает через капилляры слишком быстро, чтобы могло быть достигнуто полное равновесие, и кроме того ткани обычно содержат остаточный кислород. В венозной крови, возвращающейся к легким, давление кислорода равно около 40 мм рт. ст. В артериальной крови, где парциальное давление кислорода равно обычно 100 мм рт.ст., на каждые 100 мл крови приходится около 19 мл кислорода. При напряжении 02, свойственном венозной крови (40 мм рт. ст.), в каждых 100 мл крови содержится 12 мл кислорода. Разность в 7 мл представляет количество кислорода, отданное тканям каждыми 100 мл крови . Таким образом, 5 л крови нашего тела за каждый кругооборот по организму могут передавать тканям 350 мл кислорода.
Следующая глава >
med.wikireading.ru
Кислорода и углекислого газа в различных средах
Среда | Кислород | Углекислый газ | ||||
% | мм рт. ст. | мл/л | % | мм рт. ст. | мл/л | |
Вдыхаемый воздух | 20,93 | 209,3 | 0,03 | 0,2 | 0,3 | |
Выдыхаемый воздух | 16,0 | 160,0 | 4,5 | |||
Альвеолярный воздух | 14,0 | 140,0 | 5,5 | |||
Артериальная кровь | - | 100-96 | 200,0 | - | 560-540 | |
Венозная кровь | - | 140-160 | - | |||
Тканевая жидкость | - | 10-15 | - | - | - | |
Цитоплазма | - | 0,1-1 | - | - | - |
Как видим, газовый состав альвеолярного воздуха существенно отличается от атмосферного (21% кислорода и 0.03% углекислого газа). В альвеолярном воздухе содержится 14 % кислорода и 5.5% углекислого газа. Постоянство внутренней газовой среды организма на фоне перехода кислорода в кровь, а углекислого газа в альвеолярный воздух поддерживается с помощью вентиляции легких, которая обеспечивает необходимое обновление альвеолярного воздуха и при выполнении физической работы, и при эмоциональном возбуждении, когда количество используемого кислорода многократно возрастает. Таким образом, с помощью внешнего дыхания решается очень сложная задача: обеспечить и постоянство внутренней газовой среды, и ее необходимое обновление для обеспечения тканей организма кислородом в соответствии с потребностью.
Диффузия газов через аэрогематический барьер
В организме газообмен кислорода и углекислого газа, а так же других газообразных продуктов происходит с помощью диффузии.
Диффузия газов через альвеолокапиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер (его толщина равна около 1мкм). На втором этапе происходит связывание газов в крови легочных капилляров.
Диффузия газов осуществляется в соответствии с градиентом парциальных давлений газов и описывается законом Фика:
Q газа = S ´ DK ´ (P1-P2) /T
Где Q газа - объем газа, проходящий через ткань в единицу времени, S- площадь ткани, DK- диффузионный коэффициент газа, P1-P2 - градиент парциального давления газа, Т - толщина барьера ткани.
Рисунок 8. Строение аэрогематического барьера
1-сурфактант, 2-эпителий альвеол, 3-интерстициальное пространство, 4-эндотелий капилляров ,5-плазма крови, 6-эритроцит
Как видно из приведенной формулы. Диффузия газа зависит от градиента давлений этого газа по обе стороны барьера, следовательно, нас интересуют парциальные давления кислорода и углекислого газа в альвеолярном воздухе и напряжения этих газов в венозной крови. Все эти цифры представлены в таблице 2. Отметим лишь, что в альвеолярном воздухе часть общего давления ( 47 мм рт.ст.) приходится на пары воды, значит давление «сухого» воздуха = 760 – 47 = 713 мм рт.ст. Альвеолярный воздух обогащен углекислым газом, кислорода в нем не 21, а 14%, следовательно парциальное давление кислорода в нем составит 14 % от 713 = 100 мм рт.ст. В венозной крови легочных капилляров напряжение кислорода = 40 мм рт.ст. Градиент давлений, обеспечивающий диффузию кислорода равен 100 – 40 = 60 мм рт.ст.
Что касается диффузии СО2 из венозной крови в альвеолы, то даже сравнительно небольшого градиента РСО2 (6-10мм.рт.ст.) для этого оказывается вполне достаточно, поскольку растворимость углекислого газа в 20-25 раз больше, чем кислорода. Именно поэтому после прохождения венозной крови через легочные капилляры РСО2 в ней оказывается почти равным альвеолярному (около 40 мм.рт. ст.).
Для кислорода Р1- Р2 = 60 мм рт.ст
Для углекислого газа Р1- Р2 = 6 мм рт.ст
Ещё раз необходимо подчеркнуть, что постоянная скорость диффузии, как кислорода, так и углекислого газа через аэрогематический барьер определяются достаточно стабильным составом альвеолярного газа во время вдоха и выдоха.
Капилляры легких
Функции газообмена в легких и насыщение крови кислородом осуществляется с участием сосудов малого круга кровообращения. Стенки ветвей легочной артерии тоньше, чем стенки такого же калибра артерий большого круга кровообращения. Сосудистая система легких очень податлива и способна легко растягиваться. В систему легочной артерии поступает сравнительно большой объем крови (6 литров/мин) из правого желудочка, а давление в малом круге низкое - 15-20 мм рт. ст., потому, что сосудистое сопротивление примерно в 10 раз меньше, чем в сосудах большого круга кровообращения. Сеть альвеолярных капилляров не сравнима с организацией капиллярного русла других органов. Отличительными чертами капиллярного русла легких являются 1) малая величина капиллярных сегментов, 2) их обильная взаимосвязь, что формирует петлистую сеть, 3) высокая плотность отдельных капиллярных сегментов на единицу площади альвеолярной поверхности, 4) низкая скорость кровотока. Капиллярная сеть в стенках альвеол настолько плотная, что некоторые физиологи рассматривают ее как сплошной слой движущейся крови. Площадь поверхности капиллярной сети близка площади поверхности альвеол (80 м2), в ней содержится около 200 мл крови. Диаметр альвеолярных кровеносных капилляров колеблется в пределах 8.3 - 9.9 мкм, а диаметр эритроцитов - 7.4 мкм. Таким образом, эритроциты плотно прилегают к стенкам капилляров. Эти особенности кровоснабжения легких создают условия для быстрого и эффективного газообмена, в результате которого происходит уравновешивание газового состава альвеолярного воздуха и артериальной крови. Взгляните еще раз на таблицу 2 и отметьте, что напряжение кислорода в артериальной крови становится равным 100, а углекислого газа – 40 мм рт. ст.
Транспорт кислорода кровью
Большая часть кислорода в организме млекопитающих переносится кровью в виде химического соединения с гемоглобином. Свободно растворенного кислорода в крови всего 0.3%. Реакцию оксигенации, превращение дезоксигемоглобина в оксигемоглобин, протекающую в эритроцитах капилляров легких можно записать следующим образом:
Нв + 4О2 ⇄ Нв(О2)4
Эта реакция протекает очень быстро – время полунасыщения гемоглобина кислородом около 3 миллисекунд. Гемоглобин обладает двумя удивительными свойствами, которые позволяют ему быть идеальным переносчиком кислорода. Первое – это способность присоединять кислород, а второе – отдавать его. Оказывается способность гемоглобина присоединять и отдавать кислород зависит от напряжения кислорода в крови. Попробуем изобразить графически зависимость количества оксигенированного гемоглобина от напряжения кислорода в крови, и тогда нам удастся выяснить: в каких случаях гемоглобин присоединяет кислород, а в каких отдает. Гемоглобин и оксигемоглобин неодинаково поглощают световые лучи, поэтому их концентрацию можно определить спектрометрическими методами.
График, отражающий способность гемоглобина присоединять и отдавать кислород называется «Кривая диссоциации оксигемоглобина». По оси абсцисс на этом графике отложено количество оксигемоглобина в процентах ко всему гемоглобину крови, по оси ординат – напряжение кислорода в крови в мм рт. ст.
Рисунок 9А. Кривая диссоциации оксигемоглобина в норме
Рассмотрим график в соответствии с этапами транспорта кислорода: самая высокая точка соответствует тому напряжению кислорода, которое наблюдается в крови легочных капилляров – 100 мм рт.ст. (столько же, сколько и в альвеолярном воздухе). Из графика видно, что при таком напряжении весь гемоглобин переходит в форму оксигемоглобина – насыщается кислородом полностью. Попробуем рассчитать, сколько кислорода связывает гемоглобин. Один моль гемоглобина может связать 4 моля О2 , а 1грамм Нв связывает 1,39 мл О2 в идеале, а на практике 1,34 мл . При концентрации гемоглобина в крови, например, 140 г/литр количество связанного кислорода составит 140 × 1,34 = 189,6 мл/литр крови. Количество кислорода, которое может связать гемоглобин при условии его полного насыщения, называется кислородной емкостью крови (КЕК). В нашем случае КЕК = 189,6 мл.
Обратим внимание на важную особенность гемоглобина – при снижении напряжения кислорода в крови до 60 мм рт.ст, насыщение практически не изменяется – почти весь гемоглобин присутствует в виде оксигемоглобина. Эта особенность позволяет связывать максимально возможное количество кислорода при снижении его содержания в окружающей среде (например, на высоте до 3000 метров).
Кривая диссоциации имеет s – образный характер, что связано с особенностями взаимодействия кислорода с гемоглобином. Молекула гемоглобина связывает поэтапно 4 молекулы кислорода. Связывание первой молекулы резко увеличивает связывающую способность, так же действуют и вторая, и третья молекулы. Этот эффект называется кооперативное действие кислорода
Артериальная кровь поступает в большой круг кровообращения и доставляется к тканям. Напряжение кислорода в тканях, как видно из таблицы 2, колеблется от 0 до 20 мм рт. ст., незначительное количество физически растворенного кислорода диффундирует в ткани, его напряжение в крови снижается. Снижение напряжения кислорода сопровождается диссоциацией оксигемоглобина и освобождением кислорода. Освободившийся из соединения кислород переходит в физически растворенную форму и может диффундировать в ткани по градиенту напряжения.. На венозном конце капилляра напряжение кислорода равно 40 мм.рт.ст, что соответствует примерно 73% насыщения гемоглобина. Крутая часть кривой диссоциации соответствует напряжению кислорода обычному для тканей организма – 35 мм рт.ст и ниже.
infopedia.su
Внутреннее дыхание и транспорт газов
В предыдущей статье мы подробно рассмотрели как воздух попадает в легкие. Теперь посмотрим, что с ним происходит дальше.
Система кровообращения
Мы остановились на том, что кислород в составе атмосферного воздуха поступает в альвеолы, откуда через их тонкую стенку посредством диффузии переходит в капилляры, опутывающие альвеолы густой сетью. Капилляры соединяются в легочные вены, которые несут кровь, насыщенную кислородом, в сердце, а точнее в левое его предсердие. Сердце работает как насос, прокачивая кровь по всему организму. Из левого предсердия обогащенная кислородом кровь отправится в левый желудочек, а оттуда — в путешествие по большому кругу кровообращения, к органам и тканям. Обменявшись в капиллярах тела с тканями питательными веществами, отдав кислород и забрав углекислый газ, кровь собирается в вены и поступает в правое предсердие сердца, и большой круг кровообращения замыкается. Оттуда начинается малый круг.
Малый круг начинается в правом желудочке, откуда легочная артерия несет кровь на «зарядку» кислородом в легкие, разветвляясь и опутывая альвеолы капиллярной сетью. Отсюда снова — по легочным венам в левое предсердие и так до бесконечности. Чтобы представить себе эффективность этого процесса, вообразите себе, что время полного оборота крови составляет всего 20-23 секунды. За это время объем крови успевает полностью «обежать» и большой и малый круг кровообращения.
Чтобы насытить кислородом столь активно меняющуюся среду, как кровь, необходимо учитывать следующие факторы:
- количество кислорода и углекислого газа во вдыхаемом воздухе (состав воздуха)
- эффективность вентиляции альвеол (площадь соприкосновения, на которой происходит обмен газами между кровью и воздухом)
- эффективность альвеолярного газообмена (эффективность веществ и структур, обеспечивающих соприкосновение крови и газообмен)
Состав вдыхаемого, выдыхаемого и альвеолярного воздуха
В обычных условиях человек дышит атмосферным воздухом, имеющим относительно постоянный состав. В выдыхаемом воздухе всегда меньше кислорода и больше углекислого газа. Меньше всего кислорода и больше всего углекислого газа в альвеолярном воздухе. Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем, что последний является смесью воздуха мертвого пространства и альвеолярного воздуха.
Воздух | Кислород | Углекислый газ | Азот и др. газы |
Вдыхаемый | 20,93% | 0.03% | 79,04% |
Выдыхаемый | 16% | 4,5% | 79,5% |
Альвеолярный | 14% | 5,5% | 80,5% |
Альвеолярный воздух является внутренней газовой средой организма. От его состава зависит газовый состав артериальной крови. Регуляторные механизмы поддерживают постоянство состава альвеолярного воздуха, который при спокойном дыхании мало зависит от фаз вдоха и выдоха. Например, содержание С02 в конце вдоха всего на 0,2-0,3% меньше, чем в конце выдоха, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха.
Кроме того, газообмен в легких протекает непрерывно, независимо от фаз вдоха или при выдоха, что способствует выравниванию состава альвеолярного воздуха. При глубоком дыхании, из-за нарастания скорости вентиляции легких, зависимость состава альвеолярного воздуха от вдоха и выдоха увеличивается. При этом надо помнить, что концентрация газов «на оси» воздушного потока и на его «обочине» тоже будет различаться: движение воздуха «по оси» будет быстрее и состав будет больше приближаться к составу атмосферного воздуха. В области верхушек легких альвеолы вентилируются менее эффективно, чем в нижних отделах легких, прилежащих к диафрагме.
Вентиляция альвеол
Газообмен между воздухом и кровью осуществляется в альвеолах. Все остальные составные части легких служат только для доставки воздуха к этому месту. Поэтому важна не общая величина вентиляции легких, а величина вентиляции именно альвеол. Она меньше вентиляции легких на величину вентиляции мертвого пространства. Так, при минутном объеме дыхания, равном 8000 мл и частоте дыхания 16 в минуту вентиляция мертвого пространства составит 150 мл х 16 = 2400 мл. Вентиляция альвеол будет равна 8000 мл — 2400 мл = 5600 мл. При том же самом минутном объеме дыхания 8000 мл и частоте дыхания 32 в минуту вентиляция мертвого пространства составит 150 мл х 32 = 4800 мл, а вентиляция альвеол 8000 мл — 4800 мл = 3200 мл, т.е. будет вдвое меньшей, чем в первом случае. Отсюда следует первый практический вывод, эффективность вентиляции альвеол зависит от глубины и частоты дыхания.
Величина вентиляции легких регулируется организмом таким образом, чтобы обеспечить постоянный газовый состав альвеолярного воздуха. Так, при повышении концентрации углекислого газа в альвеолярном воздухе минутный объем дыхания увеличивается, при снижении — уменьшается. Однако регуляторные механизмы этого процесса находятся не в альвеолах. Глубина и частота дыхания регулируются дыхательным центром на основании информации о количестве кислорода и углекислого газа в крови.
Обмен газов в альвеолах
Газообмен в легких осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь (около 500 л в сутки) и углекислого газа из крови в альвеолярный воздух (около 430 л в сутки). Диффузия происходит вследствие разности давления этих газов в альвеолярном воздухе и в крови.
Диффузия — взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении снижения концентрации вещества и ведет к равномерному распределению вещества по всему занимаемому им объему. Так, пониженная концентрация кислорода в крови ведет к его проникновению через мембрану воздушно-кровяного (аэрогематичеекого) барьера, избыточная концентрация углекислого газа в крови ведет к его выделению в альвеолярный воздух. Анатомически воздушно-кровяной барьер представлен легочной мембраной, которая, в свою очередь, состоит из эндотелиальных клеток капилляров, двух основных мембран, плоского альвеолярного эпителия, слоя сурфактанта. Толщина легочной мембраны всего 0,4—1,5 мкм.
Сурфактант — поверхностно-активное вещество, которое облегчает диффузию газов. Нарушение синтеза сурфактанта клетками легочного эпителия делает процесс дыхания практически невозможным из-за резкого замедления уровня диффузии газов.
Поступивший в кровь кислород и принесенный кровью углекислый газ могут находиться как в растворенном виде, так и в химически связанном. В обычных условиях в свободном (растворенном) состоянии переносится настолько малое количество этих газов, что им смело можно пренебречь при оценке потребностей организма. Для простоты будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.
Транспорт кислорода
Кислород транспортируется в виде оксигемоглобина. Оксигемоглобин — это комплекс гемоглобина и молекулярного кислорода.
Гемоглобин содержится в красных кровяных тельцах — эритроцитах. Эритроциты под микроскопом похожи на слегка приплюснутый бублик. Такая необычная форма позволяет эритроцитам взаимодействовать с окружающей кровью большей площадью, чем шарообразным клеткам (из тел, имеющих равный объем, шар имеет минимальную площадь). А кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр и добираясь в самые отдаленные уголки организма.
В 100 мл крови при температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика — время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол с соответствующими вентиляцией и кровоснабжением практически весь гемоглобин притекающей крови превращается в оксигемоглобин. А вот сама скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов.
Отсюда следует второй практический вывод: чтобы газообмен шел успешно, воздух должен «получать паузы», за время которых успевает выровняться концентрация газов в альвеолярном воздухе и притекающей крови, то есть обязательно должна присутствовать пауза между вдохом и выдохом.
Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин) зависит от содержания растворенного кислорода в жидкой части плазмы крови. Причем механизмы усвоения растворенного кислорода весьма эффективны.
Например, подъем на высоту 2 км над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе со 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3%. И, несмотря на снижение атмосферного давления, ткани продолжают успешно снабжаться кислородом.
В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала (например, в жировой ткани), большая часть оксигемоглобина не «отдает» молекулярный кислород — уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.
Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду) снижается при увеличении концентрации углекислого газа (эффект Бора) и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.
Отсюда становится легко понятным, как взаимосвязаны и сбалансированы относительно друг друга природные процессы. Изменения способности оксигемоглобина удерживать кислород имеет громадное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет и облегчает «отдачу» гемоглобином кислорода и облегчает течение обменных процессов.
В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он уже не отдаст ее в кровь.
Количество кислорода в крови
Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Кислородная емкость крови зависит от содержания в ней гемоглобина.
В артериальной крови содержание кислорода лишь немного (на 3-4%) ниже кислородной емкости крови. В обычных условиях в 1 л артериальной крови содержится 180-200 мл кислорода. Даже в тех случаях, когда в экспериментальных условиях человек дышит чистым кислородом, его количество в артериальной крови практически соответствует кислородной емкости. По сравнению с дыханием атмосферным воздухом количество переносимого кислорода увеличивается мало (на 3-4%).
Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, протекая по тканевым капиллярам, кровь отдает не весь кислород.
Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода. Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100.
Например:(200-120): 200 х 100 = 40%.
В покое коэффициент утилизации кислорода организмом колеблется от 30 до 40%. При интенсивной мышечной работе он повышается до 50-60%.
Транспорт углекислого газа
Углекислый газ транспортируется кровью в трех формах. В венозной крови можно выявить около 58 об. % (580 мл/л) С02, причем из них лишь около 2,5 объемных % находятся в растворенном состоянии. Некоторая часть молекул С02 соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин (приблизительно 4,5 об.%). Остальное количество С02 химически связано и содержится в виде солей угольной кислоты (приблизительно 51 об. %).
Углекислый газ является одним из самых частых продуктов химических реакций обмена веществ. Он непрерывно образуется в живых клетках и оттуда диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту (С02 + Н20 = Н2С03).
Этот процесс катализируется (ускоряется в двадцать тысяч раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Т.о, процесс соединения углекислого газа с водой происходит практически только в эритроцитах. Но это процесс обратимый, который может изменять свое направление. В зависимости от концентрации углекислого газа карбоангидраза катализирует как образование угольной кислоты, так и расщепление ее на углекислый газ и воду (в капиллярах легких).
Благодаря указанным процессам связывания концентрация С02 в эритроцитах оказывается невысокой. Поэтому все новые количества С02 продолжают диффундировать внутрь эритроцитов. Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления, в результате во внутренней среде эритроцитов увеличивается количество воды. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.
Гемоглобин имеет большее сродство к кислороду, чем к углекислому газу, поэтому в условиях повышения парциального давления кислорода карбогемоглобин превращается сначала в дезоксигемоглобин, а затем в оксигемоглобин.
Кроме того, при превращении оксигемоглобина в гемоглобин происходит увеличением способности крови связывать двуокись углерода. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов калия (К+), необходимых для связывания угольной кислоты в форме углекислых солей — бикарбонатов.
Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин. В таком виде двуокись углерода переносится к легким.
В капиллярах малого круга кровообращения концентрация двуокиси углерода снижается. От карбогемоглобина отщепляется С02. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на Н20 и С02. Круг завершен.
Осталось сделать еще одно примечание. Угарный газ (СО) обладает большим сродством к гемоглобину, чем углекислый газ (С02) и чем кислород. Поэтому отравления угарным газом столь опасны: вступая с устойчивую связь с гемоглобином, угарный газ блокирует возможность нормального транспорта газов и фактически «душит» организм. Жители больших городов постоянно вдыхают повышенные концентрации угарного газа. Это приводит к тому, что даже достаточное количество полноценных эритроцитов в условиях нормального кровообращения оказывается неспособным выполнить транспортные функции. Отсюда обмороки и сердечные приступы относительно здоровых людей в условиях автомобильных пробок.
freediver.me
Дыхание и его значение в жизни человека. Влияние кислорода и углекислого газа. Особенности и секреты дыхания.
При написании данной статьи использованы материалы из книг: «Пропедевтика внутренних болезней» под редакцией В.Х. Василенко и А.Л. Гребенева Москва, 1983г., «Физиологическая роль углекислоты и работоспособность человека» Н.А. Агаджанян, Н.П. Красников, И.Н. Полунин. А также - материалы из статей в Интернете, в частности, из статьи «Почему углекислый газ важнее кислорода для жизни» на сайте Zenslim.ru, из статей Википедии «Дыхание», «Метод Бутейко», из статьи «Эмоции и дыхание» на сайте Xliby.ru, из статьи Юнны Горяйновой «Дыхательная гимнастика по Бутейко» на сайте Passion.ru и из других статей в Интернете.
Хроническая грусть может вызывать специфические состояния и заболевания, например, эмфизему лёгких. В периоды тоски и грусти люди становятся опустошенными и не отдают энергию наружу – слабые выдохи. Когда мы разгневаны – выдох сильнее, чем вдох. В гневе мы выталкиваем скопившуюся энергию – сильный выдох и теряем способность правильно воспринимать и ощущать поступающую информацию – слабые вдохи. Хроническая, постоянная злость может привести к развитию астмы. Самым прямым способом устранения эмоциональных барьеров является возвращение дыхания к нормальному режиму. Когда вам страшно – надо дышать глубже. Когда вы грустите или у вас горе – надо делать полные сильные выдохи до тех пор, пока дыхание не вернётся к норме. Если будете интенсивно выдыхать, то сила чувств вырвется наружу, станет легче. Когда вы ощущаете гнев, то делайте полные энергичные вдохи, пока дыхание не станет ровным. Заставьте себя воспринимать поступающую информацию. Восстановление нормального дыхания не уничтожает мысли, вызвавшие негативные эмоции, но делает человека способным решать возникшие проблемы. Дыхательный ритм особенно важен для спортсменов. Без правильного дыхания добиться высоких достижений в спорте невозможно. Механизм и показатели дыхания. Во время вдоха альвеолы лёгких наполняются воздухом, в котором необходимый для дыхания кислород. Во вдыхаемом воздухе почти 21% - кислорода, около 79% - азота, 0,03 – 0,04% - углекислого газа, небольшое количество паров и инертных газов. В выдыхаемом воздухе в норме до 15% - кислорода, 6,5% - углекислого газа в альвеолах, увеличивается содержание паров, количество азота и инертных газов остаётся неизменным. Кровь, которая течет от сердца к лёгким из правого желудочка по легочной артерии венозная, содержит мало кислорода и много углекислого газа. Через стенки альвеол и капилляров происходит двухсторонняя диффузия: кислород переходит из альвеол в кровь, а углекислый газ поступает из крови в альвеолы. В крови кислород проникает в эритроциты и соединяется с гемоглобином.Кровь, насыщенная кислородом становится артериальной, и по легочным венам поступает в левое предсердие. У человека газообмен происходит в течение нескольких секунд, пока кровь проходит через альвеолы легких. Это происходит благодаря огромной поверхности лёгких ~ 90 квадратных метров, сообщающейся с внешней средой. Далее кислород поступает из крови в клетки органов и тканей, где он окисляет питательные вещества, поступающие в организм с пищей. Обмен газов в тканях осуществляется в капиллярах, через них кислород из крови поступает в тканевую жидкость и в клетки, а углекислый газ из тканей переходит в кровь, транспортируется в лёгкие и при выдохе из лёгких выделяется в атмосферу. Учёные установили, что кислород, необходимый для дыхания, может вызывать и негативные явления в организме. При избытке кислорода, которое может быть при частом глубоком дыхании, увеличивается количество окисленного гемоглобина, связанного с кислородом, и снижается количество восстановленного гемоглобина, связанного с углекислым газом. Это приводит к задержке углекислого газа в тканях, появляется одышка, покраснение лица, головная боль, судороги, потеря сознания. Оптимальное содержание кислорода в воздухе составляет – 21,5%, углекислого газа – 0,04%. Однако при уровне углекислого газа 0,1% (в 2 раза выше нормы) возникает ощущение духоты: усталость, сонливость, раздражительность. Многие считают, что это симптомы нехватки кислорода. На самом деле, это симптомы избытка углекислого газа в окружающем пространстве. Для человека избыток углекислого газа в атмосфере неприемлем. Учёными в последние десятилетия переосмыслена роль воздействия кислорода и углекислого газа на человеческий организм. Жизнь на Земле миллиарды лет развивалась при высокой концентрации углекислого газа, и он стал необходимым компонентом обмена веществ. Клеткам человека и животных углекислого газа нужно около 6 – 7%, а кислорода – всего 2%. Это установили учёные – физиологи. Оплодотворённая яйцеклетка в первые дни жизни находится почти в бескислородной среде. После её имплантации в матке формируется плацентарное кровообращение, и к развивающемуся плоду с кровью начинает поступать кислород. Кровь плода содержит кислорода в 4 раза меньше, а углекислого газа в 2 раза больше, чем у взрослого человека. Если кровь плода насытить кислородом, то он моментально погибнет. Избыток кислорода губителен для всего живого. Кислород – сильный окислитель, способный разрушить мембраны клеток. У новорожденного ребёнка после первых дыхательных движений тоже высокое содержание углекислого газа в крови, так как организм матери стремится создать среду, которая оптимальна для плода, и которая была миллиарды лет назад. В горах на высоте 3 – 4 тысяч метров содержание кислорода в воздухе намного меньше. Однако горцы, проживающие там, живут дольше жителей городов и сёл, расположенных у подножья гор и на равнинах. Горцы практически не страдают астмой, гипертонией, стенокардией, которые часто бывают у горожан. Такие аэробные упражнения, как бег, гребля, плавание велоспорт, лыжи очень полезны. Они создают умеренную гипоксию. Повышается потребность организма в кислороде. Дыхательный центр не обеспечивает эту потребность. Повышается количество углекислого газа в организме – гиперкапния. Углекислого газа в организме вырабатывается больше, чем он может выделиться лёгкими. Теория жизни вкратце такова: углекислый газ – основа питания всего живого на Земле. Если его не будет в воздухе, всё живое погибнет. Углекислый газ – главный регулятор всех функций организма, главная среда организма. Он регулирует активность всех витаминов и ферментов. Если его не хватает, то витамины и ферменты работают плохо, неполноценно, нарушаются обменные процессы, развиваются аллергические заболевания, онкологические заболевания, нарушается водно – солевой обмен, в органах и тканях откладываются соли. А что делает кислород? Он поступает в организм с воздухом, через бронхи, в лёгкие, оттуда - в кровь, из крови в ткани. Кислород - это регенерирующий элемент, очищающий клетки от их отходов и определённым образом сжигает отходы клеток, и сами клетки, если они погибают. Иначе возникнет самоотравление организма и его смерть. Наиболее чувствительны к интоксикации клетки мозга, без кислорода они погибают через 5 минут. Углекислый газ проходит в обратном направлении: образуется в тканях, затем поступает в кровь и оттуда через дыхательные пути выводится из организма.У здорового человека в организме соотношение углекислого газа и кислорода составляет 3:1. Углекислый газ организму необходим не меньше, чем кислород. Углекислый газ влияет на кору головного мозга, дыхательный и сосудодвигательный центры, на тонус сосудов, бронхов, секрецию гормонов, обменные процессы, электролитный состав крови и тканей, на активность ферментов и скорость биохимических реакций организма. Кислород – энергетический материал организма, его регулирующие функции ограничены. Углекислота - источник жизни, регулятор функций организма, а кислород – энергетик. Из 21% кислорода только 6 % адсорбируется тканями тела. На изменение концентрации углекислого газа в ту или иную сторону всего на 0.1% наш организм реагирует и старается вернуть его к норме. Следовательно, углекислый газ в 60 – 80 раз важнее кислорода для организма человека. Из внешней среды его получить нельзя, так как в атмосфере почти нет углекислого газа. Человек и животные получают его при полном расщеплении пищи - белков, жиров и углеводов, построенных на углеродной основе. При «сжигании» этих компонентов с помощью кислорода в органах и тканях образуется бесценный углекислый газ – основа жизни. Снижение углекислого газа в организме ниже 4% может вызывать гибель. Роль углекислого газа в организме многообразна. Основные его свойства:- сосудорасширяющее средство;- транквилизатор (успокоитель) центральной нервной системы;- анестезирующее (обезболивающее) средство;- участвует в синтезе аминокислот в организме;- возбуждает дыхательный центр. Итак, углекислый газ жизненно необходим. При его потере включаются механизмы, пытающиеся остановить его потерю в организме. К ним относятся:- спазм сосудов, бронхов, гладкой мускулатуры всех полых органов;- сужение кровеносных сосудов;- увеличение секреции слизи в бронхах, носовых ходах, развитие аденоидов, полипов; - уплотнение мембран клеток вследствие отложения холестерина, развитие склероза тканей. Все эти моменты вместе с затруднением поступления кислорода в клетки и при понижении содержания углекислого газа в крови приводят к кислородному голоданию, замедлению венозного кровотока с последующим стойким расширением вен. При дефиците углекислого газа в организме нарушаются все биохимические процессы. Значит, чем глубже и интенсивнее дышит человек, тем больше кислородное голодание организма. Переизбыток кислорода и недостаток углекислого газа ведут к кислородному голоданию. Без углекислого газа кислород не может освободиться от связи с гемоглобином и перейти в органы и ткани. Во время интенсивных занятий спортом в крови спортсмена повышается содержание углекислого газа. Этим и полезен спорт, физкультура, зарядка, физическая работа, любые активные движения. При длительных физических нагрузках у спортсменов возникает второе дыхание. Его можно вызвать задержкой дыхания. Дыхание может контролироваться сознанием. Можно заставить дышать себя чаще или реже, задерживать дыхание. Однако, как бы долго мы не старались сдерживать дыхание, наступает момент, когда это сделать невозможно. Сигналом для очередного вдоха служит не недостаток кислорода, а избыток углекислого газа. Углекислый газ – физиологический стимулятор дыхания. После открытия роли углекислого газ его начали использовать при наркозе во время операций, добавлять в газовые смеси аквалангистов для стимуляции дыхательного центра. Искусство дыхания заключается в том, чтобы почти не выдыхать углекислый газ, терять его как можно меньше. Такое дыхание у йогов. Дыхание обычных людей – это хроническая гипервентиляция лёгких, избыточное выведение углекислого газа из организма, а это вызывает около 150 тяжёлых болезней цивилизации. Роль углекислого газа в развитии артериальной гипертензии. Первопричина гипертензии – недостаточная концентрация углекислого газа в крови. Это установили российские учёные – физиологи Н. А. Агаджанян, Н.П. Красников, И. П. Полунин в 90х годах 20 века. В книге «Физиологическая роль углекислоты и работоспособность человека» они указали, что причина спазма микрососудов – гипертония артериол. У подавляющего большинства обследованных пожилых людей в артериальной крови содержится 3,6 – 4,5% углекислого газа, при норме 6 – 6,5%. Это доказывает, что первопричина многих хронических недугов пожилых людей - потеря их организмом способности поддерживать содержание углекислого газа близкое к норме. У молодых здоровых людей углекислого газа в крови 6 – 6,5%. Это физиологическая норма. У пожилых людей развиваются специфические для них заболевания: гипертония, атеросклероз, ишемическая болезнь сердца, сосудов и другие болезни сердечно – сосудистой системы, болезни суставов и т.п. потому, что содержание углекислого газа в крови у них снижено в 1,5 раза по сравнению с показателями у молодых людей. При этом остальные параметры могут быть одинаковыми. Углекислый газ расширяет сосуды – мощный вазодилататор. Углекислый газ – расширяет сосуды, действует на сосудистую стенку, поэтому при задержке дыхания кожные покровы становятся тёплыми. Задержка дыхания - важная составляющая часть бодифлекса. Это специальные дыхательные упражнения: вдох, выдох, затем следует втянуть живот, сосчитать до 10, потом надо вдохнуть и расслабиться. Занятия бодифлексом обогащают организм кислородом. Если задержать дыхание на 8 - 10 секунд, в крови накапливается углекислый газ, происходит расширение артерий и клетки эффективнее усваивают кислород. Добавочный кислород помогает справиться с многими проблемами, например, с избыточным весом и плохим самочувствием. Учёные медики рассматривают углекислый газ, как мощный регулятор многочисленных систем организма: дыхательной, сердечно - сосудистой, транспортной, выделительной, кроветворной, иммунной, гормональной и др.. Доказано, что локальное воздействие углекислого газа на локальные участки органов и тканей сопровождается увеличением объёма кровотока в них, повышением усвоения ими кислорода, усилением метаболизма, улучшением чувствительности рецепторов, усилением восстановительных процессов, установлением благоприятной для организма слабощелочной среды, усилением выработки эритроцитов и лимфоцитов. Лечение подкожными инъекциями углекислого газа (карбокситерапия) вызывает усиление кровоснабжения – гиперемию, которая при всасывании его в кровь оказывает бактерицидное, противовоспалительное, обезболивающее и спазмолитическое действие. На длительный период улучшается кровоток, кровообращение мозга, сердца и других органов. Карбокситерапия помогает справиться с признаками старения кожи, возрастными изменениями кожи, рубцами и растяжками на коже, при появлении угревой сыпи, пигментных пятен на коже. Усиление кровообращения в зоне роста волос при использовании карбокситерапии позволяет бороться с облысением. В жировых клетках под воздействием углекислого газа происходят процессы липолиза – разрушения жировой ткани и уменьшения её объёма. Углекислый газ в организме исполняет роль топлива и обладает восстановительными функциями. Кислород - окислитель питательных веществ, поступающих в организм, в процессе выработки энергии. Однако, если «сжигание» кислорода происходит не до конца, то образуются очень токсичные продукты – свободные формы кислорода, свободные радикалы. Они запускают механизмы развития старения и развития тяжёлых заболеваний: атеросклероза, диабета, дистрофических изменений в органах и тканях, нарушений обменных процессов, онкологических заболеваний. Если добавить к чистому кислороду углекислый газ и дать подышать тяжело больному человеку, то его состояние значительно улучшится по сравнению с дыханием чистым кислородом. Углекислый газ способствует более полному усвоению кислорода организмом. При повышении содержания углекислого газа в крови до 8% происходит повышение усвоения кислорода. При большем повышении его содержания усвоение кислорода начинает падать. Таким образом, организм не выводит, а теряет углекислый газ с выдыхаемым воздухом. Уменьшение этих потерь оказывает на организм благотворное действие. Лечебные и профилактические дыхательные методики повышают в крови содержание углекислого газа за счёт задержки дыхания. Это достигается за счёт задержки дыхания после вдоха, или после выдоха, или за счёт удлинённого выдоха, или за счёт удлинённого вдоха, или их комбинаций.
Врач из Новосибирска Константин Павлович Бутейко разработал методику, которая называется Волевая ликвидация глубокого дыхания (ВЛГД). Он установил, что правильное дыхание – это поверхностное дыхание. Такое дыхание особенно необходимо для людей, страдающих гипертонической болезнью и бронхиальной астмой. При этих заболеваниях человек дышит глубоко. Глубокий вдох чередуется с глубоким выдохом. Такое дыхание бывает и у спортсменов. При таком глубоком дыхании из организма интенсивно выводится углекислый газ, а это приводит к спазму сосудов и развитию кислородного голодания. Ещё в 50х годах прошлого века доктор Бутейко экспериментально доказал, что при приступе бронхиальной астмы надо заставить больного человека дышать поверхностно и неглубоко, и его состояние сразу улучшится. При возобновлении глубокого дыхания симптомы астмы возвратятся. Это было выдающееся открытие в медицине. Сам доктор Бутейко такую дыхательную гимнастику назвал Волевая ликвидация глубокого дыхания. В начале занятий дыхательной гимнастикой могут быть неприятные симптомы: учащение дыхания, чувство нехватки воздуха, болевые ощущения, ухудшение аппетита, нежелание выполнять эти упражнения. В процессе занятий все неприятные симптомы полностью пройдут. Занятия прекращать не следует. Дыхательные упражнения можно выполнять в любое время, в любом месте. Они не имеют возрастных ограничений, доступны детям с 4х лет и взрослым самого преклонного возраста. Показания к выполнению упражнений по ВЛГД:- бронхиальная астма;- артериальная гипертензия;- пневмосклероз;- эмфизема лёгких;- астматический бронхит;- пневмония;- стенокардия;- нарушение мозгового кровообращения;- некоторые аллергические заболевания;
- хронический ринит.Основной принцип гимнастики по Бутейко следующий: надо в течение 2 – 3 секунд сделать неглубокий поверхностный вдох, а в последующие 3 – 4 секунды – выдох. Постепенно пауза между вдохами должна увеличиваться, так как в этот период организм отдыхает. При этом нужно смотреть вверх и не обращать внимания на временное ощущение нехватки воздуха. Упражнение это можно выполнят без нагрузки и с нагрузкой, которая ускоряет процесс увеличения углекислого газа в организме. Пациентам с тяжёлыми формами заболеваний упражнения с нагрузкой противопоказаны. В процессе выполнения упражнений надо добиваться паузы между вдохами 50 – 60 секунд. Уменьшать глубину дыхания следует в течение 5 минут. Затем нужно измерить контрольную паузу между вдохами. Дыхательная гимнастика по Бутейко включает следующие упражнения. Упражнение №1. Задержите дыхание до ощущения нехватки воздуха, как можно дольше оставайтесь в этом положении, делая короткие вдохи. Упражнение №2. Задержите дыхание в процессе ходьбы, например, при передвижении по комнате до ощущения нехватки воздуха. Отдышитесь и повторите упражнение снова. Упражнение №3. Дышите неглубоко и поверхностно на протяжении 3х минут, впоследствии увеличивайте это время до 10ти минут. Простая, доступная, эффективная гимнастика по Бутейко позволяет сократить объём медикаментозного лечения, частоту рецидивов заболевания, предотвратить различные осложнения, улучшить качество жизни пациентов. Йоги уменьшают дыхание и увеличивают паузы между вдохами до нескольких минут. Если следовать их советам, то разовьётся высокая выносливость, высокий потенциал здоровья и увеличится продолжительность жизни. В процессе таких упражнений в организме создаётся гипоксия – недостаток кислорода и гиперкапния – избыток углекислого газа. При этом содержание углекислого газа в альвеолярном воздухе не превышает 7%. Исследованиями установлено, что воздействие гипоксически – гиперкапническими тренировками в течение 18 дней по 20 минут ежедневно улучшает самочувствие человека на 10%, улучшает память и логическое мышление на 20%. Нужно стремиться всё время дышать не глубоко, редко и следует растягивать максимально паузы после каждого выдоха. Дыхание при этом не должно быть заметно и не слышно. Мы делаем 1000 вдохов в час, 24000 – в сутки, 9000000 – в год. Наш организм – это костёр, в котором сгорают питательные вещества из пищи, содержащие углерод при участии кислорода из вдыхаемого воздуха. Чем больше в организме кислорода, тем быстрее протекают окислительные процессы. Так можно связать дыхание и продолжительность жизни. Чем медленнее и спокойнее дышишь, тем больше живёшь. Сравните.Собака делает около 40 вдохов в 1 минуту и живёт в среднем 20 лет.Человек делает около 17 вдохов в 1 минуту и живёт в среднем 70 лет.Черепаха делает 1 – 3 вдоха в 1 минуту и живёт до 500 лет. Великая тайна дыхания заключается в том, что человек может сознательно управлять своим дыханием, состоянием здоровья через дыхание, продлевать свою жизнь. Контролируйте своё дыхание. Наслаждайтесь здоровой, долгой и счастливой жизнью.
victorvorobyov.blogspot.com
Связывание кислорода и углекислого газа в лёгких
Состав вдыхаемого, выдыхаемого и альвеолярного воздуха
Вентиляция легких осуществляется благодаря вдоху и выдоху. Тем самым в альвеолах поддерживается относительно постоянный газовый состав. Человек дышит атмосферным воздухом с содержанием кислорода (20,9 %) и содержанием углекислого газа (0,03 %), а выдыхает воздух, в котором кислорода 16,3 %, углекислого газа – 4 %. В альвеолярном воздухе кислорода – 14,2 %, углекислого газа – 5,2 %. Повышенное содержание углекислого газа в альвеолярном воздухе объясняется тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания и в воздухоносных путях.
У детей более низкая эффективность легочной вентиляции выражается в ином газовом составе как выдыхаемого, так и альвеолярного воздуха. Чем моложе ребенок, тем больше процент кислорода и тем меньше процент углекислого газа в выдыхаемом и альвеолярном воздухе, т. е. кислород используется детским организмом менее эффективно. Поэтому детям для потребления одного и того же объема кислорода и выделения одного и того же объема углекислого газа нужно гораздо чаще совершать дыхательные акты.
Газообмен в легких
В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие.
Движение газов обеспечивает диффузия. Согласно законам диффузии газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением. Парциальное давление – это часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем выше его парциальное давление. Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов.
В легких газообмен совершается между воздухом, содержащимся в альвеолах, и кровью. Альвеолы оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие. Для осуществления газообмена определяющими условиями являются площадь поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Легкие идеально соответствуют этим требованиям: при глубоком вдохе альвеолы растягиваются и их поверхность достигает 100–150 кв. м (не менее велика и поверхность капилляров в легких), существует достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови.
Связывание кислорода кровью
В крови кислород соединяется с гемоглобином, образуя нестабильное соединение – оксигемоглобин, 1 г которого способен связать 1,34 куб. см кислорода. Количество образующегося оксигемоглобина прямо пропорционально парциальному давлению кислорода. В альвеолярном воздухе парциальное давление кислорода равняется 100–110 мм рт. ст. При этих условиях 97 % гемоглобина крови связывается с кислородом.
В виде оксигемоглобина кислород от легких переносится кровью к тканям. Здесь парциальное давление кислорода низкое, и оксигемоглобин диссоциирует, высвобождая кислород, что обеспечивает снабжение тканей кислородом.
Наличие в воздухе или тканях углекислого газа уменьшает способность гемоглобина связывать кислород.
Связывание углекислого газа кровью
Углекислый газ переносится кровью в химических соединениях гидрокарбоната натрия и гидрокарбоната калия. Часть его транспортируется гемоглобином.
В капиллярах тканей, где напряжение углекислого газа высокое, происходит образование угольной кислоты и карбоксигемоглобина. В легких карбоангидраза, содержащаяся в эритроцитах, способствует дегидратации, что приводит к вытеснению углекислого газа из крови.
Газообмен в легких у детей тесно связан с регуляцией кислотно-щелочного равновесия. У детей дыхательный центр очень чутко реагирует на малейшие изменения рН-реакции крови. Поэтому даже при незначительных сдвигах равновесия в сторону подкисления у детей возникает одышка. По мере развития диффузионная способность легких увеличивается из-за увеличения суммарной поверхности альвеол.
Потребность организма в кислороде и выделение углекислого газа зависит от уровня окислительных процессов, протекающих в организме. С возрастом этот уровень снижается, а значит, величина газообмена на 1 кг массы по мере роста ребенка уменьшается.
biofile.ru