Совет 1: Как сделать повышающий трансформатор. Повышающий трансформатор
Как сделать повышающий трансформатор 🚩 повышающие трансформаторы напряжения 🚩 Комплектующие и аксессуары
Еще несколько лет назад даже самодельная модель трансформаторного сварочного аппарата вызывала у его обладателя законную гордость. Но теперь особый интерес у сварщиков вызывают сварочные инверторы. На специализированных форумах в интернете разворачиваются жаркие дискуссии относительно преимуществ и недостатков того и другого вида аппаратов. Чтобы сделать правильный выбор, нужно разбираться в особенностях трансформатора и инвертора.
Чем специалистов не устраивает трансформатор? Прежде всего, он отличается недостаточной устойчивостью дуги и невысокой стабильностью режима работы. Последний параметр существенно зависит от колебаний напряжения в сети. В этом отношении инвертор обладает неоспоримыми преимуществами. Он гарантирует наличие стабилизированного тока, который не зависит от колебаний напряжения. При работе инвертором наблюдается малое разбрызгивание и устойчивая дуга.
От обычного трансформатора инвертор отличается тем, что работает по принципу сварочного выпрямителя. Если частота напряжения высока, общие габариты и вес устройства для обеспечения одной и той же энергии будут минимальными. Для этого в схему инвертора включаются выпрямители и управляющие элементы. Специалисты утверждают, что сама работа с инвертором намного приятнее, чем обращение с трансформатором.
Чем определяется такое уважение потребителей к инвертору? С инвертором удобнее работать, поскольку он дает возможность плавно регулировать ток сварки. Некоторые модели имеют дополнительные функции управления этим рабочим параметром. Например, чтобы начать сварку без всяких задержек и вспомогательных касаний изделия электродом, используется функция «горячий старт», которая увеличивает ток на начальной фазе сварочных работ.
Для тех, кому приходится использовать сварку не от случая к случаю, а регулярно, очень важно, что инвертор, в отличие от трансформатора, потребляет значительно меньше электрической энергии. По этой причине его без лишних хлопот можно подключать к бытовой сети или к автономному источнику питания, например, к дизельной установке.
На выбор сварочного агрегата, несомненно, влияют и физические параметры. Большим преимуществом инвертора становятся его малые размеры и незначительный вес. Достичь этого удается, повышая частоту напряжения. Некоторые модели инвертора вполне можно переносить на плече, ведь весит такая «малютка» не более трех-четырех килограммов, позволяя в то же время работать со стандартными электродами. Управляться с трансформатором даже физически подготовленному сварщику значительно сложнее.
www.kakprosto.ru
Хорошо известный повышающий трансформатор…
Каждая область техники имеет свои знаковые устройства, глядя на которые однозначно понимаешь что, куда, откуда. Парус – это море, яхты, корабли. Пропеллер – авиация, самолеты, колесо – велосипед, автомобиль и т.д. И не всегда мы задумываемся над тем, что когда-то эти ныне простые и такие понятные устройства были очередным, иногда трудным, шагом в становлении целой отрасли техники или машиностроения.
Такая история и у хорошо известного представителя электротехники – трансформатора. В далеком уже 1831 году Фарадей вошел в историю открытием электромагнитной индукции – основного принципа работы трансформатора. Только через 45 лет русскому ученому П. Н. Яблочкову был выдан патент на изобретение трансформатора. Две обмотки, расположенные на незамкнутом сердечнике, подтвердили возможность трансформировать, т.е. преобразовывать, изменять токи и напряжения. Самым первым был изготовлен повышающий трансформатор. Современные трансформаторы имеют размеры от сооружений в несколько этажей до крохотных изделий меньше 1 см, а их производство – это ведущая отрасль электротехнической промышленности.
В технике применяется огромное число трансформаторов различного назначения и каждый из них имеет свое специфичное название. Например, широкое применение в электролабораториях имеет повышающий трансформатор напряжения, который при выходном напряжении в несколько киловольт имеет напряжение питания 220 В.
Итак, трансформатор - что же это такое? Классическое определение звучит так: трансформатор – это электрическая машина, преобразующая ток входного источника питания в ток вторичной обмотки с другим напряжением. Трансформатор работает с напряжением переменного тока, т.к. эффект индукции проявляется только при изменении электромагнитного поля. Передача (трансформация) энергии проходит через преобразование электрической энергии в обмотках сначала в магнитное поле, и далее - переход обратно в электрическую энергию тока, но уже во вторичной обмотке. Если вторичная обмотка по числу витков превышает первичную, то имеем повышающий трансформатор, а если подключить обмотки наоборот, то и трансформатор будет «наоборот» - понижающий.
Допустим, что необходимо в гараже, имеющем электрическую сеть 36В, подключить электропотребитель, например, блок зарядки аккамулятора с питанием 220В - типичный случай для того, чтоб применить повышающий трансформатор. Решение такой практической задачи рассмотрим пошагово.
1. Мощность зарядного устройства возьмем из паспорта – скорее всего это будет что-то около 100 Вт. Понимая, что всегда нужно иметь запас на будущее и с учетом КПД будущего трансформатора примерно 0,9, принимаем мощность первичной обмотки 150 Вт.
2. Выбираем магнитопровод. Легче всего достать О-образный магнитный сердечник (от старого телевизора). Для нас подойдет любой, у которого сечение не меньше, чем следует из соотношения: Р1= S*S/1,44 , где Р1 и S – мощность трансформатора в Ваттах и поперечное сечение сердечника в см кв. Расчет дает значение S=10,2 см2.
3. Следующий шаг самый важный при «строительстве» трансформатора – определяется количество витков на 1В: N= 50/S = 50/10,2 = 4,9 витков/В. Теперь совсем легко рассчитать количество витков(или, как говорят, «намоточные данные»), первичной и вторичной обмоток: W1=36*N=176 витков и W2=220*5= 1078 витков.
4. Определим токи обмоток. Исходим из того, что мощность каждой из обмоток примерно 150 Вт. В таком случае, рабочие токи обмоток: J1 = 150/36=4,2А и J2 = 150/220=0,7А.
5. Теперь есть все данные для определения диаметров проводов обмоток. Так и сделаем: для первичной обмотки d1=0,8*√J1=0,8*2,05=1,64мм кв. ;
аналогично для вторичной обмотки d2=0,8*√J2 = 0,8*0,84=0,67 мм кв.
Для намотки обмоток выбираем диаметры, ближайшие из стандартных.
Все! Расчет окончен, но можно ли изготовить повышающий трансформатор своими руками? Как говорится - нет ничего проще, если сильно нужно. Реальная потребность - это основная движущая самоделкинами сила, так что дальше ручками, ручками.
6. Изготавливают два каркаса по выбранному магнитопроводу.
7. На каркасы плотной укладкой наматывают по половине первичной обмотки и изолируют ее стекло- или лакотканью .
8. Далее укладывают на каждый каркас по половине вторичной обмотки и также покрывают их лакотканью.
9. Сборка магнитопровода, стяжка его частей хомутом – проблема не очень сложная. При сборке магнитопровода желательно его половинки склеить любым составом с применением ферропорошка – это позволит исключить «гудение» устройства при работе.
Вот и все! Наша самоделка, стоит думать, будет работать долго и в радость. А кто бы сомневался!
fb.ru
Главная › Решения › Статьи › Повышающий трансформатор для дачи или частного дома | ||||||||||||||||||
| ||||||||||||||||||
РЕШЕНИЯ | ||||||||||||||||||
|
www.td-m.ru
Как работает трансформатор | Уголок радиолюбителя
Трансформатор, устройство, которое передает электрическую энергию от одной части схемы к другой за счет магнитной индукции и, как правило, с изменением величины напряжения. Трансформаторы работают только с переменным электрическим током (AC).
Трансформаторы имеют важное значение в распределении электроэнергии. Они повышают напряжение, вырабатываемое на электростанциях до высоких значений с целью эффективной передачи электроэнергии. Другие трансформаторы понижают это напряжение в местах потребления.
Многие бытовые приборы оборудованы трансформаторами, для того чтобы по мере необходимости повысить или понизить напряжение поступающее из домашней электросети. Например, для работы телевизора и аудиоусилителя необходимо повышение напряжения, а для работы дверного звонка или термостата низкое напряжение.
Как работает трансформатор
Как правило, простой трансформатора состоит из двух катушек намотанных изолированным проводом. В большинстве трансформаторов, провода намотаны на стержень из железа, называемый сердечником.
Одна из обмоток, ее еще называют первичной обмоткой, подключается к источнику переменного тока, что в свою очередь приводит к появлению постоянно переменного магнитного поля вокруг обмотки. Это переменное магнитное поле, в свою очередь, создает переменный ток в другой обмотке (вторичной обмотке).
Величина, определяемая как отношение числа витков в первичной обмотке к числу витков во вторичной обмотке, определяет масштаб понижения или повышения напряжения во вторичной обмотки. Данную величину еще называют коэффициентом трансформации.
Например, если у трансформатора имеется 3 витка первичной обмотке и 6 витков во вторичной обмотки, то напряжение во вторичной обмотке будет в 2 раз больше, чем в первичной. Такой трансформатор называется повышающий трансформатор.
И на оборот, если есть 6 витков в первичной обмотке и 3 виток во вторичной, то напряжение снимаемое с вторичной обмотки будет в 2 раз ниже чем в первичной обмотке. Этот вид трансформатора носит название понижающий трансформатор.
Так же следует иметь ввиду, что соотношение тока в обеих катушках находится в обратной зависимости к соотношению их напряжений. Таким образом, электрическая мощность (напряжение умноженное на силу тока) является одинаковой в обеих катушек.
Импеданс (сопротивление потоку переменного тока) первичной катушки зависит от импеданса вторичной цепи и коэффициента трансформации. При правильном соотношении витков трансформатора можно добиться практически одинакового сопротивления обоих контуров.
Согласованные сопротивления имеют важное значение в стерео системах и других электронных систем, потому это позволяет передавать максимальное значение энергии от одного блока схемы другому.
fornk.ru
Трансформатор
Трансформатор состоит из двух отдельных обмоток, называемых первичной и вторичной обмотками. Входное напряжение переменного тока прикладывается к первичной обмотке и создает изменяющееся магнитное поле. Это магнитное поле взаимодействует со вторичной обмоткой, индуцируя в ней напряжение переменного тока (точнее, ЭДС). Напряжение, индуцируемое во вторичной обмотке, имеет ту же частоту, что и входное напряжение, но его амплитуда определяется соотношением числа витков вторичной и первичной обмоток.
Если входное напряжение на выводах первичной обмотки = V1выходное напряжение на выводах вторичной обмотки = V2число витков первичной обмотки = T1число витков вторичной обмотки = T2
то
Кроме того, I1/ I2 = T1/ T2, где I1 и I2 – токи первичной и вторичной обмоток соответственно.
Коэффициент полезного действия (КПД) трансформатора
Приведенные выше соотношения предполагают, что трансформатор имеет 100%-ный КПД, т. е. полностью отсутствуют какие-либо потери мощности. Следовательно,Входная мощность I1•V1 = Выходная мощность I2•V2.На практике трансформаторы имеют КПД около 96-99%. Для увеличения КПД трансформатора его первичная и вторичная обмотки наматываются на одном магнитном сердечнике (рис. 7.10).
Повышающий и понижающий трансформаторы
Повышающий трансформатор вырабатывает на выходе (во вторичной обмотке) более высокое напряжение, чем приложено на входе (к первичной обмотке). Для этого число витков вторичной обмотки делается больше числа витков первичной обмотки.Понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем на входе, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.
Коэффициент приведения сопротивления
Трансформатор, изображенный на рис. 7.11, имеет в цепи вторичной обмотки нагрузочный резистор r2. Сопротивление r2 можно пересчитать или, как говорят, привести к первичной обмотке, т. е. к сопротивлению трансформатора r1 со стороны первичной обмотки. Отношение r1/ r2 называется коэффициентом приведения сопротивления. Этот коэффициент можно рассчитать следующим образом. Поскольку r1 = V1 / I1 и r2 = V2 / I2, то
Рис. 7.10. Трансформатор.
Рис. 7.11. Коэффициент приведениясопротивления
r1/ r2 = Т12/ Т22 = n2.
Рис. 7.12. Автотрансформатор.
Рис. 7.13. Автотрансформатор с несколькими отводами.
Но V1 / V2 = T1 / T2 = n и I2 / I1 = T1 / T2 = n, поэтому
r1 / r2 = n2
Например, если сопротивление нагрузки r2 = 100 Ом и отношение числа витков обмоток (коэффициент трансформации) T1 / T2 = п = 2 : 1, то со стороны первичной обмотки трансформатор можно рассматривать как резистор с сопротивлением r1 = 100 Ом • 22 = 100 • 4 = 400 Ом.
Автотрансформатор
Трансформатор может иметь одну-единственную обмотку с одним отводом от части витков этой обмотки, как показано на рис. 7.12. Здесь T1 — число витков первичной обмотки и T2 — число витков вторичной обмотки. Напряжения, токи, сопротивления и коэффициент трансформации определяются теми же формулами, которые применимы к обычному трансформатору.На рис. 7.13 показан еще один трансформатор с единственной обмоткой, в котором сделано несколько отводов от этой обмотки. Все соотношения для напряжений, токов и сопротивлений по-прежнему определяются коэффициентом трансформации (V1/Va = Т1/Тa, V1/Vb = Т1/Тb и т. д.).
Трансформатор с отводом от средней точки вторичной обмотки
На рис. 7.14 изображен трансформатор с отводом от середины его вторичной обмотки. С верхней и нижней половин вторичной обмотки снимаются выходные напряжения Va и Vb, Отношение входного напряжения (на первичной обмотке) к каждому из этих выходных напряжений определяется отношением числа витков, причем
V1/Va = Т1/Тa V1/Vb = Т1/Тb
где Т1, Тa и Тb — число витков первичной, вторичной а и вторичной b обмоток соответственно. Поскольку отвод сделан от середины вторичной обмотки, напряжения Va и Vb равны по амплитуде. Если средняя точка заземлена, как в схеме на рис. 7.14, то выходные напряжения, снимаемые с двух половин вторичной обмотки, находятся в противофазе.
Пример
Обратимся к рис. 7.15. (а) Рассчитайте напряжение между выводами В и С трансформатора, (б) Если между выводами А и В намотано 30 витков, то сколь¬ко всего витков имеет вторичная обмотка трансформатора?Решениеa) VBC = VAD – VAB – VCD = 36 В – 6 В – 12 В = 18 В.Число витков между А и Вb) VAB / VAD == ———————————————Число витков между А и D
Следовательно, 6 В/36 В = 30/ TAD, отсюда TAD = 30 • 36/6 = 180 витков.
Рис. 7.14. Трансформатор с отводом от средней точки вторичной обмотки.
Рис. 7.15. VAD = 36 В, VAB = б В,VCD = 12 В.
Магнитная цепь
Принято говорить, что в магнитной цепи магнитный поток (или магнитное поле), измеряемый в теслах, создается силой, называемой магнитодвижущей силой (МДС). Магнитная цепь обычно сравнивается с электрической цепью, причем магнитный поток сопоставляется с током, а магнитодвижущая сила с электродвижущей силой. Точно так же, как говорят о сопротивлении R электрической цепи, можно говорить о магнитном сопротивлении S магнитной цени; эти понятия имеют аналогичный смысл. Например, такой магнитомягкий материал, как ковкое железо, обладает низким магнитным сопротивлением, т. е. низким сопротивлением для магнитного потока.
Магнитная проницаемость
Магнитная проницаемость материала это мера легкости его намагничивания. Например, ковкое железо и другие электромагнитные материалы, такие, как ферриты, обладают высокой магнитной проницаемостью. Эти материалы применяются в трансформаторах, катушках индуктивности, реле и ферритовых антеннах. В отличие от них немагнитные материалы имеют очень низкую магнитную проницаемость. Магнитные сплавы, такие, как кремнистая сталь, обладают способностью сохранять состояние намагниченности в отсутствие магнитного поля и поэтому применяются в качестве постоянных магнитов в громкоговорителях (динамических головках), магнитоэлектрических измерительных приборах с подвижной катушкой и т. д.
Экранирование
Рассмотрим полый цилиндр, помещенный в магнитное поле (рис. 7.16). Если этот цилиндр изготовлен из материала с низким магнитным сопротивлением (магнитомягкого материала), то магнитное поле будет концентрироваться в стенках цилиндра, как показано на рисунке, не попадая в его внутреннюю область.
Рис. 7.16. Магнитное экранирование.
Рис. 7.17. Электростатическое экранирование в трансформаторе.
Следовательно, если в эту область поместить какой-либо предмет, он будет защищен (экранирован) от влияния магнитного поля в окружающем пространстве. Такое экранирование, называемое магнитным экранированием, применяется для защиты от внешних магнитных полей электронно-лучевых трубок, магнитоэлектрических измерительных приборов с подвижной катушкой, динамических головок громкоговорителей и т. п.В трансформаторах иногда применяется другой тип экранирования, называемый электростатическим или электрическим экранированием. Между первичной и вторичной обмотками трансформатора размещается экран из тонкой медной фольги, как показано на рис. 7.17. При заземлении такого экрана сильно уменьшается влияние емкости между обмотками, которая возникает из-за разности потенциалов этих обмоток. Электростатическое экранирование применяется также в коаксиальных кабелях и всюду, где проводники имеют разные потенциалы и находятся в непосредственной близости друг от друга.
В этом видео рассказывают о том, что такое трансформатор:
Добавить комментарий
radiolubitel.net
Можно ли увеличить мощность в сети с помощью трансформатора?
Представьте себе повышающий трансформатор. Входные параметры мы пока что рассматривать не будем. А вот выходные!? Повышающие трансформаторы бывают двух типов:
- Повышают напряжение но пропорционально уменьшается ток, мощность на выходе та же что и на входе.
- Повышают ток и пропорционально уменьшают напряжение мощность на выходе опять такая же что и на входе.
А теперь давайте представим трансформатор у которого две выходные обмотки: одна повышает ток и состоит из 2-3 витков, а вторая повышает напряжение и состоит из нескольких сотен витков.
Вопрос: Каким образом можно объединить высокий ток с высоким напряжением чтобы получилось добиться чтобы в результате получилось увеличение мощности, т.е. высокий ток умножить на высокое напряжение получаем высокую мощность. Достаточно ли просто последовательно или параллельно соединить вторичные обмотки такого трансформатора или же нужно придумать что то хитрее?
Например, получится ли взять ещё один трансформатор, но теперь у него две первичные обмотки. На первой например 5 витков и на неё подаётся высокий ток и на второй 5 витков, но на неё подаётся высокое напряжение. Вторичная обмотка состоит из 20 витков. Получится ли на вторичной обмотке получить объединённую повышенную мощность с двух первичных обмоток посредством не прямой, а магнитной связи, которая присутствует в трансформаторе? Надеюсь что вы внимательно прочитаете мой вопрос и вникнете в его суть перед тем как ответить, вопрос на самом деле интересный. Всем спасибо большое заранее, с нетерпением буду ждать ответов.
P.S.
Любопытство моё было вызвано вопросом существует ли в принципе способ увеличения мощности, ни отдельных составляющих электричества, а мощности в целом. И не обязательно через трансформатор, может быть существуют какие-либо другие способы?
Нравится(0)Не нравится(0)samelectrik.ru
Как работает трансформатор?
Используемая человеком электрическая энергия в основном вырабатывается на крупных электростанциях. Эти предприятия передают электричество на районные подстанции, которые затем распределяют его по потребителям.
Так как линии электропередач обладают электрическим сопротивлением, часть энергии электрического тока теряется, превращаясь в теплоту. Постоянный ток (DC) течет в одном направлении; переменный ток (АС) периодически изменяет свое направление. Первоначально для электроснабжения применялся только постоянный ток. По ряду причин передача и преобразование постоянного тока связаны со значительными трудностями, поэтому по соображениям безопасности электростанции передавали его под низким напряжением. Однако к тому времени, когда постоянный ток достигал потребителей, сопротивление съедало 45 процентов его энергии.
Выход был найден в передаче переменного тока высокого напряжения, которое может быть легко изменено при помощи трансформатора (рисунок внизу). Так как высоковольтным линиям требуется меньший ток для передачи одного и того же количества энергии, ее потери на преодоление сопротивления стали намного меньшими. Когда переменный ток покидает электростанцию, повышающие трансформаторы увеличивают его напряжение с 22 000 до 765 000 вольт, а перед поступлением в дома другие трансформаторы, понижающие, уменьшают его до ПО или 220 вольт.
Принцип действия трансформатора
Трансформаторы увеличивают или уменьшают напряжение переменного тока. Преобразуемый переменный ток проходит по первичной обмотке, охватывающей стальной сердечник (рисунок сверху). Периодически изменяющийся ток создает в сердечнике переменное магнитное поле. При перемещении во вторичную обмотку это магнитное поле генерирует в ней переменный ток. Если вторичная обмотка имеет больше витков, чем первичная, выходное напряжение будет выше, чем входное.
Потери энергии при протекании постоянного тока
Электрическая мощность (Р) вычисляется путем умножения силы тока (I) на напряжение (V), т.е. Р = I х V. Если напряжение возрастает, сила тока, необходимая для обеспечения заданной мощности, уменьшается. Низковольтная мощность постоянного тока требует большей силы тока, чем высоковольтная мощность переменного, чтобы передать одно и то же количество электроэнергии.
Переменный ток легко трансформируется
В отличие от постоянного, переменный ток периодически изменяет свое направление. Если переменный ток проходит по первичной обмотке трансформатора (рисунок слева), образующееся переменное магнитное поле индуцирует ток во вторичной обмотке. При протекании по первичной обмотке постоянного тока (рисунок справа), во вторичной обмотке ток не возникает.
information-technology.ru