Углеродистые и легированные инструментальные стали. Низколегированные и углеродистые стали


Углеродистые и легированные стали

Р Е Ф Е Р А Т

на тему: «Углеродистые и легированные стали»

Углеродистой сталью называется сплав железа с углеродом (содержание углерода до 2%) с примесями кремния, серы и фосфора, причем главной составляющей, определяющей свойства, является углерод. Процентное содержание элементов в стали примерно следующее: Fe - до 99,0; С - 0,05-2,0; Si – 0,15-0,35; Mn – 0,3-0,8; S – до 0,06; P – до 0,07. В зависимости от содержания углерода углеродистые стали подразделяют на низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25-0,6% С) и высокоуглеродистую (более 0,6% С). Различают углеродистые стали обыкновенного качества и качественную конструкционную. К первой группе относится горячекатаная (сортовая, фасонная, толстолистовая, тонколистовая, широкополосная) и холоднокатаная (тонколистовая) сталь; во вторую входят горячекатаные и кованые заготовки диаметром (или толщиной) до 250 мм, калиброванная сталь и серебрянка. Углеродистая сталь - наиболее распространённый вид чёрных металлов.

Конструкционной углеродистой сталью называется сталь, содержащая углерода до 0,65-0,70% (в виде исключения производят конструкционные стали с содержанием 0,85% углерода). Конструкционная сталь идет для изготовления деталей машин и конструкций. Она должна обладать достаточной прочностью, хорошо сопротивляться удару и в то же время хорошо обрабатываться.

По качеству конструкционная сталь делится на три группы:

- обыкновенного качества;

- повышенного качества;

- качественная.

Сталь обыкновенного качества – сталь широкого потребления, идет для строительных конструкций, крепежных деталей, листового проката, заклепок, труб, арматуры, мостов, профильного проката.

Сталь повышенного качества идет для паровозных и вагонных осей, бандажей, котлов, проволоки и т.д.

Качественная сталь идет для деталей, требующих более высокой пластичности, сопротивления удару, работающих при повышенных давлениях: для зубчатых колес, труб, винтов, болтов, для деталей, подлежащих цементации, для сварных изделий.

Инструментальной углеродистой сталью называется сталь с содержанием углерода от 0,7% и выше. Эта сталь отличается высокой твердостью и прочностью и применяется для изготовления инструмента. Инструментальная углеродистая сталь делится на качественную и высококачественную. Содержание серы и фосфора в качественной инструментальной стали – 0,03% и 0,035%, в высококачественной – 0,02% и 0,03% соответственно.

Выпускается по ГОСТ 1435-90 следующих марок: У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А. Стандарт распространяется на углеродистую инструментальную горячекатаную, кованую, калиброваную сталь, серебрянку.

К группе качественных сталей относятся марки стали без буквы А, к группе высококачественных сталей, более чистых по содержанию серы и фосфора, а также примесей других элементов - марки стали с буквой А. Буквы и цифры в обозначении этих марок стали означают: У - углеродистая, следующая за ней цифра - среднее содержание углерода в десятых долях процента, Г - повышенное содержание марганца.

Применение инструментальной углеродистой стали

К недостаткам углеродистой стали относятся:

- отсутствия сочетания прочности и твердости с пластичностью;

- потеря твердости и режущей способности при нагревании до 200°C и потери прочности при высокой температуре;

- низкая коррозионная устойчивость в среде электролита, в агрессивных средах, в атмосфере и при высоких температурах;

- низкие электротехнические свойства;

- высокий коэффициент теплового расширения;

- увеличение веса изделий, удорожание их стоимости, усложнение проектирования вследствие невысокой прочности этой стали.

Легированные стали:

Легированной называется сталь, в которой наряду с обычными примесями имеются легированные элементы, резко улучшающие ее свойства: хром, вольфрам, никель, ванадий, молибден и др., а также кремний и марганец в большом количестве. Примеси вводятся в процессе плавки.

По химическому составу (ГОСТ 5200) легированная сталь делится на три группы:

- низколегированная сталь – не более 2,5% примесей;

- среднелегированная – 2,5-10%;

- высоколегированная – свыше 10%.

Легированная сталь обладает ценнейшими свойствами, которых нет у углеродистой стали, и не имеет ее недостатков. Применение легированной стали повышает долговечность изделий, экономит металл, увеличивает производительность, упрощает проектирование и потому в прогрессивной технике приобретает решающее значение. По назначению легированные стали делят обычно на конструкционные стали, инструментальные стали и стали с особыми свойствами (электротехнические, нержавеющие, жаропрочные и др.).

Конструкционная легированная сталь делится на качественную, высококачественную А и особовысококачественную Ш (электрошлакового переплава).

В зависимости от основных легирующих элементов эта сталь подразделяется на группы:

Хромистая сталь имеет очень широкое применение. Хром оказывает положительное влияние и является недорогой примесью. Сталь марок 15Х, 20Х, 30ХА применяются для деталей автотракторной и автомобильной промышленности. Хромистые стали с высоким содержанием углерода (0,9-1,1%) и хрома (0,8-1,65%) идут на изготовление колец, шариков и роликов шарикоподшипников. Их марки: ШХ6, ШХ9, ШХ15СГ, ШХ10. Обладают хорошей твердостью.

Марганцевая сталь после соответствующей химико-термической обработки приобретает высокую твердость, не снижая пластичности. Обрабатывается лучше, чем углеродистая. В производстве широко применяется сталь марок 15Г, 20Г, 30Г и др. Высокая износоустойчивость.

Хромоникелевая сталь является одной из самых распространенных конструкционных сталей, так как после термообработки приобретает высокую твердость, прочность, упругость и сопротивление ударным нагрузкам; ее марки - 20ХНА, 12Х2Н4А, 12ХН3А

Хромокремнистая сталь обладает высокой твердостью и упругостью после термической обработки и широко применяется для изготовления рессор и пружин.

Хромомарганцевая сталь частично заменяет хромоникелевую (в целях экономии никеля). Широко применяется сталь марок 20ХГ, 20ХГР, 40ХГР, 30ХСС, 18ХГТ; последняя идет для автомобильных деталей.

Хромомарганцевокремнистая сталь (хромансиль) является заменителем хромомолибденовых сталей. При малом содержании углерода хорошо штампуется и сваривается. Марка - 25ХГСД, 14ХГСА, 30ХГСА.

Хромованадиевая сталь обладает высокой прочностью, пластичностью, твердостью, упругостью. Сталь марки 50ХВА идет для ответственных пружин, марки 15ХФ - для валов, шестерен, муфт.

Хромомолибденовая сталь обладает высокой пластичностью и хорошей свариваемостью, многие из этих сталей теплоустойчивы при температурах 400-500°C. Сталь марок 30ХМА служит для изготовления роторов, осей, зубчатых колес.

Хромоникелевольфрамовая и хромоникелемолибденовая стали предназначаются для нагруженных деталей машин, зубчатых колес, коленчатых валов, высоконагруженных шатунов. Марки этой стали - 30ХНВА, 40ХНВА, 40ХНМА, 25Х2Н4ВА.

Инструментальная легированная сталь. Эта сталь идет для изготовления различного инструмента: ударно-штампового, измерительного, режущего. Она имеет ряд преимуществ перед инструментальной углеродистой сталью. Штампы из углеродистой стали обладают высокой твердостью и прочностью, но плохо сопротивляются удару. Метчики, развертки и другие длинные и тонкие инструменты из углеродистой стали при закалке получаются хрупкими, они ненадежны в работе и часто ломаются.

mirznanii.com

Низколегированная углеродистая сталь - Большая Энциклопедия Нефти и Газа, статья, страница 1

Низколегированная углеродистая сталь

Cтраница 1

Низколегированные и углеродистые стали имеют хорошую свариваемость при стыковой сварке. Благодаря повышенному содержанию углерода уменьшается окисление металла и облегчается получение соединений свободных от окислов. Пластичность соединений повышают подогревом или последующей термической обработкой.  [1]

Низколегированные и углеродистые стали могут работать в контакте с нержавеющими хромистыми и хромомарганцовистыми сталями. Однако непосредственный контакт нержавеющих хромоникеле-вых сталей и сплавов с хромистыми и хромомарганцовистыми и тем более с низколегированными сталями недопустим. В таких случаях необходима замена одного из металлов или применение прокладок из изоляционных материалов. В целях предотвращения контактной коррозии также широко применяют металлические, лакокрасочные и другие покрытия.  [2]

Низколегированные и углеродистые стали имеют хорошую свариваемость при СС. Повышенное содержание углерода уменьшает окисление металла и облегчает получение соединений, свободных от оксидов. Пластичность соединений повышают подогревом или последующей термической обработкой.  [3]

В низколегированных и углеродистых сталях аустенит претерпевает бездиффузионное мартенситное превращение. Аустенит представляет собой твердый раствор углерода в гамма-железе. При низких т-рах гамма-железо, несмотря на наличие в нем растворенного углерода, менее устойчиво по сравнению с пересыщенным твердым раствором углерода в альфа-железе; поэтому решетка гамма-железа перестраивается в решетку альфа-железа, но без выделения ( диффузии) углерода. Превращение происходит в интервале т-р А / н - Мк, и в результате его образуется специфическая игольчатая структура - мартенсит. Структура мартенсита является осн.  [4]

Все виды низколегированных и углеродистых сталей могут применяться в сочетании друг с другом без опасности появления усиленной коррозии.  [5]

Нагрев при пайке термически обработанных низколегированных и углеродистых сталей в некоторых случаях приводит к отжигу, превращению остаточного аустенита в мартенсит, распаду мартенсита, к отпускной хрупкости. Поэтому при выборе температуры пайки и способа нагрева необходимо учитывать возможность развития этих процессов.  [6]

Нагрев при пайке термически обработанных низколегированных и углеродистых сталей в некоторых случаях приводит к отжигу, превращению остаточного аустенита в мартенсит, распаду мартенсита, к отпускной хрупкости.  [7]

Исследования ИКС ЦНИИчермет по низколегированным и углеродистым сталям выполнены по договору с ОАО Славнефть-Мегионнефтегаз, согласно которому перед институтом была поставлена задача установления причин различной коррозионной повреждаемости труб одинакового размерного и марочного сортамента, с идентичной микроструктурой и химическим составом и отличающихся в сходных условиях эксплуатации только сроком безаварийной службы: одни работают без повреждений весь проектный срок, другие разрушаются в результате сквозных коррозионных повреждений через несколько месяцев. Результаты исследований получены применительно к средам, характерным для условий местной нефтедобычи и содержащим минимальное количество сероводорода.  [8]

Исследования ИКС ЦНИИчермет по низколегированным и углеродистым сталям выполнены по договору с ОАО Славнефть-Мегионнефтегаз, согласно которому перед институтом была поставлена задача установления причин различной коррозионной повреждаемости труб одинакового размерного и марочного сортамента, с идентичной микроструктурой и химическим составом и отличающихся в сходных условиях эксплуатации только сроком безаварийной службы: одни работают без повреждений весь проектный срок, другие разрушаются в результате сквозных коррозионных повреждений через несколько месяцев. Результаты исследований получены применительно к средам, характерным для условий местной нефтедобычи и содержащим минимальное количество сероводорода.  [9]

В необходимых случаях листы из низколегированной и углеродистой стали могут поставляться в термически обработанном состоянии.  [10]

В последнее время для защиты от коррозионной усталости низколегированных углеродистых сталей применяют комбинированные способы: создание на поверхности металла специальных упрочненных слоев ( так называемых белых слоев) и ингибирование кислых сред. Исследования, проведенные в работах [130, 139] на сталях 30, 35, 40, 45, 50, 60, 40Х, У7, У8, на которых предварительно создавали белые слои функционно-упрочняющей, механоультразвуковой, лазерной обработками показали более высокую стойкость их в ЗМ h3SO4 па сравнению со сталями не подвергающимися такой обработке Введение в Н25ОФ ингибиторов ХОСП-10, ФМИ, галогенида дипиридилия в количестве 1 5 г / л увеличивало в еще большей степени сопротивление этих сталей коррозионной усталости и коррозионному растрескиванию. Авторы считают, что использование такой комбинированной защиты позволит, наряду со значительным повышением коррозионно-механической стойкости деталей при усталостных нагружениях в кислых средах, значительно расширить возможность применения углеродистых сталей в различных отраслях промышленности.  [11]

Трубы с прямым швом экспандированные и со спиральным швом из горячекатаной низколегированной и углеродистой стали, сваренные двусторонним швом дуговым методом или токами высокой частоты; трубы бесшовные.  [12]

Для строительства магистральных трубопроводов применяются бесшовные или электросварные трубы из высокопрочных низколегированных и углеродистых сталей, толщина стенки которых определяется исходя из максимального рабочего давления перекачивающих станций и условий работы участков трубопроводов.  [13]

Карты механизмов деформации для чистого железа, аустенитных коррозионно-стойкий сталей и низколегированной углеродистой стали / / Научные труды по материаловедению.  [14]

Более обоснованно и точно ( с использованием теории тепловых расчетов при сварке) оптимальные режимы сварки низколегированных и углеродистых сталей определяют на основе результатов испытаний этих сталей на свариваемость.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Углеродистые и легированные стали

Категория: Выбор стройматериалов

Углеродистые и легированные стали

Металлические конструкции, арматуру для железобетона, трубы, крепежные детали и другие строительные изделия изготовляют, как правило, из конструкционных углеродистых сталей; конструкционные легированные стали используют только для особо ответственных металлличе-ских конструкций и арматуры для предварительно напряженного бетона. Однако благодаря эффективности объем ис-иользования легированных сталей постоянно расширяется.

Углеродистые стали — это сплавы, содержащие железо, углерод, марганец и кремний, а также вредные примеси — серу и фосфор, снижающие механические свойства стали (их содержание не должно превышать 0,05…0,06 ). В зависимости от содержания углерода такие стали делятся на низко (до 0,25 углерода), средне- (0,25…0,6%) и высокоуглеродистые (свыше 0,65%). С повышением содержания углерода уменьшается пластичность и повышается твердость стали; прочность ее также возрастает, но при содержании углерода более 1% вновь снижается. Повышение прочности и твердости стали объясняется увеличением содержания в стали твердого компонента — цементита.

Углеродистые стали по назначению подразделяют на сталь общего назначения и инструментальные.

Углеродистую сталь общего назначения подразделяют на три группы: А, Б и В.

Из стали марок Ст1 и Ст2, характеризующейся высокой пластичностью, изготовляют заклепки, трубы, резервуары и т. п.; из стали СтЗ и Ст5 — горячекатаный листовой и фасонный прокат, из которого выполняют металлические конструкции и большинство видов арматуры для железобетона. Эти стали хорошо свариваются и обрабатываются.

Стали группы Б (БСтО, БСт1, БСтЗ и т. д. до БСтб) поставляют с гарантированным химическим составом; стали группы В — с гарантированными химическим составом и механическими свойствами. Благодаря определенности химического состава стали групп Б и В можно подвергать термической обработке.

Легированные стали помимо компонентов, входящих в углеродистые стали, содержат так называемые легирующие элементы, которые повышают качество стали и придают ей особые свойства. К легирующим элементам относятся: марганец — Г, кремний — С, хром — X, никель — Н, молибден — М, медь — Д и другие элементы. Каждый элемент имеет свое назначение: марганец повышает прочность, износостойкость стали и сопротивление ударным нагрузкам без снижения ее пластичности, кремний — упругие свойства, никель и хром улучшают механические свойства, повышают жаростойкость и коррозионную стойкость; молибден улучшает механические свойства стали при нормальной и повышенной температурах.

Легированные стали по назначению делят на конструкционные, инструментальные и стали со специальными свойствами (нержавеющие, жаростойкие и др.). Для строительных целей применяют в основном конструкционные стали.

Конструкционные низколегированные стали содержат не более 0,6% углерода. Основные легирующие элементы низколегированных сталей: кремний, марганец, хром, никель. Другие легирующие элементы вводят в небольших количествах, чтобы дополнительно улучшить свойства стали. Общее содержание легирующих элементов не превышает 5%.

Низколегированные стали обладают наилучшими механическими свойствами после термической обработки.

При маркировке легированных сталей первые две цифры показывают содержание углерода в сотых долях процента, следующие за ним буквы — условное обозначение легирующих элементов. Если количество легирующего элемента составляет 2% и более, то после буквы ставят еще цифру, указывающую это количество. Например, марка стали 25ХГ2С показывает, что в ней содержится 0,25% углерода, около 1% хрома, 2% марганца и около 1% кремния. При маркировке высококачественных легированных сталей (с низким содержанием серы и фосфора) в конце ставится буква А.

В строительстве применяют легированные стали 10ХСНД, 15ХСНД для изготовления ответственных металлических конструкций (ферм, балок), 35ХС, 25Г2С, 25ХГ2СА, ЗОХГСА и 35ХГСА — для изготовления арматуры для предварительно напряженного бетона.

Прочность на растяжение таких сталей в 2…3 раза выше, чем обыкновенных углеродистых сталей СтЗ и Ст5. Так, у стали ЗОХГСА предел прочности при растяжении не менее 1100 МПа, а у стали 35ХГСА — не менее 1600 МПа (у стали Ст5 — 500…600 МПа). Такие высокие прочностные показатели позволяют получать из легированных сталей более легкие конструкции при сохранении необходимой несущей способности. Это, в свою очередь, снижает расход металла и уменьшает массу здания.

Выбор стройматериалов - Углеродистые и легированные стали

gardenweb.ru

Углеродистые и низколегированные стали | Точечная сварка

К этой группе относятся стали, закаливающиеся при точечной сварке с заметным изменением пластичных свойств при использовании режимов, рекомендованных для низкоуглеродистой стали. Это наблюдается уже при сварке углеродистых и низколегированных сталей с содержанием углерода соответственно 0,15 и 0,12% и выше.

Требования и способы подготовки для этих сталей те же, что и для низкоуглеродистых. При одинаковой чистоте обработки поверхности контактное сопротивление этих сталей выше из-за большей прочности и большего электрического сопротивления. Повышенное содержание углерода и наличие легирующих примесей оказывает существенное влияние на сварку, увеличивая устойчивость переохлажденного аустенита и уменьшая критические скорости охлаждения, при которых сталь закаливается. В зависимости от состава стали, ее термообработки, толщины, цикла сварки и параметров режима в зоне сварки наблюдаются различные скорости охлаждения и, как следствие, структуры различной степени закалки. Влияние скорости охлаждения на структуру стали приближенно оценивается по совмещенным диаграммам С-образного изотермического распада аустенита и скорости охлаждения. Эти диаграммы верны для конкретных примеров, так как характер изотермического распада в большей степени зависит от свойств стали.

На прочность сварного соединения для некоторых углеродистых и низколегированных сталей заметное влияние оказывают диффузионные процессы, в результате которых часть углерода перемещается в литое ядро из окружающего металла. Это ослабляет сварное соединение, разрушение его происходит по обезуглероженной зоне, близкой к границе литого ядра.

Закалка зоны сварки значительно снижает усилие отрыва, так как соединение становится хрупким. Сравнительные испытания на удар применяют реже ввиду их сложности и необходимости специальных приспособлений для копров. Качество сварки соединения оценивают по отношению усилия отрыва точки к срезу, которое всегда меньше единицы. Допустимые пределы устанавливают в каждом отдельном случае.

Например, при сварке интенсивно закаливающейся стали ЗОХГСА толщиной 2 мм при одноимпульсном цикле сварки без термообработки это отношение составляет всего 0,1—0,14. Применение специального цикла повышает его до 0,32. В сварном соединении необходимо исключать или ограничивать структуры закалки.

Сварка на очень мягком режиме при ограниченном времени проковки уменьшает скорость  охлаждения за счет прогрева окружающей зоны металла. Для некоторых марок сталей это позволяет получить соединение с достаточной пластичностью. Однако такой режим вызывает большие остаточные деформации, снижает производительность и увеличивает расход энергии.

Несколько уменьшить указанные недостатки можно сваркой на умеренно мягком режиме, дающем хрупкое соединение со структурой закалки, но без трещин. После сварки требуется полная термическая обработка изделия в печи, обеспечивающая наибольшую однородность структуры, но понижающая усталостную прочность из-за снятия остаточных напряжений сжатия в зоне сварных точек. Эта операция требует печей, энергоемка и применима для жестких узлов ограниченных габаритных размеров.

Наиболее целесообразна сварка на жестком режиме с последующей электротермомеханической обработкой точки в электродах машины импульсом тока, меньшим по величине при большем усилии сжатия. Эффективность этого цикла возрастает с уменьшением толщины листа и повышением степени закаливаемости стали.

В первой части этого цикла в зависимости от толщины детали и качества подготовки поверхности можно применять различные импульсы, обеспечивающие умеренную плотность тока при высоком контактном сопротивлении в начале нагрева, исключающие выплески и последующий перегрев электродов. Эта часть цикла заканчивается формированием ядра нужных размеров.

Следующий этап — охлаждение контролируют по времени, он продолжается до снижения температуры ниже температуры мартенситного превращения. Этот этап цикла можно несколько сократить за счет интенсификации теплоотвода в электроды повышением сжимающего усилия. Повторный импульс тока нагревает или поддерживает температуру в месте сварки на уровне температуры образования аустенита, чтобы не вызвать повторной закалки. Достигнуть температуры отпуска за счет уменьшения продолжительности импульса нельзя, так как за короткое время не удается обеспечить равномерный нагрев зоны. Для обоих импульсов желательна модуляция их переднего фронта.

При подборе режимов сварки этих сталей обычно в выборе параметра первого импульса ориентируются на жесткие режимы сварки низкоуглеродистых сталей. Несколько большее электрическое сопротивление не оказывает существенного влияния на общий нагрев места сварки. При сварке этих сталей с недостаточно хорошей подготовкой поверхности применяют более мягкие режимы.

Сопротивление пластической деформации у этих сталей, как правило, растет с увеличением содержания углерода и легирующих элементов, поэтому усилия при сварке устанавливают на 20—30% больше, чем при сварке низкоуглеродистых сталей. Температурный интервал кристаллизации, который увеличивается с ростом содержания углерода, делает эти стали более склонными к появлению усадочных дефектов и горячих трещин. Поэтому с ростом толщины целесообразно увеличивать усилие проковки.

Есть несколько методик, позволяющих подсчитывать время охлаждения, следующее сразу же за циклом сварки. Одна из методик, основанных на расчете тепловых полей, позволяет выбрать величину паузы при двухимпульсной сварке закаливающихся сталей. По другой методике подсчитывают время охлаждения металла ниже температуры образования мартенсита (Ms °С). Зависимость минимального времени охлаждения для низколегированных сталей от толщины металла и температуры образования мартенсита может быть получена, исходя из химического состава стали, по формуле и графику (рис. 8). Для углеродистых сталей это время можно выбрать по графику, приведенному на рис. 9.

Рис. 8. Минимальное время охлаждения для осуществления мартенситного превращения низколегированных сталей

Рис. 9. Углеродистая сталь с содержанием: 1 — до 0,5% С; 2 — до 0,7% С; 3 — до 1% С

Ток термообработки должен быть установлен в довольно узких пределах. Продолжительность термообработки (отпуска) меньше влияет на ее результаты, ее выбирают от 1 до 1,5 продолжительности сварки. С увеличением толщины продолжительность увеличивают. Следует избегать применения слишком жесткого режима, так как его колебания отразятся на пластичности.

Параметры режима, которые фактически определяют конечную структуру в зоне сварки, обычно устанавливают путем подбора для каждой свариваемой стали и каждой толщины листа. Сделана попытка определить их путем расчета. Установлено, что температура отпуска, обеспечивающая оптимальную пластичность, составляет 550—600° С. Параметры термообработки (ток и время) связаны уравнением i = Сила тока отпуска/ Сила сварочного тока   r= Продолжительность отпуска/Продолжительность сварки

www.stroitelstvo-new.ru

описание углеродистых, легированных и быстрорежущих

Инструментальная сталь — это материал, который на более чем на 0,7% состоит из углерода. Ее ключевыми характеристиками является твердость и прочность, их максимальные показатели достигаются при термической обработки стали. Ее преимущественно используют при изготовлении разных инструментов.

Так называется сталь, содержащая более 0,7% углерода. Ее основными характеристиками являются прочность и твердость, которые достигают максимальных показателей после термической обработки. Основное применение такого стального материала — изготовление инструментов.

Преимущества и ассортимент

Инструментальная сталь является одним из наиболее востребованных материалов на рынке. Сплав имеет высокую твердость и невысокую стоимость. Однако имеется и недостаток у материала — его низкая износостойкость, поэтому его не применяют для производства машинных деталей и оборудования, которое подвергается постоянным нагрузкам.

Сортамент данного материала следующий:

  • горячекатаные квадраты и круги;
  • кованые полосы, круги и квадраты.

Основные виды

Такой вид материалов подразделяется на такие три основные категории:

  • инструментальные углеродистые стали;
  • легированные инструментальные стали;
  • быстрорежущие.

Все они производятся согласно установленному ГОСТу.

Углеродистые виды материала во время нагревания теряют свою прочность, соответственно, их используют для производства инструментов, которые работают на малых скоростях или при простых условиях резания, когда температура нагревания составляет не больше 200 градусов.

Преимущественно их применяют для производства:

  • напильников;
  • сверл;
  • разверток;
  • метчиков и не только.

Поскольку углеродистая инструментальная сталь обладает низкими показателями свариваемости, ее не используют при изготовлении сварных конструкций.

В зависимости от процентного соотношения содержания в материале углерода, марганца, кремния, серы и других элементов он подразделяется на такие марки, как:

  • У7;
  • У8;
  • У8Г;
  • У10 и прочие.

Легированные материалы и их маркировка

Легированные материалы в составе дополнительно содержат следующие элементы:

  • никель;
  • медь;
  • марганец и т. д.

Все они улучшают характеристики материала. Легирующие элементы должны указываться при маркировке с помощью специальных обозначений буквами. Все это позволяет заранее увидеть, из чего состоит данная инструментальная сталь. Марки материала также могут включать не только буквы, но и цифры. Цифры указывают на то, в каком количестве тот или иной элемент содержится в стали в процентном соотношении. Если при маркировке цифра не ставится, то количество элемента равно около 1 процента.

При маркировке легированной стали на первом месте стоит количество углерода, которое равно десятым долям процента. Например, марка 6ХС содержит углерод в количестве 0,6%, а также по одному проценту кремния и хрома.

Инструментальные легированные стали преимущественно используются для производства штамповых или режущих инструментов, к ним относят:

  • плашки;
  • метчики;
  • развертки;
  • сверла;
  • фрезы и не только.

Как и углеродистые стали, легированные материалы тоже непригодны для производства сварных конструкций.

Быстрорежущие стали

Маркировка быстрорежущих материалов состоит из буквы «Р», числа, указывающего на массовую долю вольфрама и букв элементов, присутствующих в составе материала. Это могут быть кобальт, молибден и другие. Далее идут цифровые значения их массовых долей. Если маркировка включает буквы «Ш», то это значит «электрошлаковый переплав».

Доля хрома в быстрорежущей стали при маркировке не указывается, также отсутствует указание массовой доли молибдена, если она не превышает отметку в один процент.

Такие виды материалов оптимально подходят для производства режущих инструментов, которые от трения нагреваются до температуры от 600 до 6500 градусов. При этом они не будут деформироваться, и терять свою твердость. Данный вид изделий хорошо поддается свариванию посредством стыковой электросварки со сталью таких марок, как 45 и 40Х.

Классификация

Все марки для производства подразделяются на следующие группы:

  • теплостойкие и вязкие — обычно это заэвтектоидные и доэвтектоидные стали, включающие хром, молибден и вольфрам. Углерод в сталях должен соответствовать низким и средним значениям;
  • высокотвердые и вязкие, а также нетеплостойкие — в сплавах содержится минимум легированных элементов, а также среднее количество углевода, отличающиеся малой прокаливаемостью;
  • Высокотвердые и теплостойкие, а также износостойкие — это быстрорежущие легированные стали с большим содержанием легированных элементов, сплавы с ледебуритной структурой, в которых содержится более 3 процентов углерода;
  • износостойкие, высокотвердые со средней теплостойкостью — материалы имеют заэвтектоидную и ледебуритную структуру, в их составе содержится примерно 2−3 процента углерода и 5−12 процентов хрома;
  • высококачественная и качественная инструментальная сталь — отличаются друг от друга по процентному соотношению присутствия в них серы и фосфора;
  • высокотвердые и нетеплостойкие — эти инструментальные стали с заэвтектоидной структурой вообще не включают в себя легированные элементы, или же они присутствуют в минимальном количестве. Уровень их твердости обеспечивается за счет большого количества углерода в составе.

Уровень твердости — очень важный параметр для рассматриваемого материала. Обычно высокотвердые стали не используют для производства инструментов, которые во время эксплуатации подвергаются ударным сильным нагрузкам. Это происходит за счет того, что эти сплавы имеют невысокую вязкость и большую хрупкость, из-за чего инструмент, которых из них сделан, может сломаться.

По уровню твердости данные стальные материалы бывают с высоким уровнем вязкости, где углерода содержится 0,4 -0,7% или же с большой износостойкостью и твердостью, где количество углевода равно 0,7−1,5%.

Отличаются стали и по степени своей прокаливаемости. По этому критерию они подразделяются на:

  • изделия с повышенной прокаливаемостью, где диаметр прокаливания составляет от 80 до 100 мм;
  • высокой — диаметр от 50 до 80 мм;
  • низкой — от 10 до 25 мм соответственно.

Сферы использования

Данный материал в промышленности имеет довольно широкий спектр применения. Они применяются при изготовлении:

  • режущих инструментов;
  • измерительных устройств;
  • литейных пресс-форм, работающих под давлением;
  • рабочих деталей штампов, которые работают по принципу горячего и холодного деформирования;
  • высокоточных изделий.

Требования к материалу

Требования к данным материалам предъявляются в зависимости от того, как именно они будут использоваться. Но есть общие требования к ним независимо от марок:

  • высокий уровень твердости;
  • высокий уровень прочности;
  • износостойкость;
  • хорошая вязкость, что особенно важно при изготовлении деталей, которые при использовании будут подвергаться ударам;
  • низкий уровень чувствительности к перегреву, процессам прилипания и приваривания к деталям, которые подвержены обработке;
  • хороший уровень обработки посредством резки металла;
  • устойчивость к появлению трещин;
  • восприимчивость к прокаливанию;
  • пластичность в горячем виде;
  • возможность шлифовки;
  • возможность противостоять обезуглероживанию.

Естественно, это не все требования. Так, марки, которые предназначаются для использования в условиях холодной деформации, дополнительно должны иметь гладкую рабочую поверхность, сохранять свою форму и размер и иметь предел текучести и упругости. А те материалы, которые должны применяться в условиях горячей деформации, должны иметь высокую теплопроводность, не допускать отпуска и быть устойчивыми к колебанию температур.

Итак, вы рассмотрели особенности инструментальной стали, выяснили, на какие виды и категории она подразделяется и для каких целей используется та или иная их марка. Подробнее информацию о них можно прочесть в других статьях, посвященных этому материалу.

tokar.guru

Глава IV. Углеродистые и легированные стали

11. Углеродистые конструкционные стали

Углеродистые стали подразделяют на три основные группы: стали угле­родистые обыкновенного качества, качественные углеродистые стали и уг­леродистые стали специального назначения (автоматную, котельную и др.).

Стали углеродистые обыкновенного качества.Эти наиболее широко распространенные стали поставляют в виде проката в нормализованном состоянии и применяют в машиностроении, строительстве и в других отраслях.

Углеродистые стали обыкновенного качества обозначают буквами Ст и цифрами от 0 до 6. Цифры—это условный номер марки. Чем больше число, тем больше содержание углерода, выше прочность и ниже пластичность.

В зависимости от назначения и гарантируемых свойств углеродистые стали обыкновенного качества поставляют трех групп: А, Б, В. Индексы, стоящие справа от номера марки, означают: кп—кипящая, пс— полуспокойная, сп — спокойная сталь. Между индексом и номером марки может стоять буква Г,что означает повышенное содержание марганца. В обозначениях марок слева от букв Ст указаны группы (Б и В) стали.

По требованиям к нормируемым показателям (химического состава и механических свойств) стали обыкновенного качества подразделяют на категории. Категорию стали обозначают соответствующей цифрой пра­вее индекса степени раскисления, например Ст5ГпсЗ означает: сталь группы А, марки Ст5, с повышенным содержанием марганца, полуспо­койная, третьей категории. В случае заказа стали без указания степени раскисления, но определенной категории последняя пишется за номе­ром марки через тире, например Ст4-3. Сталь первой категории пишется без указания номера последней, например Ст4пс.

Химический состав сталей группы Ане регламентируют, а гарантиру­ют их механические свойства .Стали этой группы применяют обычно для деталей, не подвергаемых в процессе изготовления горячей обработке (сварке, ковке и др.).

Cmаль группы Бпоставляют по химическому составу и применяют для деталей, которые проходят в процессе изготовления термообработку и горячую обработку давлением (штамповку, ковку). Механические свойства стали группы Б не гарантируют.

Сталь группы Впоставляют по механическим свойствам, соответству­ющим нормам Для стали группы А, и по химическому составу, соответ­ствующему нормам для стали группы Б. Сталь группы В используют в основном для сварных конструкций.

Стали углеродистые качественные конструкционные.От сталей обык­новенного качества они отличаются меньшим содержанием серы, фос­фора и других вредных примесей, более узкими пределами содержания углерода в каждой марке и большинстве случаев более высоким содер­жанием кремния (Si) и марганца (Мn).

Сталь маркируют двузначными числами, которые обозначают содер­жание углерода в сотых долях процента, и поставляют с гарантирован­ными показателями химического состава и механических свойств.По степени раскисления сталь подразделяют на кипящую (кп), полу­спокойную (пс), спокойную (без указания индекса). Буква Г в марках сталей указывает на повышенное содержание марганца (до 1%).

Табл. 3.

Механические свойства качественной конструкционной стали

Марка

Предел

прочно­

сти растяже­ния σв,

Относи­

тельное

удлине­ние δв,

Твер­

дость,

НВ

Назначение

МПа

%

08

10

15

20

330

340

380

420

33

31

27

25

131

143

149

163

Малонагруженные детали:

шестерни, звездочки, ролики, оси,

подвергающиеся цементации

25

30

35

460

500

540

23

21

20

170

179

207

Средненагруженные детали:

шестерни, валы, оси

40

45

580 610

19 16

217 229

Средненагруженные детали: шатуны, валы, шестерни, пальцы

50

55

640

660

14 .

13

241

255

Высоконагруженные детали: шестерни, муфты, пружинные

кольца, пружины

60

65

70

75

80

85

60Г

70Г

690

710

730

1100

1100

1150

710

800

12

10

9

7

6

6

11

8

255

255

269

285

285

302

269

285

Пружины, рессоры, эксцентрики и

другие детали, работающие в

условиях трения

Сталь углеродистую качественную поставляют катаной, кованой, ка­либрованной, круглой с особой отделкой поверхности (серебрянка).

Стали углеродистые специального назначения.К этой группе относят ста­ли с хорошей и повышенной обрабатываемостью резанием (автоматные стали). Они предназначены а основном для изготовления деталей массо­вого производства. При обработке таких сталей на станках-автоматах об­разуется короткая и мелкая стружка, снижается расход режущего инст­румента и уменьшается шероховатость обработанных поверхностей.

Автоматные стали с повышенным содержанием серы и фосфора имеют хорошую обрабатываемость. Обрабатываемость резанием улучшают так­же введением в стали технологических добавок селена, свинца, теллура.

Автоматные стали маркируют буквой А и цифрами, показывающими среднее содержание углерода в сотых долях процента. Применяют сле­дующие марки автоматной стали: А12,А20, АЗО, А40Г. ИзсталиА12 из-ГОТОВ1ЯЮТ неответственные детали, из стали других марок — более ответ­ственные детали, работающие при значительных напряжениях и повы­шенных давлениях. Сортамент автоматной стали предусматривает изго­товление сортового проката в виде прутков круглого, квадратного и шес­тигранного сечений. Эти стали не применяют для изготовления сварных конструкций.

Стали листовые для котлов и сосудов, работающих под давлением, применяют для изготовления паровых котлов, судовых топок, камер горе­ния газовых турбин и других деталей. Они должны работать при пере­менных давлениях и температуре до 450"С. Кроме того, котельная сталь должна хорошо свариваться. Для получения таких свойств в углеродис­тую сталь вводят технологическую добавку (титан) и дополнительно раскисляют ее алюминием. Выпускают следующие марки углеродистой котельной стали 12К, 15К, 16К, 18K.20K.22Kc содержанием в них угле­рода от 0,08 до 0,28%. Эти стали поставляют в виде листов с толщиной до 200 мм и поковок в состоянии после нормализации и отпуска (см. гл. V).

studfiles.net

Углеродистые и легированные инструментальные стали.

Ранее других материалов для изготовления режущих инструментов начали применять углеродистые инструментальные сталимарок У7, У7А...У13, У13А. Помимо железа и углерода, эти стали содержат 0,2...0,4% марганца. Инструменты из углеродистых сталей обладают достаточной твердостью при комнатной температуре, но теплостойкость их невелика, так как при сравнительно невысоких температурах (200...250°С) их твердость резко уменьшается.

Легированные инструментальные стали,по своему химическому составу, отличаются от углеродистых повышенным содержанием кремния или марганца, или наличием одного либо нескольких легирующих элементов: хрома, никеля, вольфрама, ванадия, кобальта, молибдена. Для режущих инструментов используются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами - лучшей закаливаемостью и прокаливаемостью, меньшей склонности к короблению, но теплостойкость их равна 250...270°С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназначенных для обработки на станках с низкими скоростями резания (мелкие сверла, метчики).

Следует отметить, что за последние 15…20 лет существенных изменений этих марок не произошло, однако наблюдается устойчивая тенденция снижения их доли в общем объеме используемых инструментальных материалов.

4.3.2. Быстрорежущие стали.

В настоящее время быстрорежущие стали являются основным материалом для изготовления режущего инструмента, несмотря на то, что инструмент из твердого сплава, керамики и СТМ обеспечивает более высокую производительность обработки. Широкое использование быстрорежущих сталей для изготовления сложно-профильных инструментов определяется сочетанием высоких значений твердости (до HRC = 68 ед.) и теплостойкости (600…650°С) при уровне хрупкой прочности и вязкости, превышающих соответствующие значения для твердых сплавов. Кроме того, быстрорежущие стали обладают достаточно высокой технологичностью, так как хорошо обрабатываются давлением и резанием в отожженном состоянии. В обозначении быстрорежущей стали буква Р (Rapid) означает, что сталь быстрорежущая, а следующая за буквой цифра - содержание вольфрама в %. Следующие буквы обозначают: М - молибден, Ф - ванадий, К - кобальт, А - азот. Цифры за буквами, означают их содержание в %. Содержание азота составляет 0,05…0,1%.

Современные быстрорежущие стали можно разделить на три группы: нормальной, повышенной и высокой теплостойкости.

К сталям нормальной теплостойкостиотносятся вольфрамовая Р18 и вольфрамо-молибденовая Р6М5 стали (таблица 5.). Эти стали имеют твердость в закаленном состоянии 63...64 HRC, предел прочности при изгибе 2900.. .3400МПа, ударную вязкость 2,7...4,8Дж/м2 и теплостойкость 600°...620°С. Указанные марки стали получили наиболее широкое распространение при изготовлении режущих инструментов. Объем производства стали Р6М5 достигает 80% от всего объема выпуска быстрорежущей стали. Она используется при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс.

Стали повышенной теплостойкостихарактеризуются повышенным содержанием углерода, ванадия и кобальта. Среди ванадиевых сталейнаибольшее применение получила марка Р6М5ФЗ. Наряду с высокой износостойкостью, ванадиевые стали обладают плохой шлифуемостью из-за присутствия карбидов ванадия (VC), твердость которых не уступает твердости зерен электрокорундового шлифовального круга (Аl2О3). Шлифуемость - это важнейшее технологическое свойство, которое определяет не только особенности при изготовлении инструментов, но и при его эксплуатации (переточках).

Таблица 5. Химический состав быстрорежущих сталей

Марка быстрорежу-щей стали     Содержание легирующих элементов, %
Углерод Хром Вольфрам Ванадий Кобальт Молиб-ден Азот
Стали нормальной теплостойкости
Р18 0,73…0,83 3,8…4,4 17,0…18,5 1,0…1,4 н.б. 0,50 н.б. 1,0 -
Р6М5 0,82...0,9 3,8…4,4 5,5…6,5 1,7…2,1 н.б. 0,5 4,8…5,3 -
Стали повышенной теплостойкости
11РЗАМЗФ2 1,02…1,12 3,8…4,3 2,5…3,3 2,3…2,7 н.б. 0,5 2,5…3,0 0,05…0,1
Р6М5ФЗ 0,95…1,05 3,8…4,3 5,7…6,7 2,3…2,7 н.б. 0,50 4,8…5,3 -
Р12ФЗ 0,95…1,05 3,8…4,3 12,0…13,0 2,5…3,0 н.б. 0,5 н.б. 0,5 -
Р18К5Ф2 0,85…0,95 3,8…4,4 17,0…18,5 1,8…2,2 4,7…5,2 н.б. 1,0 -
Р9К5 0,9…1,0 3,8…4,4 9,0…10,0 2,3…2,7 5,0…6,0 н.б. 1,0 -
Р6М5К5 0,94…0,92 3,8…4,3 5,7…6,7 1,7…2,1 4,7…5,2 4,8…5,3 -
Стали высокой теплостойкости
В11М7К23 0,1 - 11,0 0,5 23,0 7,0 -
В14М7К25 0,1 - 14,0 0,5 25,0 7,0 -

По шлифуемости быстрорежущие стали можно разделить на 4 группы:

Группа 1. Содержание ванадия до 1,4% и относительная шлифуемость 0,9…1 (за единицу принята «обрабатываемость при шлифовании» стали Р18, обладающей наилучшей шлифуемостью).

Группа 2. Содержание ванадия 1,7…2,2%, относительная шлифуемость 0,5…0,95, в эту группу входят стали Р6М5, Р6М5К5, Р2АМ9К5 и др.

Группа 3. Содержание ванадия 2,3…3,3%, относительная шлифуемость 0,3…0,5 (11РЗАМЗФ2, Р6М5ФЗ, Р12ФЗ, Р9, Р9М4К8 и др.)

Группа 4. Содержание ванадия более 4%, относительная шлифуемость 0,2…0,3 (Р12Ф4К5 и др.).

Порошковые быстрорежущие стали, независимо от содержания ванадия, относятся к группам 1 и 2, т.е. обладают хорошей шлифуемостью.

Стали с пониженной шлифуемостью склонны к прижогам, т.е. к изменению структуры поверхностных слоев стали после шлифования или заточки, появлению зон вторичного отпуска с пониженной твердостью. Следствием прижогов может быть значительное снижение стойкости инструмента.

Однако, проблема «шлифуемости» ванадиевых быстрорежущих сталей, успешно решается если при заточке и доводке режущих инструментов применяются абразивные круги с зернами из СТМ на основе кубического нитрида бора (КНБ).

Ванадиевые быстрорежущие стали находят применение для инструментов несложных форм при чистовых и получистовых условиях резания для обработки материалов, обладающих повышенными абразивными свойствами.

Среди кобальтовых сталейнаибольшее применение нашли марки Р6М5К5, Р9М4К8, Р18К5Ф2, Р9К5, Р2АМ9К5 и др. Введение кобальта в состав быстрорежущей стали наиболее значительно повышает ее твердость (до 66…68 HRC) и теплостойкость (до 640…650°С). Кроме того, повышается теплопроводность стали, так как кобальт является единственным легирующим элементом, приводящим к такому эффекту.

Это дает возможность использовать их для обработки жаропрочных и нержавеющих сталей и сплавов, а также конструкционных сталей повышенной прочности. Период стойкости инструментов из таких сталей в 3…5 раз выше, чем из сталей Р18, Р6М5.

Стали высокой теплостойкостихарактеризуются пониженным содержанием углерода, но весьма большим количеством легирующих элементов – B11M7K23, В14М7К25, ЗВ20К20Х4Ф. Они имеют твердость 69. ..70 HRC и теплостойкость-700...720°С. Рациональная область использования - резание труднообрабатываемых материалов и титановых сплавов. В последнем случае период стойкости инструментов в 60 раз выше, чем из стали Р18, и в 8…15 раз выше, чем из твердого сплава ВК8. Значительными недостатками этих сталей является их низкая прочность при изгибе (не выше 2400 МПа) и низкая обрабатываемость резанием в отожженном состоянии (38…40 HRC) при изготовлении инструмента.

Экономно легированные быстрорежущие стали.

В связи со все более возрастающим дефицитом вольфрама и молибдена - основных легирующих элементов,используемых при производстве быстрорежущей стали, все большее применение находят экономно легированные марки. Среди сталей этого типа наибольшее применение получила сталь 11РЗАМЗФ2, которая используется при производстве инструмента, так как обладает достаточно высокими показателями по твердости (HRC 63-64), прочности (σи-3400 МПа) и теплостойкости (до 620°С). Сталь 11РЗАМЗФ2 технологична в металлургическом производстве, однако, из-за худшей шлифуемости ее применение ограничено инструментами простой формы, не требующими больших объемов абразивной обработки (пилы по металлу, резцы и т.п.).

Похожие статьи:

poznayka.org