Металлографические исследования металла. Металлографические исследования


Металлографическое исследование - Большая Энциклопедия Нефти и Газа, статья, страница 4

Металлографическое исследование

Cтраница 4

Металлографическое исследование заключается в рассмотрении и фотографировании шлифов и изломов сварных соединений с помощью металлографических макроскопов.  [46]

Металлографические исследования макро - и микроструктуры имеют целью проверку физической сплошности сварных швов, выявления трещин, пор, раковин, непроваров и шлаковых включений, а также участков со структурой металла, отрицательно влияющей на свойства сварньГх соединений.  [47]

Металлографические исследования проводят на шлифах, приготавливаемых на исследуемой поверхности изделия или контрольного соединения.  [49]

Металлографические исследования и химический анализ проводят на образцах, вырезанных из шва или реза. Металлографические исследования позволяют установить качество сварного соединения и основного металла, наличие и характер дефектов сварных соединений и кромок резов, выявить особенности макро - и микроструктуры. Для исследования образец вырезают так, чтобы в него входили все зоны сварного соединения и зоны термического влияния. Образцы после обработки режущим или абразив ным инструментом шлифуют наждачной бумагой, травят реактивами и изучают под микроскопом. Металлографические исследования необходимо дополнять химическим анализом и измерением твердости, что дает количественную оценку механическим свойствам в различных участках сварного шва и кромки реза.  [50]

Металлографические исследования допускается не проводить для сосудов и их элементов толщиной до 20 мм, изготовленных из сталей аустенитного класса.  [51]

Металлографическое исследование проводится с целью определения структуры металла шва и околошовной зоны, наличия в сварном шве газовых и шлаковых включений, волосяных трещин, несплавления основного и наплавленного металлов. При металлографическом исследовании производится обследование излома сварного шва и исследование его макро - и микроструктуры.  [52]

Металлографические исследования производятся на шлифах толщиной 10 - 20 мм, вырезанных из сварного соединения в различных участках.  [53]

Металлографическое исследование заключается в рассмотрении и фотографировании шлифов и изломов сварных соединений с помощью металлографических микроскопов.  [54]

Металлографические исследования слоев, прилежащих к обработанной поверхности металла, показывают, что при рациональных режимах резания и нагрева процесс ПМО сталей ( в том числе и термообработанных) не только существенно повышает производительность операций, но и позволяет, как правило, получить заданное качество поверхностного слоя деталей. Более сложно обрабатываются при плазменном нагреве заготовки из легированных высокопрочных и жаростойких чугунов, имеющие низкую теплопроводность и высокую хрупкость. Исследования показали, что высокопроизводительная ПМО отожженных хромистых и жаростойкого чугунов вполне осуществима, если плазменный нагрев проводить более равномерно и не столь интенсивно, как при обработке заготовок из сталей. При обработке заготовок с наплавками в наплавленном слое могут возникать новые и развиваться ранее имевшиеся трещины [14], однако техническими условиями на изготовление таких деталей допускается ( в известных пределах) растрескивание наплавленного слоя или предусматривается последующее шлифование, устраняющее поверхностные дефекты.  [56]

Металлографическое исследование применяется при сомнительном качестве деталей. При этом исследовании можно выявить макро - и микротрещины, поры, раковины, непровар, размер литого ядра и структуру сварной точки.  [57]

Страницы:      1    2    3    4

www.ngpedia.ru

Diex - Металлографические исследования металла

Металлографическое исследование строения металлов и сварных соединений

Металлография исследования – это комплекс испытаний и аналитических мероприятий, направленный на изучение макроструктуры и микроструктуры металлов, исследование закономерности образования структуры и зависимостей влияния структуры на механические, физико – механические, электрические и другие свойства металла.

Металлографические методы исследования металлов и сварных соединений позволяют определить размеры, форму и взаимное расположение кристаллов, а также неметаллические включения, трещины, раковины, поры, свищи и т. д.

Различают макроскопический и микроскопический методы изучения строения металлов. Макроскопический метод — исследование строения металлов и сварных соединений невооруженным глазом или с применением лупы, дающей увеличение в 5—30 раз. Макроанализ дает возможность выявлять раковины, шлаковые включения, нарушение сплошности металла, трещины и другие дефекты строения сплава, химическую и структурную неоднородность.

Микроскопический анализ металлов заключается в исследовании их структуры с помощью оптического или электронного микроскопов, на специально подготовленных образцах. Методами микроанализа определяют форму и размеры кристаллических зерен, обнаруживают изменения внутреннего строения сплава под влиянием термической обработки или механического воздействия на сплав, микротрещины и многое другое.

Так как все металлы непрозрачны, то их строение можно исследовать на изломах или специально подготовленных шлифах. Исследование строения методом фактографии по изломам часто применяют при анализе причин разрушения деталей машин, аппаратов и элементов стальных конструкций. Макроструктурный метод используется также для ориентировочного определения глубины закаленной зоны инструментальных сталей, глубины цементованного слоя и т. д.

Изучение макроструктуры металла обычно проводят на специально подготовленных шлифах. В этом случае деталь или изделие разрезают. Поверхность, которую необходимо исследовать, тщательно обрабатывают под плоскость на металлорежущем станке. Если деталь разрезали при помощи газовой горелки, то необходимо снимать весь слой металла, в котором произошло изменение структуры в результате нагрева пламенем горелки. Обычно глубина этого слоя для сталей, применяемых в котло- и турбиностроении, не превышает 10—12 мм. Затем поверхность следует отшлифовать на плоско-шлифовальном станке и наждачной бумагой. Для выявления структуры металла его необходимо подвергнуть травлению. В процессе травления кристаллы растворяются с различной скоростью, так как они по-разному ориентированы относительно исследуемой поверхности. Свойства же кристаллов, в том числе и растворимость в химических реактивах, разные в разных направлениях. Границы между кристаллами содержат повышенный процент примесей, поэтому они растворяются быстрее кристаллов. Иногда травлением получают различную окраску структурных составляющих сплава. Поэтому в результате травления можно получить четкую картину кристаллического строения металла.

Травитель сильнее разъедает трещины, закатанные плены, пористые участки и слабее — основной металл.

В теплотехнике принято исследовать макроструктуру сварных соединений паропроводов, по которым транспортируется перегретый пар с температурой выше 450° С независимо от давления и трубопроводов, по которым транспортируется вода или насыщенный пар при температуре свыше 120° С и давлении более 8 Мн/м2 (80 am). Контроль макроструктуры сварных соединений обязателен также для остальных элементов парового котла, работающих при температуре стенки свыше 450° С и независимо от температуры стенки при давлении свыше 4 Мн/м2 (40 am).

В процессе металлографического исследования выявляют макро- и микроскопические дефекты сварного шва: непровары, трещины, поры, шлаковые включения, а также устанавливают структуру металла.

Образец для металлографического исследования вырезают из сварного соединения- поперек оси шва. Образец должен включать в себя как шов, так и зону термического влияния.

Трещины в основном металле шва, несварившиеся слои, крупные шлаковые включения, непровар сверх нормы не допускаются. Непровар не должен превышать при односторонней сварке без подкладного кольца 15% толщины стенки; если толщина стенки превышает 20 мм — не более 3 мм.

Допускаются видимые невооруженным глазом мелкие поры и шлаковые включения в количестве не более пяти штук на 1 см2 площади поперечного сечения шва. Максимальный линейный размер отдельного дефекта по наибольшей протяженности не должен быть более 1,5 мм, а сумма максимальных линейных размеров всех дефектов — не более 3 мм.

Микроскопический анализ строения металлов и сварных соединений позволяет наблюдать непосредственно их строение при увеличении до 2000 раз. Обычно пользуются увеличением от 100 до 800 раз.

Изучение структуры металла проводят при помощи микроскопа в отраженном свете. Образец металла тщательно обрабатывают под плоскость на металлорежущем станке, шлифуют и полируют. После такой подготовки он отражает лучи как зеркало. На нетравленом шлифе видны трещинки, поры, неметаллические включения. Чтобы выявить границы зерен и отдельные структурные составляющие, шлиф травят. Для травления микроструктуры стали и сварных соединений часто применяют 3—5%-ный раствор азотной кислоты в спирте.

Исследования и фотографирование микроструктуры проводят с помощью специального стационарного металлографического микроскопа. На фото 1, а показан микроскоп Neophot 2 представляющий собой, инвертированный фотомикроскоп отраженного света, предназначенного для металлографической микроскопии. С компьютеризированной системой воспроизведения результатов.

На тепловых электростанциях необходимо проводить контроль за структурой металла паропроводов как в исходном состоянии, так и после различных сроков эксплуатации. Такой контроль осуществляют по образцам, вырезанным из паропровода, при помощи переносных микроскопов, устанавливаемых непосредственно на паропроводе, а также при помощи оттисков.

В случае использования двух последних способов отпадает необходимость в вырезке для металлографических исследований образцов из паропровода. Подготавливается шлиф непосредственно на трубе (на объекте исследования). Окалина и поверхностный обезуглероженный при термической обработке слой металла глубиной 0,5—1 мм снимаются при помощи переносного наждачного круга, который приводится во вращение от пневматического или электрического привода.

Подготовка микрошлифа: обработка поверхности проводится последовательно тремя кругами: крупнозернистым электрокорундовым, мелкозернистым электрокорундовым с вулканитовой связкой и войлочным или фетровым, покрытым пастой ГОИ на половине круга по ширине. Если отсутствует мелкозернистый круг, то тонкую шлифовку проводят при помощи шкурки вручную. При переходе от одного круга на другой направление обработки меняется на 90°. При этом легче выводятся риски от предыдущего круга. При полировке пастой ГОИ ее остатки снимаются чистой половиной войлочного или фетрового круга.

Подготовленная поверхность шлифа обезжиривается ватным тампоном, смоченным этиловым спиртом.

Травление проводят чаще всего 4%-ным раствором азотной кислоты в спирте. Для лучшего выявления микроструктуры процесс полировки и травления обычно повторяют несколько раз.

Подготовленный таким образом шлиф можно изучать либо непосредственно на объекте при помощи переносного оптического микроскопа, либо, сняв слепок со шлифа и исследуя уже его при помощи стационарного микроскопа, в лаборатории.

Имеется переносной металлографический микроскоп типа ММУ-3У (фото 2), позволяющий проводить исследования микроструктуры при увеличении до 400 раз.

Для снятия слепков со структуры чаще всего используют полистирол. Его размягчают при помощи бензола, в котором он легко растворяется. На кусочек полистирола в виде кубика со стороной 10—20 мм или цилиндра такого же диаметра и высоты кисточкой наносят бензол. Им смачивают только ту грань или торец, которые в дальнейшем прижмут к предварительно подготовленному шлифу. Между моментом нанесения бензола и прижатием кусочка полистирола должно пройти 3—5 секунд. За это время полистирол успеет размягчиться. Далее кусочек полистирола плотно прижимают к шлифу и выдерживают в течение 5— 10 сек при помощи миниатюрного ручного пресса или рукой. Затем он прилипает к шлифу. Его оставляют в таком положении на 1,5— 2 ч. За это время полистирол затвердевает, а кусочек легко отделяется рукой. Оттиск должен просохнуть и окончательно затвердеть, после чего его помещают на металлографический микроскоп. Методика исследования оттиска на металлографическом микроскопе ничем не отличается от методики исследования обычного шлифа. Для исследования оттисков удобно использовать косое освещение.

При исследовании причин разрушения различных деталей в процессе эксплуатации образцы для анализа вырезают вблизи места разрушения и в отдалении от него, чтобы можно было определить наличие каких-либо отклонений в строении металла. Кроме того, изучают структуру в продольном и поперечном направлениях.

1. Результаты макроисследования

(на примере наплавки дистанционное кольцо нижнего отвода реактора, установки каталитического реформинга).

При макроисследовании в наплавке дистанционного кольца выявлена магистральная трещина глубиной ~ 11мм рис.1, 2. Раскрытие трещины до 0,19мм. Характер растрескивания трещины показан на рис.3. Края трещины острые, рваные, что свидетельствует о динамике ее развития. Трещина в металле наплавки распространяется по всему периметру кольца. Длина трещины ~2160мм. Из наплавки трещина переходит в основной металл, см. рис. 4. При определенном насыщении водородом аустенитные коррозионные стали, в нашем случае наплавка, подвержены водородному охрупчиванию, что объясняет процесс трещинообразования в металле наплавки.

Излом ударных образцов хрупкий, кристаллический. Согласно «Шкалы изломов» доля хрупкой составляющей в образцах – 100%, сам излом представляет собой однородную поверхность хрупкого разрушения с мелкокристаллическим строением без признаков макропластической деформации см. рис.5.

Рис.1.  Растрескивание в наплавке дистанционного кольца. Увеличено в 3 раза.

Рис. 2. Характер трещины в наплавке.

Рис. 3.Внешний вид излома ударного образца.

2. Результаты микроисследования

Характер микроструктуры по линии сплавления основной металл кольца - наплавка показан на рис. 8. Микроструктура основного металла кольца, см. рис. 5а отпущенный бейнит + феррит. Линия сплавления сформирована нормально, см. рис. 5б. В металле наплавки выявлены микротрещины см. рис.8в. Структура металла наплавки аустенитная, литая, см. рис. 5г.

Микроструктура металла дистанционного кольца по сечению, см. рис.6а, 6б отпущенный бейнит+феррит. Различий в структурах наружной и внутренней поверхности кольца не выявлено. Обезуглероживания либо науглероживания в основном металле дистанционного кольца не выявлено. Межкристаллитной коррозии (МКК) в основном металле кольца и наплавке не выявлено.

Рис. 4. Микроструктура ОМ – наплавка

Рис. 5.Микроструктура ОМ по сечению

www.tuev-dieks.com

Металлографические исследования | Контроль качества сварных швов и соединений

Металлографическому исследованию подвергаются стыковые, тавровые и угловые соединения для выявления возможных внутренних дефектов (трещин, непроваров, шлаковых и металлических включений и др.), а также для установления глубины проплавления и структуры металла шва.

Контроль производится путем исследования поверхности шлифа, вырезанного поперек сварного шва. Контролируемая поверхность должна включать в себя сечение шва с зоной термического влияния и прилегающей к ней участком основного металла.

Вырезка заготовок для шлифов производится режущим (фрезеровка, строгание) или абразивным инструментом. Допускается газовая или плазменная резка, если при этом будут исключены структурные изменения металла в исследуемом сечении.

К металлографическим относятся макроструктурные и микроструктурные исследования.

Макроисследование проводится визуально или при увеличении до 30 раз. Макроструктурный анализ выявляет форму и размеры шва, площадь и форму провара основного металла, направленность, рост и размеры кристаллитов, размеры и форму околошовной зоны, наличие в соединении непроваров, трещин, пор, шлаковых включений, химической неоднородности и т. п.

Данные макроструктурного анализа совместно с измерениями твердости дают довольно точное представление о качестве сварного соединения и об изменениях, которые нужно ввести в технологию сварки для улучшения качества швов.

Перед травлением поверхность темплетов шлифуется на плоскошлифовальных станках или вручную. Окончательная обработка макрошлифа осуществляется шлифовальной шкуркой марки К-3 зернистостью 240—280. Для травления шлифов применяют различные реактивы в зависимости от материала сварного соединения и предполагаемых особенностей макроструктуры.

Для выявления структуры сварных швов на углеродистых и легированных сталях применяют реактив из хлористого железа (20 г на 100 г воды) или раствор соляной кислоты (10 мл на 100 мл воды). Травят образцы в растворе, подогретом до 60 °С. После травления шлиф осветляется в 10 %-ном водном растворе азотной кислоты.

Универсальным раствором для выявления структуры сварных швов практически на всех сталях является раствор хлористого железа (200 г) и азотной кислоты (300 мл) в 100 мл воды. Образец травят протиранием ватным тампоном, смоченным в растворе.

Микроструктурный анализ позволяет изучить строение металлов и сплавов с- помощью микроскопа. Он определяет: структуру наплавленного металла, основного металла и зоны термического влияния, примерное содержание углерода в наплавленном металле, перегрев и пережог, выгорание отдельных элементов, микротрещины, микропоры, шлаковые включения и т. п.

Размер поверхности микрошлифа обычно не превышает 20x20 мм. Поверхность микрошлифа обрабатывается более тщательно, чем макрошлифа, и заканчивается полировкой на сукне алмазными пастами или растворами окиси хрома или окиси алюминия.

Для травления сталей применяют 4 %-ный раствор азотной кислоты в этиловом спирте — травят до 1 мин, 4 %-ный раствор пикриновой кислоты в этиловом спирте — травят от 20 с до 15 мин. После травления микрошлифы обследуют под микроскопом при увеличении от 150 до 1000 раз и более.

www.stroitelstvo-new.ru

Результат - металлографическое исследование - Большая Энциклопедия Нефти и Газа, статья, страница 2

Результат - металлографическое исследование

Cтраница 2

Когда результаты металлографического исследования неудовлетворительны ( обнаружены трещины и признаки нарушения связи между зернами металла), производят дополнительные механические испытания и металлографические исследования других мест листа.  [16]

Анализ результатов металлографических исследований образцов, подвергнутых действию излучения ОКГ, показал, что ЗТВ в этом случае состоит из трех слоев. Первый слой имеет крупнозернистую структуру мартенсита и остаточного аустенита, второй - структуру мелкоигольчатого мартенсита, остаточного аустенита и избыточных карбидов. Между первыми двумя слоями и исходной структурой располагается слой отпуска, вызванного тепловым воздействием луча ОКГ.  [17]

По результатам металлографических исследований был сделан вывод, что температура внутренней среды в момент реакции разложения не превышает 950 - 1000 С.  [18]

По результатам металлографических исследований составляются технические заключения, которые должны быть приложены к паспорту резервуара.  [19]

По результатам металлографических исследований трубы и двойника установлено следующее.  [21]

В результате металлографического исследования образцов после прокатки было установлено, что ориентация нитевидных кристаллов остается хаотической; было обнаружено также большое количество разрушенных в результате горячего прессования и прокатки нитевидных кристаллов. Оба эти обстоятельства являются причиной низкого уровня прочности композиционных материалов.  [22]

На основании результатов металлографических исследований, лабораторных и натурных испытаний, компьютерного анализа сканов внутритрубной дефектоскопии, а также данных проведенных расчетов предложено выявленные дефекты классифицировать на следующие три категории в зависимости от условия Рраз.  [24]

Сварные швы по результатам металлографических исследований, рентгеноконтроля или ультразвуковой дефектоскопии, цветной дефектоскопии бракуются, если выявлены следующие дефекты: трещины всех видов и направлений, расположенные в металле шва, по линии сплавления и в околошовной зоне основного металла, в том числе и микротрещины, выявленные при микроисследовании; межкристаллитная коррозия ( для сталей типа 12Х18Н10Т), коррозия сварных швов с их износом ( по толщине) до отбраковочных величин, коррозионное растрескивание.  [25]

Качество сварки по результатам металлографических исследований должно соответствовать нижеприведенным требованиям.  [26]

Диаграмма построена по результатам дилатометрических и металлографических исследований. Критические точки определены на дилатометре.  [28]

Однако, как показывают результаты металлографического исследования на шлифах, вырезанных из паяных конструкций, эти параметры иногда имеют отступления от требований технической документации, причем при совокупности некоторых отступлений от оптимальных, например таких, как величина зерна, химический состав припоя и толщина никелевого покрытия, эффект чувствительности металлов к хрупкому разрушению усиливается. В связи с этим была предложена методика расчета совместного влияния величины зерна, химического состава припоя и толщины никелевого покрытия на охрупчивание материалов при пайке.  [29]

В данной главе приведены результаты многолетних металлографических исследований разных групп трубных сталей, разрушенных при авариях газопроводов.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Металлографические исследования

Металлография. Металлографическое исследование

 

Металлография — метод исследования и контроля металлических материалов.

Металлография изучает закономерности образования структуры, исследуя макроструктуру и микроструктуру металла (путём наблюдения невооруженным глазом либо с помощью светового и электронного микроскопов), а также изменения механических, электрических, магнитных, тепловых и др. физических свойств металла в зависимости от изменения его структуры.

 

Задача металлографии

Эталон проводит металлографические исследования металлов. Опыт в металлографии 10 лет!Задачей металлографического исследования является установление взаимосвязи между качественными и количественными характеристиками структуры, и физическими, механическими, химическими, технологическими и эксплуатационными свойствами металлических материалов.

С помощью металлографического исследования отслеживают изменения состояния структуры металла, которые приводят к снижению прочности материала, и соответственно - к снижению прочности всей конструкции, ее остаточного ресурса.

 

Разрушающая и неразрушающая металлография

 

Разрушающая металлография или металлография с вырезом образца - классический вид металографии, при котором из объекта контроля удаляется образец. Из образца затем приготовляется препарат и исследуется на стационарном микроскопе в лаборатории. При этом целостность объекта, из которого изъяли образец, нарушается.

Неразрушающая металлография делится на два вида - металлография методом реплик и металлография непосредственно на объекте. В первом случае с зашлифованной поверхности металла делается "слепок" - реплика, во втором случае шлиф непосредственно наблюдается с помощью портативного металлографического микроскопа. При металлографии непосредственно на объекте изображение структуры также получают непосредственно на объекте, и сразу проверяют качество изображения.

 

Этапы металлографического исследования и их особенности

Говоря о металлографических исследованиях металлов, в каждом отдельном случае требуется индивидуальный подход. Тем не менее, можно выделить несколько основных этапов, которые непременно присутствуют во время проведения подобных исследований:

  • Подготовка микрошлифов – специальных образцов, которые тщательно шлифуются, полируются и промываются до получения плоской поверхности, пригодной для детального осмотра.
  • Изучение микроструктуры образца в нетравленом виде, непосредственно после полировки и промывки. Во время осмотра под микроскопом можно заметить отдельные темные участки и вкрапления, которые могут представлять собой мелкие поры, неметаллические включения, структурные составляющие.
  • Макро- и микроанализ во время металлографических исследований металла позволяет своевременно выявить его дефекты, понижающие эксплуатационные свойства и надежность изделий в работе. 

Во время работы лаборанты используют самое разное оборудование, в том числе и микроскопы, добиваясь увеличения до нескольких тысяч раз. Так можно определить размеры и форму кристаллических зерен, а также обнаружить изменения во внутреннем строении металлического сплава под влиянием высоких температур или механического воздействия, микротрещины и другие дефекты. 

Где применяется металлография

 

В нефтегазовой промышленности

Исследование эксплуатационной надежности промысловых труб (ГОСТ Р 53580-2009 “Трубы стальные для промысловых трубопроводов”) – металлографический контроль продольного сварного шва сварных труб

В химической промышленности

Металлографическое исследование (контроль) основного металла и сварных соединений, выполненных сваркой плавлением из низкоуглеродистых, низколегированных, среднелегированных, высоколегированных и двухслойных сталей, а также цветных металлов (меди, алюминия, серебра, титана) при изготовлении сосудов и аппаратов, предназначенных для работы в нефтеперерабатывающей, нефтехимической, химической и газовой отраслях промышленности. (РД 24.200.04-90)

В зоне термического влияния и в основном металле сварного соединения при необходимости проверяют:

  • загрязненность неметаллическими включениями по ГОСТ 1778;
  • микроструктуру по ГОСТ 5640; ГОСТ 8233;
  • величину зерна по ГОСТ 5639;
  • содержание альфа-фазы (в высоколегированных сталях) по ГОСТ 11878;
  • склонность к межкристаллитной коррозии по ГОСТ 6032.

Также металлография входит в перечень исследований для определения остаточного ресурса технологического оборудования нефтеперерабатывающих, нефтехимических и химических производств (Методика МООР-98)

В энергетике

Оценка качества и исследование причин повреждений сварных соединений паропроводов тепловых электростанций (МУ 34-70-161-87).Оценка балла зерна гибов паропроводов по ГОСТ 5639.

etalon-rk.ru

Металлографическое исследование - Большая Энциклопедия Нефти и Газа, статья, страница 2

Металлографическое исследование

Cтраница 2

Металлографические исследования ( табл. 15) показывают, что применяемый материал для данных деталей имел повышенное содержание фосфора ( до 0 046 %), что повлияло на величину его ударной вязкости.  [17]

Металлографические исследования, ультразвуковая и гамма-дефектоскопия выявила трещиноподобные дефекты в допустимых пределах.  [18]

Металлографические исследования показали, что нанесенные покрытия однородны, матового цвета, без частиц нерасплавленного металла и трещин.  [19]

Металлографические исследования при монтаже трубопроводов ( проверка вида излома, изучение макро - и микроструктуры) необходимы для контроля строения основного и наплавленного металла в зоне сварки. Особенно часто металлографический контроль применяют при сварке труб из закаливающихся сталей. Кроме того, изучение излома и структуры проводят при появлении в сварных соединениях трещин, несплавленпй и других недопустимых дефектов. В этом случае металлографический контроль позволяет выявить причины появления подобных дефектов.  [21]

Металлографические исследования проводят на темплетах, вырезанных поперек сварного соединения из каждой контрольной пробы. Исследования проводят для выявления внутренних дефектов, определения структуры и твердости всех зон сварного соединения. Контролируемая поверхность должна включать сечение шва с зонами термического влияния и прилегающими к ним участками основного металла.  [22]

Металлографические исследования проводят на темплетах из контрольных образцов с целью выявления недопустимых внутренних дефектов и структур сварного соединения. В образцы для металлографических исследований должны входить все участки сварного соединения: металл шва, зоны термического влияния по обе стороны от линии сплавления и прилегающие к ним участки основного металла. В темплет должны входить участки шва, выполненные всеми способами сварки. Для стыковых соединений темплеты вырезают из контрольных образцов, предназначенных для механических испытаний, а для партии из не более 50 однотипных сварных соединений штуцеров, выполненных в течение не более трех месяцев, сваривают специальную контрольную пробу.  [23]

Металлографические исследования включают макро - и микроанализ. Этому контролю подвергаются швы ответственных конструкций.  [25]

Металлографические исследования показали, что в зоне контакта изменений структуры и собирательной рекристаллизации не наблюдается, непровары отсутствуют.  [26]

Металлографическое исследование показало, что при положительной поляризации на поверхности стали 45 образуется мягкий слой, под которым расположены две светлые нетравящиеся зоны с четкой линией раздела. При отрицательной поляризации на поверхности стали 45 формируется слой в виде двух светлых нетравящихся зон с глубоким диффузионным подслоем.  [27]

Металлографические исследования производятся в специальных лабораториях. При этих исследованиях определяют плотность шва, сплавление наплавленного и основного металла и структуры металла шва. Металлографические исследования состоят из макро - и микроанализа.  [28]

Металлографические исследования выявили, что возможности использования закалки распыляемой стали для повышения твердости реализуются не полностью.  [29]

Металлографические исследования проводят на макро - и микрошлифах сварного шва. Темплеты для шлифов вырезают из сварных соединений поперек и в плоскости сварного шва.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Металлографические методы контроля, химический анализ коррозионные испытания. Их задачи и области применения

Металлографию используют для выявления реальных размеров дефектов путем их вскрытия, а также оценка правильности выбора материалов и параметров процесса сварки изготовлением макро- и микрошлифов и анализа структуры шва и зоны термического влияния.

Металлографический анализ – это анализ структурообразования металлов и сплавов, то же, что и металлографическое исследование. Несмотря на то, что металлографический анализ и металлографическое исследование это синонимические понятия, во второе определение принято вкладывать более широкий смысл (подробнее – на странице Металлографические исследования). Исходя из этого, можно сделать вывод, что металлографический анализ является одним из методов металлографических исследований.

Понятие "металлографический анализ" трактуют, как метод изучения микро- и макроструктуры металлов и сплавов с помощью визуального наблюдения при различном увеличении. То есть металлографический анализ это комплекс именно оптических исследований металлов и сплавов.

Любой металлографический анализ включает в себя четыре этапа:

  • Пробоотбор
  • Пробоподготовка
  • Собственно металлографический анализ
  • Статистическая обработка результатов анализа.

Под металлографическим анализом подразумевают изучение микроструктуры металлов и сплавов, а также их макроструктуры в условиях металлографической лаборатории при помощи специального оборудования, приспособлений и по специализированным методикам.

Основным инструментом металлографического анализа является металлографический микроскоп. В настоящее время существует большой выбор специализированных металлографических микроскопов, ориентированных на те или иные производственные условия. Кроме того, получили широкое распространение полуавтоматические системы металлографического анализа изображений, включающие в себя цифровую камеру и программное обеспечение.

Пробоотбор металлов и сплавов имеет некоторые особенности.

Пробы жидкого (расплавленного) металла отбирают при разливе или же из уже разлитого металла после перемешивания и удаления шлака. Существует ряд методик пробоотбора жидкого (расплавленного) металла.

При отборе пробы* твёрдого металла (представленного в виде отливки) структура металла может быть неоднородной. Поэтому пробоотбор осуществляют в наиболее характерных зонах металлопродукции. Правила пробоотбора установлены соответствующими стандартами.

Пробоотбор для металлографии осуществляют огневым способом (автогеном) или холодным (на металлорежущих станках). Во время пробоотбора необходимо соблюдать меры, предохраняющие образцы от нагрева и наклёпа (которые могут привести к изменению структуры и свойств).

 

Пробоподготовка в металлографии, включающая в себя несколько этапов, повышает точность получаемых результатов. Главной задачей пробоподготовки является подготовка анализируемого вещества к дальнейшему исследованию. Благодаря пробоподготовке повышается безопасность исследования, ускоряется процесс тестирования и снижается погрешность итоговых значений.

Этапы пробоподготовки в металлографии:- получение микрошлифа путем вырезки;- получение гладкой поверхности на токарном или фрейзерном станке;- шлифование;- полирование;- анализ поверхности шлифа до травления;- травление.

Шлифование - это механическая обработка металлического образца, при которой устраняются неровности перед полированием. При шлифовании сглаживаются поверхности хрупких и твердых материалов.

Расходные материалы для шлифования:- твердый зернистый песок. Чем меньше зерна песка, тем меньше ямки на поверхности шлифа;- более твердый наждак подходит для шлифования черных и цветных металлов;- корунд и карборунд подходит для шлифования закаленной стали, бронзы;- крокус или окись железа используют при шлифовании латуни, цинка и алюминия;- полировальная или венская известь - для мягких металлов и сплавов.

Современное лабораторное оборудование для грубой шлифовки полностью автоматизируют данный процесс. Программируемые планарные станки позволяют автоматизировать процесс подготовки образцов с постоянным качеством.

Полирование - это финиш механической обработки материалов при помощи мелких абразивов. Основной сутью полирования является придание поверхности испытуемых образцов мельчайшей шероховатости и зеркального блеска. Добиться подобного результата в настоящее время не сложно, если при этом у вас есть полировальные станки. Возможно, также объединить шлифование и полирование, используя при этом шлифовально-полировальные станки от Metkon.

В металлографии обычно после шлифования и полирования проводят травление поверхности шлифа. Травление происходит путем подбора химических реактивов и дальнейшим их воздействием на заготовку. Таким образом, управляемо удаляют поверхностный слой материала. Это нужно для очистки от загрязнений, от жировой пленки, окиси и тому подобное.

И уже после этих пройденных этапов пробоподготовки наступают этапы анализа испытуемого материала:- микроскопия;- твердометрия.

 

Микроскопия - процесс распознования структуры металла посредством оптических световых микроскопов. Это самые важные инструменты в металлографии. Все последующие анализы микроструктуры образцов начинаются именно с использованием микроскопов с регулирующим увеличением для большей эффективности получаемых результатов. Микроскопы бывают моно-, бино- и тринокулярные. Все современные световые микроскопы оборудованы в соответсвии с последними технологическими тенденциями, что значительно ускоряет процесс распознавания состава и структуры материала.

Твердометрия или измерение твердости металла - это процесс распознавания физических свойств металла. Данная процедура дает возможность распознать свойство материала оказывать сопротивление проникновению в его состав другого тела, и, связанные с этим, возможные деформации.

Твердометрия осуществляется по методам Роквелла, Бринелля, Виккерса и Супер-Роквелла. Современное оборудование, предлагаемое нашей компанией, позволяет измерить твердость металла по методу Виккерса. Твердометрия по методу Виккерса происходит в тришага:- вдавливание четырехгранной алмазной пирамидки под действием нагрузки;- постоянное поддержание приложенной нагрузки в течение какого-то установленного времени;- измерение диагоналей отпечатка, которые остались на поверхности образца после того, как убрали нагрузку.

 

Коррозионные испытания имеют целью определение стойкости сварных соединений при общей и местной коррозии, а также коррозионной усталости.

Различают два вида коррозии: общая и межкристаллитная.

При общей коррозии вся поверхность металла или часть его химически взаимодействует с агрессивной средой. С течением времени поверхность разъедается и толщина металла соответственно уменьшается.

При межкристаллитной коррозии происходит разрушение металла по границам зерен. Внешне металл не меняется, но связь между зернами значительно ослабевает, и при испытании на изгиб в растянутой зоне образца образуются трещины по границам зерен.

Испытывая сварные соединения на коррозионную стойкость, сварные образцы (для ускорения процесса испытания) подвергают действию более сильных коррозионных сред, чем те, в которых конструкцию будут эксплуатировать.

Оценку стойкости сварных соединений против общей коррозии проводят несколькими методами.

Весовой метод заключается во взвешивании сварных образцов размером 80 X 120 мм и толщиной 6—10 мм со швом посредине до и после испытания и определении потерь в весе (в г/м2) за определенное время. Усиление шва снимают. Перед испытанием образцы взвешивают с точностью до 0,01 г и замеряют их общую поверхность по всем шести граням. Затем образцы кипятят несколькими циклами по 24—48 ч в азотной или серной кислоте соответствующей концентрации в зависимости от условий работы сварного соединения.

После кипячения с образцов мягкими скребками из дерева, алюминия или меди полностью удаляют продукты коррозии и образцы снова взвешивают. Вычитая вес образца после испытания из первоначального веса и отнеся разность к общей площади поверхности образца (в м2) и одному часу испытания, получают показатель коррозии по потере веса в г/м2*ч и пересчитывают его на потерю веса в г/м2*год.

Скорость проникания коррозии П в мм/год определяют по формуле

П = (К/δ)*10-3

где К — потеря веса, г/м2*год;

δ — плотность металла, г/см3.

Полученные расчетные данные сравнивают с данными ГОСТа.

Профилографический метод состоит в определении степени коррозирования (глубины разъедания) различных участков сварного соединения (основного металла, зоны термического влияния и металла шва). Образцы испытают в среде, аналогичной по действию той, в которой будет работать сварное соединение, но более быстродействующей с определенным коэффициентом ускорения. Глубину разъедания измеряют с помощью специальных профилографов и профилометров (рис. 116), после чего на бумаге вычерчивают профиль сварного соединения после коррозии.

При электрохимическом (потенциометрическом) методе определяют разность потенциалов в той или иной коррозионной среде между сварным швом, зоной термического влияния и основным металлом. Это дает довольно правильные представления о направлении процесса коррозии.

Объемный метод применяют для коррозионных испытаний только основного металла. Он заключается в определении количества газов, образующихся в результате коррозии.

При методе определения коррозионной стойкости по изменению механических свойств для испытания подбирают сильно действующую среду, как, например, раствор серной или соляной кислоты. Образцы выдерживают в коррозионной среде определенное время, а затем подвергают механическим испытаниям, по результатам которых судят о стойкости сварных швов против коррозии.

Качественную оценку коррозионных поражений проводят внешним осмотром, а также исследованием с помощью лупы или микроскопа сварных соединений после коррозионных испытаний. Эта оценка служит дополнением к методам количественной оценки коррозионных поражений

Рис. 117. Межкристаллитная коррозия в результате выпадения карбидов а — при сварке пересекающихся швов; б — при возобновлении сварки шва после смены электрода; в — при двустороннем сварном шве

Испытания на межкристаллитную коррозию аустенитных, аустенитно-ферритных и аустенито-мартенситных коррозиестойких сталей проводят по ГОСТ 6032—58*.

Образцы вырезают механическим способом. Контрольную поверхность толщиной до 10 мм состругивают на глубину до 1 мм. Образцы толщиной более 10 мм вырезают поперек шва с таким расчетом, чтобы толщина его была 5 мм, а ширина равнялась толщине основного металла. Чистота поверхности образцов перед испытанием должна быть не ниже Δ7.

Склонность металла к межкристаллитной коррозии определяют по методам A, AM, В:

А — в водном растворе медного купороса и серной кислоты;

AM — в водном растворе медного купороса и серной кислоты в присутствии медной стружки;

В — в водном растворе медного купороса и серной кислоты с добавкой цинковой пыли.

Все испытания проводят в колбе или специальном бачке из хромоникелевой стали с обратным холодильником. В реакционный сосуд загружают образцы и заполняют его соответствующим раствором на 20 мм выше образцов. Затем образцы кипятят в растворе: для метода А - 24 ч, AM - 15 или 24 ч; В - 144 ч.

После кипячения образцы промывают, просушивают и загибают на угол 90°. При этом радиус закругления губок или оправки должен быть равен: при толщине образцов до 1 мм — 3 мм, от 1 до 3 мм - не более трехкратной толщины образца и свыше 3 мм — 10 мм.

Поверхность в зоне изгиба образца тщательно осматривают с помощью лупы при увеличении в 8—10 раз. Если на поверхности будут обнаружены поперечные трещины, то это значит, что металл склонен к межкристаллитной коррозии и непригоден для эксплуатации.

Кроме методов A, AM и В существуют еще методы Б и Д.

При методе Б производят анодное травление участков поверхности деталей или зоны термического влияния. Металл сварного шва этим методом не контролируют. Метод Б основан на анодной поляризации и состоит в воздействии коррозионной среды и электрического тока на поверхность испытуемой детали.

Сосуд для коррозионной среды (рис. 119) состоит из свинцовой воронки с резиновой манжетой, плотно прилегающей к поверхности контролируемой детали. Для испытаний собирают установку по схеме, приведенной на рис. 120.

Рис. 119. Сосуд для испытания анодным травлениема — горизонтальных поверхностей; б — вертикальных поверхностей; I — свинцовая воронка; 2 — резиновая манжетка; 3 — поверхность контролируемой детали

Рис. 120. Электрическая схема для испытания методом анодного травления1 — источник постоянного тока; 2 — амперметр с ценой деления не более 0.1 а; 3 — реостат или магазин сопротивления; 4 — выключатель; 5 — свинцовый сосуд; 6 — резиновая манжета; 7 — контролируемый образец

Испытания проводят по обеим сторонам сварного шва в шахматном порядке, а в случае перекрытых швов — во всех местах перекрещивания (рис. 121). Поверхность контролируемых участков шлифуют наждачной бумагой и промывают чистым авиационным бензином и спиртом. На отшлифованную поверхность плотно устанавливают сосуд и наливают в него 3—5 мл электролита (60% серной кислоты и 0,5% уротропина), включают электрический ток и в течение 5 мин подвергают металл коррозированию. Полярность устанавливают таким образом, чтобы испытуемое изделие служило анодом, а свинцовый сосуд — катодом. С помощью реостата устанавливают ток плотностью 0,65 а/см2 при напряжении 5—9 в.

Рис. 121. Схема проведения контроля перекрывающихся сварных швов методом анодного травления1 — сварной шов; 2 — место анодного травления

По прошествии 5 мин ток выключают, детали промывают водой и протирают спиртом. Образовавшиеся пятна на поверхности образца рассматривают под микроскопом при увеличении не менее чем в 30 раз. При контроле готовых сварных конструкций, когда применение микроскопа невозможно, допускается применение бинокулярной лупы или оптических трубок с 20-кратным увеличением. Если пятно анодного травления имеет однородный светлый или темный цвет, то это значит, что металл не склонен к межкристаллитной коррозии. Браковочным признаком является образование в нем непрерывной сетки.

По методу Д образцы испытывают в кипящей 65% ной азотной кислоте. Перед испытанием образцы взвешивают на аналитических весах с точностью до 0,1 мг. Затем их помещают в стеклянную колбу с обратным холодильником, заливают кислотой из расчета не менее 9 мл кислоты на 1 см2 поверхности образца и кипятят в течение 48 ч.

Всего проводят три цикла кипячения (каждый раз в новом растворе), промывая, просушивая, обезжиривая и взвешивая образцы после каждого цикла. Коррозионную стойкость определяют по скорости коррозии образцов, выраженной в мм/год за каждые 48 ч. Если скорость коррозии превысит 2 мм/год или будет иметь место ножевая коррозия, металл бракуют.

Химический анализ

Контроль сварочного производства предусматривает химические анализы основного наплавленного металла и сварочной проволоки, а также компонентов электродных покрытий, флюсов и защитных газов. В зависимости от химического состава основного металла выбирается технология сварки.

Определение химического состава наплавленного металла и других исходных материалов необходимо для выяснения качества шва и правильности применяемого технологического процесса.

Металлы поступают на химический анализ в количестве 50—60 г в виде стружки толщиной не более 1,5 мм. Стружку получают с помощью сверления, строгания или фрезерования; затем ее промывают в эфире и тщательно перемешивают.

Отбор пробы для анализа наплавленного металла производится либо из специальной наплавки на пластине толщиной не менее 8 мм (размеры наплавки: высота 15 мм, ширина 25 мм, длина 120 мм), либо из сварного шва на расстоянии не менее 15 мм от его концов, причем границы наплавленного металла выявляют травлением торцов образца или лунок двух засверловок.

В углеродистых сталях определяют содержание углерода, марганца, кремния, серы и фосфора. Специальные стали проходят дополнительный анализ на содержание молибдена, хрома, никеля, титана, ванадия, меди, и других легирующих элементов. Иногда определяют также количество кислорода и азота в металле шва.

Металлографические исследования - это система комплексных испытаний и анализов над микро- и макроструктурой металлических материалов. Металлографические исследования проводят в рамках металлографии, как одного из направлений в металловедении. Это классический способ исследования металлов, который начинается с подготовки образцов и заканчивается выводом аналитических результатов о структуре материала.

Металлография - это целая наука, являющаяся главной частью современного металловедения. Она изучает не только структуру металлов, но и взаимосвязь физических, химических, механических, технологических и эксплуатационных свойств металлических сплавов в различных условиях.Металлография создает основу для получения металлических сплавов с установленными свойствами.

Металлография играет важную роль в таких областях промышленности, как:- Автомобилестроение;- Металлургия;- Энергетика;- Аэрокосмическая промышленность;- Атомная промышленность;- Научно-исследовательские и другие изыскательские работы в научно- исследовательских центрах, лабораториях, университетах

cyberpedia.su