Способы измерения мощности солнечных батарей. Напряжение солнечной панели


Как тень влияет на работу солнечной панели?.

При бешеных темпах развития солнечной энергетики, очень важный вопрос до сих пор продолжает витать в воздухе – как тень влияет на работу солнечной панели. В таком случае все, как один, заявляют, что влияет негативно и чревато существенной потерей энергии. Но это просто определить лишь на первый взгляд, на практике всё немного сложнее. И в этом щекотливом вопросе мы сейчас постараемся разобраться.

По исследованиям британских учёных... Наши исследования показали, что в данном вопросе фигурируют два вида теней: «жёсткая» и «мягкая». В случае если твёрдый объект или препятствие с точно определяемой формой и размером, отбрасывает тень, её называют «жёсткой». «Мягкая» тень представляет собой снижение интенсивности солнечного освещения. К примеру, из-за тумана, пасмурной погоды или смога.

 

Важно понимать разницу между типами теней. Разные типы тени оказывают различное влияние на работу солнечной панели.

 

 

На первый взгляд, всё проще некуда. Однако есть нюансы.

 

«Мягкая» тень, закрывающая одну ячейку солнечной панели, понижает ее силу выработки электрического тока прямо пропорционально снижению освещения. Несмотря на снижение освещения, до тех пор, пока присутствует достаточное количество света (~50 Ватт/м2), напряжение остаётся неизменным. Напряжение в фотоэлементе зависит больше от температуры и ширины запрещенной зоны материала, нежели от самого света.

 

Объяснить влияние «жесткой» тени немного сложнее. Пока существует непрерывная полоса освещенного материала между электродами двух ячеек, определенное количество силы тока будет присутствовать в панели. Сила тока будет пропорциональна освещенной площади солнечной панели. Форма тени не имеет значения. Однако, когда мы создавали более узкие и широкие узкие участки, ток собирался в узких участках, создавая участки с очень высокой температурой. Эти точки называют «hot spot» (горячая точка). Hot spot’ы, в редких случаях приводили к возгоранию модуля. Например, когда сила тока всей цепи собирается в маленькой по площади точке солнечной батареи.

 

 

Если же между электродами нет полностью освещенного пути или вся ячейка находится в тени, ток перестаёт течь через ячейку и её напряжение падает. Это производит эффект «открытия» электросхемы, в связи с тем, что энергия больше не проходит через ячейку. Большинство современных солнечных панелей содержит в себе серебряные нити, которые упрощают прохождение заряда через силикон, так же, как скоростные магистрали ускоряют передвижение через густонаселенный город. Получается, что пока ячейки с использованием серебра освещены, они будут производить энергию. Единственная компания, которая не использует серебряные нити, как мне известно, это Sunpower, так как их солнечные ячейки создаются иным способом и могут собирать больше солнечного света. В этих солнечных батареях ставка сделана на возможность собирать больше энергии солнца, но в данной технологии имеются и минусы - любое количество тени полностью остановит производство энергии.

 

На самом деле все еще сложнее

 

На уровне модулей, несколько солнечных панелей последовательно соединены. Это способствует увеличению производимого напряжения. «Мягкая» тень, падающая на модуль, не прекратит выработку напряжения, но сократит силу тока, производимую модулем. «Жесткая» тень, падающая на часть модуля, вызовет разрыв цепи, что приведёт к снижению вырабатываемого напряжения.  В современных солнечных батареях имеется специальный компонент - шунтирующий диод (Bypass diode).

 

Данные диоды позволяют проводить электрический ток через затененные участки. Солнечные панели соединены последовательно, а это означает, что сила тока должна быть одинаковой во всех компонентах. Соответственно, без шунтирующих диодов любая тень будет просто останавливать производство электричества всеми соединенными солнечными панелями. Шунтирующие диоды устроены и расположены таким образом, что ток может проходить через них только когда ячейка, которую эти диоды обходят, находится в тени. Так как диоды не имеют большого влияния на напряжение, все потери от тени с использованием шунтирующих диодов сводятся только к напряжению, которое производили ячейки, находящиеся сейчас в тени.

 

Эту информацию можно визуализировать на графике напряжения-силы тока.

Эту информацию можно визуализировать на графике напряжения-силы тока.

 

 

График соотношения мощности и напряжения (ТМП - Точка Максимальной Производительности)

 

Каждая батарея имеет высшую точку графика "мощность-напряжение". Это очень важный момент, так как контроллер заряда пытается подобраться к этой точке как можно ближе, чтобы выдавать максимальную мощность. Графики выше показывают, что разные типы тени по-разному оказывают влияние на производственную мощность.

 

В итоге, как только любая тень падает на солнечную панель, контроллер заряда не может извлекать из панели оптимальную мощность и начинает менять напряжение, чтобы найти новую точку высшей мощности. Это вызывает потерю подаваемой солнечными панелями энергии на несколько минут.

 

 

Гораздо сложнее…

 

Ранее мы говорили только об одном модуле. Но из этого вытекает следующий вопрос: как эти 2 типа тени взаимодействуют со всей солнечной батарее? Тени очень редко распределяются равномерно по всей площади солнечной панели. Следовательно, разные модули в цепях и разные цепи производят различное количество энергии. Различные виды тени приводят к различным последствиям.

 

«Мягкая» тень, которая падает только на некоторые модули в цепи, вызовет эффект «несоответствия силы тока» (так как модули генерируют различную силу тока). Ввиду того, что в любой последовательной цепи сила тока должна быть одинакова во всех модулях, вся цепь принимает самую слабую силу тока. Этот эффект происходит во всех цепях панели (независимо, так как цепи соединены параллельно). Несмотря на независимость цепей, несоответствие напряжений в одной цепи может негативно повлиять на другие цепи за счет взаимодействия всех цепей с инвертором или контроллером заряда.

 

«Жесткая» тень вызывает снижение напряжения в затененных ячейках. Однако, благодаря инвертору или контроллеру заряда и шунтирующим диодам сила тока остается неизменной в большинстве случаев (если, конечно же, все модули не находятся в тени). Когда тень падает на две параллельно соединенные цепи неравномерно, происходит эффект «несоответствия напряжений» (voltage mismatch). Этот эффект происходит тогда, когда две цепи, соединенные параллельно, производят различное напряжение (при независимом измерении каждой отдельной цепи). Это может сбить инвертор или контроллер заряда с толку, вызывая нескончаемые поправки в работу батарей для достижения оптимальной производительности.

 

Тут следует отметить, что несоответствие напряжений невозможно в солнечных батареях, которые состоят из одной цепи (потому что она не соединена параллельно с другими цепями). В солнечной панели, состоящей из одной цепи, можно наблюдать лишь эффект несоответствия силы тока. Если «жесткая» тень закроет одну из цепей, напряжение упадет. Инвертор/контроллер заряда отреагирует на это и приведет панель на максимальную мощность в изменившихся условиях.

 

Графики ниже иллюстрируют результат частичного затенения солнечной панели:

 

Так как высшие точки PV графика, которые видит инвертор/контроллер заряда, меняются с движением тени, инвертор/контроллер заряда может ошибаться и выбирать напряжение не соответствующее оптимальной мощности и работать в таком режиме продолжительное время. Это может сильно повлиять на количество производимой энергии, как в краткосрочной перспективе, так и в годовом выражении. Сейчас инверторы/контроллеры заряда становятся более технологически продвинутыми и могут легче справляться с выбором высшей точки производительности в условиях тени.

 

Микро-инверторы устанавливаются в каждый отдельный модуль солнечной батареи, позволяя каждому модулю производить переменный ток на оптимальном уровне, несмотря на условия, в которых находятся соседние модули. Однако микро-инверторы обходятся очень дорого и относительно неэффективны. Сейчас, технология микро-инверторов развивается в направлении конкурентоспособности, а значит, в будущем можно ожидать, что во всех солнечных модулях будут установлены инверторы.

 

Оптимизаторы мощности были разработаны, как нишевое решение проблемы тени, но их стоимость и сложность завышают цену таких устройств за грань практичности. Принцип их работы схож с микро-инвертором. Они так же контролируют мощность каждого отдельного модуля. Но не делают ток переменным. Оптимизаторы мощности рекомендуется устанавливать только в тех случаях, когда отдельные модули солнечной панели оказываются в тени. Из-за высокой стоимости их рекомендуется устанавливать только на маленькое количество модулей.

 

Многие панели используют системы «Восток-Запад» или двух осей. Такие системы поворачивают панели в течение дня, чтобы избежать затенения солнечных панелей другими солнечными панелями при движении солнца.

 

 

По материалам сайта: http://sunalt.ru/

 

ekoproekt-energo.ru

Обзор солнечной панели мощностью 30 Вт и бюджетного контроллера CMTP02

На mySKU иногда проскакивают обзоры солнечных панелей. Я решил тоже приобщиться к «зелёной» энергии. Перечитал стопку разных материалов по солнечным панелям и контроллерам. Экспертом не стал, но знаний набрал небольшой мешок. Частичкой знаний я с вами сегодня поделюсь.

Для реализации автономного освещения в бане на даче и знакомства выбрал небольшую панель с номинальной выходной мощностью 30 Вт и напряжением 12 В, и простой популярный контроллер для заряда свинцово-кислотного аккумулятора CMTP02.

Планируемая схема подключения:

Солнечная панель

Солнечная панель пришла неожиданно быстро. Позвонил курьер, которого я не ожидал. Из-за большого веса магазин Banggood отправил панель через EMS, а вот контроллер обычной почтой шёл стандартные три с половиной недели.

Панель была упакована хорошо, но самое уязвимое место — углы алюминиевого профиля. Ничего страшного, но на будущее надо просить продавца дополнительно защитить углы в упаковке. Панель достаточно большая. Реальные размер 650x350x25 мм, вес 2,5 кг. Фотоэлементы находятся между толстым листом прозрачного пластика и тонким листом белого пластика. Сэндвич вставлен в алюминиевый профиль и обработан герметиком. Алюминиевый профиль покрыт транспортировочной плёнкой. Степень защиты нигде не указана. Лицевой пластик по ощущениям прочный. Как он выдержит град, я не знаю.

На обратной стороне панели находится защитный кожух / короб для соединения. Из него выходит провод.

Провод длинный — 4,5 метра, 2 x 0,75 мм. На концах провода «крокодилы». Конечно, при финальном монтаже крокодилы и большую часть проводу нужно будет отрезать, но для теста пригодятся.

Внутри короба шунтирующий диод. Он нужен только для последовательного соединения нескольких панелей (чтобы при уходе в тень одной из панелей вся система продолжала работать), для одной панели он роли никакой не играет.

Наклейка со спецификациями: Производитель не указан. Спецификации:

Как можете видеть, солнечная панель выдаёт максимальное напряжение 21 В без нагрузки (в реальности по замерам 22 В), а не 12 В, как заявлено. Пугаться не нужно. Это нормально, обычно указывается рабочее напряжение системы, для которой предназначена солнечная панель, а это 12 В (на самом деле это формальность, в реальности всё зависит от контроллера заряда). Например, солнечные панели для систем 24 В могут иметь напряжение до 45 В.

Чтобы параметры панели стали более понятными, посмотрите на график (он относится к панели 230 Вт, 24 В): Горизонтальная ось — напряжение, вертикальные оси — сила тока и мощность. Посмотрите, как меняется сила тока панели (красный график). При увеличении силы тока напряжение панели снижается. А теперь посмотрите график мощности (синий, IxU). Как вы можете видеть, максимальная мощность достигается в определённой точке. Эта точка называется точкой максимальной мощности панели — maximum power point, характеризуется значениями Vmp и Imp. Во время работы, в основном из-за изменения температуры фотоэлементов, эта точка может смещаться.

Панель из обзора имеет Vmp = 18 В и Imp = 1,67 А. Именно в этой точке достигается мощность 30 Вт (в самых идеальных условиях). Если вы будете нагружать панель больше, сила тока будет незначительно расти, а напряжение и выходная мощность падать. Если вы будете нагружать панель меньше, то сила тока будет падать, напряжение расти, а мощность опять падать. Т.е. эффективность панели при смещении от точки максимальной мощности снижается. Чуть позже я ещё вернусь к точке максимальной мощности.

Контроллер

Контроллер CMTP02 поставляется в небольшой коробке. Внутри сам контроллер и краткая инструкция.

Контроллер рассчитан на ток до 15 А. Т.е. отдаёт на аккумулятор и в нагрузку ток до 15 А. Это «китайские» 15 А. В реальности, конечно, меньше. У меня панель с максимальной силой тока 1,75 А — можно вообще не беспокоиться. Контроллер может работать с аккумуляторами 12 В и 24 В.

Откручиваем 4 винта и снимаем металлическую крышку. На нижней стороне платы три MOSFET транзистора со стёртой маркировкой. На транзисторы надета изоляция. Может она играет роль термоподложки для отвода тепла на металлическую крышку, но материал твёрдый и к крышке прилегает плотно лишь один транзистор. Если планируете использовать контроллер с силой тока больше 5 А, лучше заменить эту изоляцию на силиконовую термоподложку (100x100x3 мм стоит пару долларов).

На обратной стороне платы операционный усилитель LM358 и контроллер STM8S003F3, и множество SMD компонентов в обвязке. На рынке присутствует много разновидностей подобного контроллера с дополнительным функционалом. На плате есть место для разводки USB выхода (5 В), стабилизированное напряжение 12 В и пр.

Данный PWM/ШИМ контроллер самый простой, без возможности какой-либо настройки. Нужно только подключить аккумулятор, солнечную панель и нагрузку. Важно соблюдать последовательность подключения. Аккумулятор > солнечная панель > нагрузка. Отключение в обратном порядке. Без аккумулятора контроллер не работает.

Хоть в инструкции и указано, что контроллер может работать с GEL аккумуляторами, но лучше этого не делать, т.к. именно у этого контроллера нет выбора типа аккумулятора, а значит напряжение одинаково для всех типов аккумуляторов. Для GEL оно обычно должно быть ниже.

Рынок контроллеров зарядки от солнечных панелей формально можно разделить на два типа. MPPT и не MPPT (их ещё иногда называют PWM/ШИМ). MPPT — maximum power point tracking, отслеживание точки максимальной мощности. Помните, я писал про точку максимальной мощности? Так вот, MPPT контроллер отслеживает (есть разные алгоритмы) точку максимальной мощности и на входе старается держать напряжение на уровне, который соответствует этой точке, до следующего замера. Многие MTTP контроллеры без проблем могут работать с высоким напряжением (например, последовательно соединённые панели с напряжением 90 В для малых потерь из-за сопротивления проводов), а на выходе заряжать обычные 12 В аккумуляторы.

PWM контроллер не следит за точкой максимальной мощности. Например, на этапе bulk charge (CC — постоянная сила тока) напряжение солнечной панели уравнивается с напряжением батареи и последовательно растёт на этом этапе. Давайте посмотрим ещё на один график. Обратите внимание на серую зону и чёрный график выходной мощности солнечной панели — это выходная мощность при использовании PWM контроллера, а точка Pmpp — выходная мощность при использовании MTTP контроллера.

MPPT контроллеры стоят дороже и являются более эффективными. Но существенный выигрыш получается лишь при использовании мощных панелей. Нужно ещё знать, что многие дешевые китайские контроллеры, на которых написано MPPT, на самом деле таковыми не являются.

Вернёмся к CMTP02. Для его первичного теста я буду использовать: AGM аккумулятор, тестер EBD-USB для создания нагрузки, простой USB-тестер с поддержкой высоких напряжений Индикатор Solar (солнечная панель) горит, когда есть напряжение от солнечной панели. Мигает, когда напряжение превышает норму для данного контроллера (более 45 В). Контроллер имеет защиту от обратного тока — от аккумулятора к солнечной панели.

Индикатор Load (нагрузка) горит, когда нет никаких проблем. Не горит, если напряжение аккумулятора ниже 11,2 В — в этом случае в нагрузку ток не идёт. Быстро мигает при коротком замыкании.

Пока хватает мощности солнечной панели для питания нагрузки, батарея заряжается. Т.е. ток идёт и на батарею, и в нагрузку. Как только мощность нагрузки начинает превышать выходную мощность солнечной панели, зарядка аккумулятора прекращается, и недостача тока компенсируется от аккумулятора. Весь процесс работает как часы. Как только солнечная панель перестаёт вырабатывать энергию (например, солнечный день закончился), нагрузка питается только от аккумулятора.

Как я уже написал, контроллер самый простой, но свою задачу выполняет. На рынке присутствует множество моделей контроллеров под любые задачи, мощности и кошелёк.

Если у вас стоит простая задача, например, вы хотите фонтан на даче, который работает только днём, то нет ничего проще. На рынке доступны вот такие интересные преобразователи с ручной настройкой напряжения максимальной мощности: Стоят такие устройства от 6$. Аккумулятор не нужен, просто подключаете преобразователь напрямую к солнечной панели и помпе. С помощью потенциометра MPP выставляете входное напряжение максимальной мощности, дополнительно на выходе задаёте напряжение для помпы. Просто и эффективно.

Тестирование солнечной панели

Чтобы чётко знать, какое количество энергии будет вырабатывать панель в день, построить дневные графики и пр., есть несколько вариантов. Самый простой и частный — это подключить тестер между контроллером и разряженным аккумулятором. Универсальный — это использовать нагрузку, которая поддерживает режим Constant Voltage. Суть этой нагрузки в следующем — вы задаёте напряжение, и нагрузка начинает увеличивать силу тока до тех пор, пока напряжение не стабилизируется на заданном значении. Как только напряжение начинает проседать или повышаться, нагрузка мгновенно уменьшает или увеличивает ток потребления. Так образом источник энергии, солнечная панель, выдаёт всё, что может в конкретный момент времени при заданном напряжении.

Решил использовать нагрузку с режимом CV, которая будет подключаться напрямую к панели.

Проблема в том, что такой режим востребован очень редко, в электронных нагрузках не всегда есть. Поспрашивал у знакомых, ни у кого такой не оказалось. Я начал штудировать схемы в сети Интернет. Быстро нашёл простую схему. Не обошлось без помощи друга. Но всё получилось. В схеме используется операционный усилитель LM358 (U1) и полевой транзистор (N-канал, Q1). В наличие был другой операционный усилитель, для него понадобилось добавить ещё стабилизатор в схему. Готовый продукт имеет не совсем презентабельный вид, но главное — содержит синюю изоленту и полностью пригоден для использования. С помощью потенциометра можно настраивать напряжение нагрузки. Т.к. нагрузка сделана из подручных компонентов, то присутствует некоторый перепад напряжения при изменении силы тока. Стенд для тестирования выглядит следующим образом: Т.к. сила тока небольшая у моей панели, то можно использовать тонкие короткие провода. Для измерения буду использовать тестер EBD-USB в режиме мониторинга. Нагрузка подключена к солнечной панели сквозь EBD-USB, который в свою очередь подключен к компьютеру. Первая ревизия EBD-USB поддерживает измерение напряжения до 13,65 В (работа до 20 В). Мне это на руку, т.к. при подключенном аккумуляторе диапазон напряжения будет 11,2 — 14,6 В. Потенциометром на нагрузке выставлю напряжение чуть больше 12 В.

27 марта, временной отрезок 9.00 — 9.05, безоблачная погода.

Всплески — это я прикрывал солнечную панель, смотрел на изменение графика. За 5 минут работы солнечная панель выдала 1,5 Вт⋅ч. Выходная мощность составляла 19 Вт. При установке напряжения около 18 В, точка максимальной мощности (это я уже смотрел с заменой EBD-USB на обычный USB тестер с поддержкой высокого напряжения), мощность составила 21 Вт. И это только утро в конце марта. Летом при солнце в зените панель вполне может выдать заявленные 30 Вт. Но будем ориентировать на имеющиеся данные. Если грубо прикинуть, что солнце будет светить 5 часов день, то я получу 1,5 x 12 x 5 = 90 Вт⋅ч в день. Летний световой день длиннее, коэффициент «лето/весна» в центральном регионе 1,5. Т.е. летом будет 135 Вт⋅ч. КПД свинцово-кислотного аккумулятора 75%. Запасённая в день энергия составит 100 Вт⋅ч. Аккумулятор (14,5 А⋅ч) полностью зарядится за 2 световых дня. В сарае и в бане я смогу повесить 4 лампы по 7 Вт (со световым потоком 500 Лм, эквивалент 55 Вт). И каждый день/вечер я смогу их использовать до 3 часов одновременно. Меня это устраивает.

Конечно, это грубый приблизительный подсчёт, основанный на кратковременных тестах. Детальное тестирование с замерами и графиками целого дня я буду проводить в мае уже на месте размещения панели.

Пока я экспериментировал с панелью, радиатор нагрузки нагревался очень сильно — как-никак, рассеивала 20 Вт. Для замеров моей панели его вполне хватит, а вот мощнее уже нужно ставить радиатор побольше и активное охлаждение.

Вот ещё один замер. 31 марта, временной отрезок 9.00 — 9.05. Погода пасмурная, на небе дымка и облака. Солнце то выходит, то скрывается. Выходная мощность составила от 3 Вт до 17 Вт. За 5 минут работы солнечная панель выдала 1 Вт⋅ч. Для такой погоды панель справляется отлично.

Опыты с солнечной панелью мне понравились, я их продолжу. Если у кого-то есть дельные и полезные советы, не стесняйтесь, делитесь ими в комментариях. Думаю, что многим будет интересно.

Рыжий бандит тоже заряжается от солнца:

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Солнечные батареи для яхты и катера

Стоимость электрической энергии на катере или яхте очень высока. Особенно, если во время стоянки владелец заряжает аккумуляторы двигателем, на котором не установлен ни внешний регулятор напряжения ни зарядное устройство от генератора. В этом случае любое оборудование, вырабатывающее электричество дешевле, чем ДВС становится экономически выгодным и быстро окупается.

Солнечные батареи преобразуют в электричество бесплатный свет солнца, а с учетом того, что цена полупроводников, из которых они сделаны, с каждым годом снижается на яхте или катере панели окупаются в течении нескольких месяцев — года. Их экономически выгодно устанавливать на лодку как можно больше. Однако результат разочарует, если не правильно подобрать мощность батарей или смонтировать их не в тех местах.

Типы солнечных батарей

На катерах и яхтах используется три типа солнечных батарей:

В монокристаллических панелях каждая ячейка вырезана из одного кристалла кремния. Хотя некоторые полугибкие модели также используют монокристаллические ячейки, как правило панели этого типа жесткие и не переносят изгибов. Коэффициент преобразования света в электрическую энергию у них достигает 22%, но чаще всего составляет 16 — 18%.

У большинства монокристаллических панелей сплошная жесткая задняя стенка. Однако недавно появились двухсторонние модели, позволяющие собирать свет обоими сторонами. Это удобно, когда под панелью расположена отражающая поверхность, например, белая верхняя часть кабины.

В поликристаллических солнечных батареях каждая ячейка состоит из нескольких небольших кристаллов. Такие панели менее эффективны, чем монокристаллические, особенно при низких уровнях освещенности, но зато легче и дешевле.

Во время производства аморфных пластин, испаренный кремний осаждается на подложке. Аморфные панели самые дешевые и очень гибкие, однако их эффективность наименьшая.

Каждая кремниевая ячейка, независимо от размера, при попадании на нее прямого солнечного света создает напряжение около 0,6 вольт. Напряжение всей батареи можно приблизительно определить умножив 0,6 на количество ячеек. Например, напряжение солнечной панели, состоящей из 30 ячеек —  18,0 вольт.

Выходной ток ячейки пропорционален ее типу, качеству и площади занимаемой поверхности. Поэтому для получения одной и той же выходной мощности с помощью аморфных и монокристаллических панелей, аморфными придется занять в два раза большую площадь. Кроме того, мощность аморфных батарей примерно на 10% меньше номинальной в течение одного – двух лет после производства. В дальнейшем она стабилизируется.

Характеристики солнечных батарей

В спецификации на солнечную батарею производитель указывает следующие характеристики:

  • Voc — напряжение разомкнутой цепи. Это напряжение отсоединенной от аккумулятора солнечной батареи
  • Isc — ток короткого замыкания. Максимальный ток, который выдает панель, если замкнуть между собой ее клеммы. Выходное напряжение батареи в этом случае равно нулю
  • Imp — максимальный ток нагрузки
  • Vmp — напряжение при максимальной потребляемой мощности
  • Pmax — максимальная мощность солнечной батареи. Это произведение двух предыдущих параметров. Иногда приводят только максимальную мощность и соответствующее напряжение на нагрузке. В этом случае ток нагрузки можно найти, разделив мощность на напряжение.

Ни одна из приведенных характеристик не описывает реальную производительность солнечной батареи – выходной ток при напряжении зарядки аккумулятора

Вольтамперная характеристика солнечной панелиНапряжение панели при максимальной мощности зависит от количества ячеек и их температуры. Оно всегда выше, чем рекомендуемое напряжение зарядки, но при подключении к аккумулятору снижается. Из-за этого даже при стандартных условиях тестирования выходная мощность при напряжении зарядки аккумулятора всегда меньше номинальной на 20-25%.

Солнечные батареи испытывают в стандартных условиях. С точки зрения владельца катера или яхты наиболее важные из них — это предположение о том, что лучи солнца падают на батарею под углом 90 градусов, а ее температура составляет 25 ° C. Результаты испытаний изображают в виде вольтамперной характеристики. Иногда производители приводят данные для нескольких разных температур. Максимальная мощность солнечной батареи соответствует изгибу вольтамперной характеристики при 25 ° C.

Напряжение панели при максимальной мощности зависит от количества ячеек и их температуры. Оно всегда выше, чем рекомендуемое напряжение зарядки, но при подключении к аккумулятору снижается. Из-за этого даже при стандартных условиях тестирования выходная мощность при напряжении зарядки аккумулятора всегда меньше номинальной на 20-25%.

Точно узнать насколько падает мощность, можно если измерить ток, генерируемый солнечной батареей во время зарядки аккумулятора. Например, 50-ваттная панель с номинальным напряжением 17 вольт выдает ток 2,94 ампера (Вт / вольт = ампер). По вольтамперной характеристике при температуре 25-градусов находим, что при напряжении 13,0 вольт выходной ток солнечной батареи составляет 3,0 А (Напряжение 13 вольт подходит для зарядки разряженного аккумулятора и аккумулятора с подключенной нагрузкой). Хотя выходной ток изменился незначительно по сравнению со значением при номинальном напряжении, выходная мощность снизилась до 13,0 вольт × 3,0 ампер = 39 Вт. Это на 22% меньше номинальной мощности.

 Солнечные панели Solara S320P  Солнечные панели Solara S405p
Характеристика Solara S320P41 Marine Solara S405M36
Выходная мощность (Pmpp), Wp 80 100
Ток короткого замыкания (Isc), A 3,84 6,2
Напряжение холостого хода (Uoc), B 25,87 21,5
Напряжение (Umpp), B 21,87 17,2
Ток (Impp) 3,62 5,9
Размеры, мм 798 x 695 x 5 1237 x 557 x 40
Вес, кг 3,7 7,9
Тип моно- и поликристаллические.Количество ячеек до 43 шт.Полугибкие моно- и поликристаллические.Количество ячеек 36 шт.
Используемые материалы Внешний защитный элемент с шунтирующими диодами обеспечивает защиту ячеек от перегрева и исключает образование горячих точек Переднее закаленное стекло. Рамка — профиль из анодированного алюминия. Устойчивые к морской воде. Распределительная коробка IP65.

Существуют и другие потери, которые необходимо учесть перед установкой солнечных батарей на яхту или катер. На суше панели монтируют на опорах, расположенных под углом к горизонту. В этом случае на поверхность попадает максимальное количество лучей солнца. Но если таким образом установить панели на катере или яхте, после каждого поворота они будут терять солнце. Чтобы избежать этого панели на лодках почти всегда устанавливают в фиксированном месте горизонтально. Однако даже в тропиках солнечный полдень (время, когда солнце находится прямо над головой) продолжается всего несколько часов в день. В остальное время лучи солнца падают на панель при меньших углах и количество передаваемой ими энергии заметно уменьшается.

Мощность солнечных панелей

Зависимость выходного напряжения солнечной панели от температуры ее поверхностиСвязь между температурой и мощностью для трех солнечных панелей. Кривые представляют максимальную выходную мощность при ярком солнечном свете, а не реалистичный выход в нормальных условиях эксплуатации. При температуре поверхности 50 ° C выход панели с 36 ячейками уменьшается на 15 вольт, а на 30-элементной панели на 11 вольт. Это слишком мало для эффективной зарядки аккумулятора в жарком климате.

Реальная мощность панели снижается еще больше, если облако заслоняет солнце или на поверхность батареи падает тень от такелажа, парусов или мачты. Даже частичное затенение одной ячейки в цепи соединенных последовательно значительно уменьшает выходной ток.

Резкие тени влияют на выходную мощность сильнее, чем тени с нечеткими краями. Если на ячейках не установлены шунтирующие диоды, то резкая тень на одной ячейке уменьшит выходной ток всей панели пропорционально затененной площади (например, 50% затенения только одной ячейки снизят выход всей панели на 50%). Ячейка, оказавшаяся в тени, потребляет ток от соседних и перегревается.

Шунтирующие диоды уменьшают проблемы от затенения. Они изолируют попавшую в тень ячейку и останавливают развитие «горячих точек». Однако каждая изъятая из общей цепи ячейка уменьшает напряжение всей панели. Поскольку из-за нагрева выходное напряжение панели снижается, то может возникнуть ситуация, когда оно окажется ниже уровня пригодного для зарядки аккумулятора. В этом случае выгода от шунтирующих диодов исчезает.

Резких теней, падающих на поверхность солнечной батареи на яхте или катере необходимо избегать

Даже в солнечном климате, энергия, реально генерируемая панелью в течении дня, редко превышает уровень 4-5 часов работы при максимальной мощности. Часто это значение еще меньше. Расчеты лучше основывать на предположение, что дневная выработка электричества соответствует 3-4 часам работы батареи на номинальной мощности.

Такой способ сопоставления реальной энергии, вырабатываемой солнечной батареей с максимальной называется пиковыми солнечными часами —  Peak Solar Hours (PSH). Существуют веб-сайты, которые рассчитывают PSH для разных частей света и для разных периодов года. Однако почти все они предполагают, что солнечные панели установлены под углом к горизонту и на них не падает тень. В этом случае PSH получается значительно завышенным. Поскольку реалистичная оценка PSH – 3, то число, получаемое от онлайн-калькулятора, необходимо уменьшить минимум на 30%.

6-ваттная солнечная панель, работающая 3 часа в день, в 12-вольтовой электрической системе произведет 18 Втч = 1,5 ампер-часа электрической энергии в день. 30-ваттная — 90 ватт-час или 7,5 ампер-часов в день (количество ампер-часов в день при напряжении 12,0 вольт = номинальная мощность / 4). Если ежедневное потребление электрической энергии известно, например, 60 ампер-часов при напряжении 12 вольт, то мощность солнечной панели определяют умножив ампер-часы на 4 (60 Ач × 4 = 240 Вт)

Напряжение солнечной батареи

Зависимость напряжения и тока солнечной панели от времени сутокВыходное напряжение и сила тока солнечной батареи относительно «солнечного полдня». Напряжение падает при повышении температуры в солнечный полдень и в начале дня. Солнечная батарея работает на номинальной мощности в течении небольшого промежутка времени. Выходную мощность панели можно увеличить, если регулировать ее положение в течении дня

Чтобы заряжать аккумулятор, напряжение солнечной батареи, как и любого другого зарядного устройства, должно быть выше напряжения аккумулятора. Причем разность должна существовать даже в том случае, когда напряжение аккумулятора вырастает до 14,0 вольт.

12-вольтовая солнечная панель, состоящая из 30 —  44 ячеек, при разомкнутой цепи обеспечивает номинальное напряжение от 18,0 до 26,0 вольт. На первый взгляд этого достаточно для зарядки аккумулятора. На самом деле это не всегда так.

В «солнечный полдень» черный кремний в солнечной батарее нагревается. Если температура панели превысит 25 ° C, то ее выходное напряжение уменьшится по сравнению с номинальным — 1,0 вольт на каждые 12 ° — 15 ° C роста температуры. При температуре поверхности 50 ° C выходное напряжение панели с 30 ячейками упадет до 13,3 вольт. У панели с 33 ячейками до 14,8 вольт, а у панели с 36 ячейками — до 16,3 вольт.

Скорость заряда аккумуляторов, подключенных к солнечной батарее с 30 ячейками будет постоянно снижаться, поскольку напряжение на аккумуляторах будет расти, и такая панель не зарядит полностью аккумулятор.

Солнечные батареи, уложенные горизонтально, нагреваются сильнее — между их задней стороной и основанием на котором они установлены нет воздушного зазора. Чтобы компенсировать повышенное падение напряжения, в них увеличивают количество ячеек. В некоторых моделях до 42 штук.

Во время установки в цепь панели иногда добавляют блокирующий диод в дополнение к шунтирующим диодам, описанным ранее. На блокирующем диоде дополнительно падает около 0,6 вольт. Из-за этого 30-элементная панель с блокирующим диодом, особенно в жарком климате, плохо заряжает аккумуляторы. Эффективность панели с 33 ячейками также снижается по мере роста напряжения аккумуляторной батареи.

В южном климате для зарядки аккумуляторов в панели должно быть, как минимум 30 ячеек. 33-элементная солнечная батарея будет давать достаточное напряжение для зарядки, но запас на потери (падение напряжения на диодах, в кабелях, соединениях и плохой солнечный свет) у нее будет небольшой. Панель с 36 ячейками справится с зарядкой аккумуляторов практически в любой ситуации. В умеренном климате панель с 33 ячейками выдает подходящее для зарядки аккумуляторов напряжение всегда, кроме самых жарких дней.

Для эффективной зарядки аккумулятора в жарком климате минимальное напряжение панели  (при стандартных условиях испытания), после вычитания падения напряжения на диодах должно составлять 16,0 — 17,0 В. В умеренном климате — 15,0 до 16,0 вольт.

Регуляторы напряжения солнечных батарей

По мере заряда аккумулятора саморегулируемая солнечная панель, состоящая из 30 ячеек уменьшает выходной ток. Если учесть нагрев панели в жарком климате, падение напряжения в блокирующем диоде и на других участках цепи, саморегулирующаяся солнечная панель будет плохо заряжать аккумуляторы независимо от ее номинальной мощности. Для эффективной зарядки требуется больше ячеек.

Но панель, которая поддерживает напряжение, подходящее для зарядки аккумуляторов, медленно перезарядит их, в то время, пока катер или яхта не используются. Критическая точка возникает, если номинальная мощность панели при напряжении 14,0 вольт превышает 0,5% от емкости аккумуляторной батареи (например, панель с выходным током 1 А, подключена к аккумулятору емкостью 200 Ач).

Если мощность панели выше, необходимо установить регулятор напряжения или отключать панель, когда лодка остается на стоянке. Из-за чрезвычайной чувствительности литий-ионных аккумуляторов к перезарядке любая солнечная панель, используемая с любой литий-ионной батареей, всегда должна иметь регулятор напряжения.

Дешевый регулятор состоит из простой цепи, измеряющей напряжение, и реле. Когда напряжение достигает заданного значения, реле срабатывает и отключает солнечную батарею от аккумуляторов. Другие регуляторы переключают выход солнечных панелей на резистор (шунтирующий регулятор) или на нагрузку, например, водонагреватель (регулятор переадресации).

Более сложные регуляторы напряжения солнечных батарей имеют многоступенчатые программы зарядки аккумуляторов и отслеживают максимальную мощность(MPPT). Некоторые модели отключают аккумулятор, как только в цепи появляется отрицательный ток и заменяют таким образом блокирующий диод. Для выравнивания жидко-кислотных или AGM аккумуляторов предусматривается режим кондиционирования. Один из способов его активации — отключение регулятора и зарядка аккумуляторной батареи при полном напряжении солнечной панели.

Солнечные контроллеры MPPT

Регулятор с отслеживанием точки максимальной мощности – это расширенная версия шунтирующего регулятора с широтно-импульсной модуляцией. MPPT контроллер – это DC-DС конвертер. Он состоит из инвертора, преобразующего постоянное напряжение солнечной панели в высокочастотное переменное. Трансформатора, изменяющего это напряжение и выпрямителя, преобразующего переменное напряжение трансформатора обратно в постоянное.

Зачем нужно такое сложное устройство? Выходное напряжение солнечной панели определяется типом заряжаемого аккумулятора. Однако солнечная батарея работает с максимальной мощностью, когда ее напряжение существенно выше, чем допустимое напряжение зарядки аккумуляторов. Снижение оптимального выходного напряжения до безопасного для аккумулятора уровня уменьшает реальную мощность солнечной батареи на 25% по сравнению с номинальной. Контроллер MPPT делает выходное напряжение солнечной панели независимым от напряжения аккумулятора.

В сложных MPPT регуляторах микроконтроллер контролирует напряжение аккумулятора, уровень его заряда и выходной ток солнечной панели. На основании этих данных регулятор устанавливает выходное напряжение панели, так, чтобы ее мощность была максимальной при этом конкретном наборе условий. Для достижения желаемого результата используется цепь управления в преобразователе постоянного тока.

Установка солнечных панелей

Существует четыре типа морских солнечных батарей, изготавливаемых специально для катеров и яхт:

  • жесткие стеклянные панели с алюминиевым каркасом
  • полугибкие, тонкие панели
  • гибкие ультратонкие панели;
  • очень гибкие, сворачиваемые аморфные панели

У жестких монокристаллических и поликристаллических панелей самая низкая стоимость 1 ватта вырабатываемой мощности, и максимальная мощность для данной площади. Однако установка этих панелей обходится дороже всего, так как приходится использовать жесткое крепление, защищающее панели от повреждения. Жесткие панели работают с максимальной мощностью когда они установлены на кронштейнах за кормой. Однако в этом случае солнечные батареи становятся уязвимыми для волн и могут быть повреждены при швартовке. Еще одно хорошее место -верхняя часть рулевой рубки.Солнечные батареи, установленные на корме яхты

Полугибкие поликристаллические панели устанавливают на верхнюю часть кабины и другие изогнутые поверхностях. Аморфные силиконовые панели располагают на любой поверхности, а при необходимости сворачивают и убирают для хранения. Во всех случаях потери на нагрев будут меньше, если под солнечной панелью организован воздушный зазор.

Подключение солнечных батарей к аккумулятору

Учитывая, что солнечные батареи сильно чувствительны даже к небольшим падениям напряжения, при монтаже необходимо использовать кабель и терминалы морского качества. Контакты на панели уязвимы для коррозии и их необходимо полностью герметизировать. Над палубой не должно быть никаких дополнительных соединений – один кусок кабеля прокладывают до уплотнения в палубе. Если без соединений не обойтись их выполняют внутри лодки.

Схема подключения нескольких аккумуляторов к солнечной панелиСхема подключения нескольких аккумуляторов для зарядки от солнечных батарей. Используется бистабильное реле Sterling Power. Обычное реле потребляет в замкнутом состоянии ток до 0,5 А и может свести на нет работу солнечных панелей. Бистабильное реле потребляет ток только во время включения — 0,5 мА.

Токонесущую способность кабеля получают умножив ток короткого замыкания панелей на 1,25. Затем по таблице подбирают сечение кабеля с учетом 3% падения напряжения.

Если панель подключают непосредственно к аккумулятору для поддерживающей зарядки, то как можно ближе к аккумулятору устанавливают предохранитель. Без него любая неисправность в проводке приведет к короткому замыканию аккумулятора и, возможно, пожару.

Если часть панели может попасть в тень, то вместо одной большой лучше использовать комплект из нескольких солнечных батарей меньшего размера, рассчитанных на тоже напряжение, но соединенных параллельно. В этом случае попавшая в тень панель уменьшит выход, но не повлияет на остальные в цепи. Затенение части большой панели снизит выходную мощность всей батареи.

Если на катере или яхте организована 24-вольтовая электрическая система, то соединять две 12-вольтовые солнечные батареи последовательно неправильно. Затенение любой области на любой панели повлияет на обе. Лучше соединить их параллельно, получить на выходе 12 вольт и использовать DC-DC конвертер для повышения напряжения до 24 вольт.  В этом случае одна панель может полностью оказаться в тени, но это не окажет влияния на вторую.

Несколько аккумуляторов

Солнечный контроллер Morning StarКонтроллер Morning Star для одновременной зарядки двух аккумуляторов от солнечных батарей

Некоторые системы раздельной зарядки используют диодные изоляторы которые уменьшают напряжение на 0,6 вольт. Если солнечная батарея используется для зарядки нескольких аккумуляторов в системе с раздельной зарядкой, ее необходимо установить до разделительных диодов. Падение напряжения на диодах в этом случае необходимо учитывать при расчете выходной мощности панели.

Устройство развязки между аккумуляторами, позволяет заряжать несколько аккумуляторных батарей одновременно без падения напряжения. Лучше установить бистабильное реле, которое не потребляет ток в замкнутом состоянии. Ток, потребляемый обычным реле, может значительно снизить зарядную способность солнечных батарей. Некоторые регуляторы напряжения солнечных панелей имеют несколько выходов и позволяют заряжать два аккумулятора без дополнительных диодов или реле.

fisherninja.ru

Как измерить мощность солнечной батареи? © Солнечные.RU

Что нужно для того, чтобы измерить мощность солнечной батареи и не купить, например, батарею мощностью 70 Ватт с маркировкой 100 Ватт? Всего лишь самый дешёвый тестер (мультиметр) и ясная солнечная погода.

 

Способ №1 (самый простой).

Расположите солнечную батарею так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

Измерьте вольтметром напряжение холостого хода (Voc), подключив щупы вольтметра к разъемам солнечной панели.

 

Измерьте амперметром ток короткого замыкания (Isc), подключив щупы амперметра к разъемам панели.

 

Посчитайте мощность по следующей эмпирической формуле: P = Voc * Isc * 0.78, где коэффициент 0,78 — это примерное усреднённое отношение паспортной мощности панели к произведению паспортных Voc и Isc.

Чтобы определить мощность солнечной батареи, у которой в паспорте указано 100 Вт, мы провели измерения напряжения и тока, которые видны на фото выше: Voc = 22.08 Вольт и Isc = 6.37 Ампера. Подставив эти значения в формулу, можно узнать, что её мощность составляет 22.08 * 6.37 * 0.78 = 109.7 Вт.

Конечно, это не точный способ измерения и он даёт погрешность около 10%, но если при таком измерении Вы насчитаете только 70-80 Вт, то стоит задуматься, сколько же Вы реально заплатите за каждый Ватт мощности...

На протяжении многих лет мы неоднократно измеряли ток короткого замыкания солнечных батарей и заметили, что весной-летом при ясном небе в Москве ток обычно лежит в пределах от 95 до 105% от номинала. Самые низкие показания тока (около 70-80% от номинала) наблюдаются зимой и связано это с очень низким углом Солнца над горизонтом и большими потерями солнечной энергии в атмосфере.

Все фото измерений сделаны в Москве, в августе при температуре около 18 градусов в очень ясную погоду, в связи с чем мощность панели превышает свой номинал.

 

Способ №2 (более сложный).

Это более точный способ, дающий погрешность около 5%, но и более сложный, поскольку понадобится MPPT-контроллер с дисплеем и немного разряженный аккумулятор.

Как и в первом способе, нужно расположить солнечную панель так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

Кроме того, нужно подключить MPPT-контроллер к аккумулятору, а затем панель к MPPT-контроллеру.

На дисплее контроллера отображается напряжение солнечной панели (Vmp) и ток (Imp) в точке максимальной мощности.

 

Посчитайте мощность по следующей формуле: P = Vmp * Imp

Как видно на фото, для той же панели мощностью 100 Вт, Vmp = 18 Вольт, Imp = 6.0 Ампер. Следовательно её мощность составляет 18 * 6 = 108 Вт.

Отметим, что показания контроллера могут иметь погрешность и для большей точности лучше ориентироваться не на них, а на показания мультиметра, которым можно измерить ток и напряжение солнечной панели, подключенной к контроллеру.

Если контроллер показывает только ток и напряжение аккумулятора, то для вычисления мощности панели нужно учесть КПД контроллера, который составляет около 95%. В этом случае расчет реальной мощности солнечной панели следует выполнять по формуле: P = Vakb * Iakb / 0.95 , где Vakb — напряжение АКБ, Iakb — ток заряда АКБ.

 

Способ №3 (самый точный).

Абсолютно точный способ — сдать панель в сертифицированную лабораторию, где проведут измерение мощности на специальном оборудовании. Такая лаборатория есть, например, в Зеленограде у компании "Телеком-СТВ".

 

Если при покупке Вам не повезло с погодой, то Вы можете провести измерения дома и если мощность не будет соответствовать заявленной, то можно сдать панель в магазин в течение 14 дней с момента покупки согласно закону о защите прав потребителей.

 

Результатами своих измерений мощности по этой методике Вы можете поделиться на нашем форуме.

 

Смотрите также:

 

www.solnechnye.ru

Как выбрать солнечную панель - подобрать лучшие батареи

Как выбрать солнечную панель? Для этого надо вначале определиться с типом выбираемого устройства, а затем уже подбирать, опираясь на остальные характеристики прибора. Ниже будут рассмотрены критерии выбора солнечной батареи.

Дом с солнечными панелями

Из чего состоит устройство?

Любая энергетическая панель этого типа имеет несколько частей: рамка, стекло, специальная пленка нескольких типов, элементы, коробка. Для устранения риска перегрева отдельных элементов используются защитные диоды. Ламинирующие пленочные покрытия нужны для герметизации внутреннего пространства и избежания потерь мощности, а также защиты от воздействия атмосферы.

Характеристики батареи со временем ухудшаются из-за длительного воздействия ультрафиолета на пленку. Сами элементы обычно из строя не выходят на протяжении 12-17 лет, если, конечно, конструкция сделана по лучшим стандартам.

С чего начинать подбор?

Выбор солнечной батареи начинают с ознакомления с репутацией ее производителя. Выбирать надо панели фирм, имеющих многомиллионное производство: обычно они не экономят на комплектующих изделиях, которые влияют на сроки эксплуатации устройства.

Чтобы для дома подобрать лучшие солнечные батареи, нужно сравнить характеристики продукции нескольких производителей и отзывы о них. Для этого желательно использовать открытые источники информации. Чтобы выбрать солнечные панели для своего дома, надо подобрать батарею исходя из качества элементов, составляющих модуль.

Типы солнечных батарей

Они подразделяются на 3 вида:

  1. Тип А. Если подобрать солнечную батарею с такими элементами, то она будет долгое время давать 95 % номинала мощности.
  2. Тип В. После тестов старения панель для дома сможет выдавать весь срок эксплуатации не менее 69-71 % от номинальной мощности.
  3. Тип С — самые дешевые солнечные панели, обладающие сравнительно хорошим выходом мощности для домов. Они могут обеспечить не более 67 % от номинальной мощности после прохождения теста на старение.

Сколько требуется элементов для получения нужных параметров?

Как выбрать солнечную батарею по количеству кремниевых диодов? Каждый такой элемент может выдавать максимум 0,5 В. Стандартные солнечные модули могут дать 12 В и содержат 36 одинаковых элементов, а их мощность зависит от габаритов каждого элемента. Практически солнечные панели собираются из указанных модулей, которые могут зарядить аккумулятор, так как на выходе у них напряжение достигает 18 В. Запас нужен для компенсации потерь в проводах и контроллере.

Существуют модули, в которых соединены 72 элемента. Они могут дать 24 В.

Но есть и модульные конструкции, которые при указанном количестве элементов могут давать 12 В. Надо учитывать, что подобные типы панелей стоят намного дешевле стандартных, так как их набирают из оставшихся отходов солнечных элементов.

Устройство солнечной батареи

То есть используются не полные квадраты, а отрезанные от них треугольники и другие геометрические фигуры. Надежность таких батарей сравнительно низкая, так как в них намного больше стыков и соединений, а также микротрещин во внутренних структурах элемента.

Но во многих случаях покупателю приходится сталкиваться с нестандартными батареями, в которых не 36 или 72 элемента, на намного больше. Тогда надо учесть, что обычный PWM-контроллер для таких конструкций не подходит, так как потери мощности могут составить около 35 % от номинала. Для этих установок предусмотрен MPPT-контролер.

Таким образом, если покупатель хочет воспользоваться стандартными блоками по 12, 24 или 48 В, то ему надо подбирать панели с числом элементов, кратным 36. В этом случае нормальную работу всего устройства может обеспечить PWM-контроллер.

Оцениваем свойства конструкции

Чтобы правильно выбрать солнечную панель, надо знать, что батареи, производимые различными фирмами (как поликристаллические, так и монокристаллические), на сегодняшний день могут достигать эффективности не более 12-18 %. Для потребителя эти цифры показывают габариты будущей установки. Например, если нужно получить мощность в 100 Вт, то батарея с элементами, дающими 12 % эффективности, будет больше по размерам, чем установка с модулями, состоящая из диодов с эффективностью в 18 %. Но при этом она будет дешевле стоить.

Но надо учитывать и тот факт, что чем ниже напряжение в точке максимальной мощности, тем лучше будет работать PWM-контроллер. При этом мощность будет максимальной, например, для 12-вольтовой батареи при напряжении 17-18 В это дает 1-2 % выигрыша в мощности, и хотя это кажется немного, но на самом деле любой прирост дает возможность батарее стабильно выдавать нужные характеристики.

Если потребитель имеет возможность применить MPPT-контроллер, то на эффективность можно вообще не обращать внимания.

Большое внимание надо уделить подбору номинального напряжения. Если применен PWM-контроллер, то оно должно быть равно напряжению аккумулятора на выходе инвертора. Для увеличения мощности обычно соединяют вместе несколько панелей, которые имеют одинаковое выходное напряжение. Для этого можно приобрести специальные переходники.

При покупке надо удостовериться в наличии всех необходимых кабелей и герметичных разъемов.

При этом надо учесть, что батареи с мощностью до 50 Вт такими материалами не укомплектованы. Если мощность панели более 70 Вт, то разъемы и кабели могут быть в наличии или отсутствовать, что может привести к дополнительным расходам при монтаже.

Заключение по теме

Для правильного выбора надо остановиться на продукции наиболее популярного производителя, приобретать качественные компоненты (тип А), смотреть, чтобы было стандартное количество элементов в модуле (36 или 72). Рекомендуется проверить наличие защитных диодов, нужного напряжения, соединительных разъемов и кабелей. Если финансы не позволяют приобрести тип А, то придется покупать менее надежные модули, что уменьшит срок службы батареи, мощность при больших габаритах.

pikucha.ru