Температура открытого пламени и огня в зажигалке. Самая горячая часть пламени
температурный режим огня в зажигалке, влияющие факторы и классификация
Пламя — это явление, которое вызвано свечением газообразной раскалённой среды. В некоторых случаях оно содержит твёрдые диспергированные вещества и (или) плазму, в которых происходят превращения реагентов физико-химического характера. Именно они и приводят к саморазогреву, тепловыделению и свечению. В газообразной среде пламени содержатся заряженные частицы — радикалы и ионы. Это объясняет существование электропроводности пламени и его взаимодействие с электромагнитными полями. На таком принципе построены приборы, которые могут приглушить огонь, изменить его форму или оторвать его от горючих материалов при помощи электромагнитного излучения.
Виды пламени
Свечение огня делится на два вида:
- несветящиеся;
- светящиеся.
Почти каждое свечение видимо для человеческого глаза, но не каждое способно испускать нужное количество светового потока.
Свечение пламени обуславливается следующими факторами.
- Температурой.
- Плотностью и давлением газов, которые участвуют в реакции.
- Наличием твёрдого вещества.
Наиболее общая причина свечения — это присутствие в пламени твёрдого вещества.
Многие газы горят слабо светящимся или несветящимся пламенем. Из них наиболее распространены сероводород (пламя голубого цвета как при горении), аммиак (бледно-жёлтое), метан, окись углерода (пламя бледно-голубого цвета), водород. Пары летучих некоторых жидкостей горят едва светящимся пламенем (спирт и сероуглерод), а пламя ацетона и эфира становится немного коптящим из-за небольшого выделения углерода.
Температура пламени
Для разных горючих паров и газов температура пламени неодинакова. А ещё неодинакова температура разных частей пламени, а область полного сгорания имеет более высокие показатели температуры.
Некоторое количество горючего вещества при сжигании выделяет определённое количество теплоты. Если строение вещества известно, то можно рассчитать объём и состав полученных продуктов горения. А если знать удельную теплоту этих веществ, то можно рассчитать ту максимальную температуру, которую достигнет пламя.
Стоит помнить о том, что если вещество горит в воздухе, то на каждый объём вступающего в реакцию кислорода приходится четыре объёма инертного азота. А так как в пламени присутствует азот, он нагревается теплотой, которая выделяется при реакции. Исходя из этого можно сделать вывод о том, что температура пламени будет состоять из температуры продуктов горения и азота.
Невозможно точно определить температуру, но можно это сделать приблизительно, так как удельная теплота изменяется с температурой.
Вот некоторые показатели по температуре открытого огня в разных материалах.
- Горение магния — 2200 градусов.
- Горение спирта не превышает температуры 900 градусов.
- Горение бензина — 1300−1400 градусов.
- Керосина — 800, а в среде чистого кислорода — 2000 градусов.
- Горение пропан-бутана может достигать температуры от 800 до 1970 градусов.
- При сгорании дерева температурный показатель колеблется от 800 до 1000 градусов, а воспламеняется оно при 300 градусах.
- Температурный параметр горения спички составляет 750−850 градусов.
- В горящей сигарете — от 700 до 800 градусов.
- Большинство твёрдых материалов воспламеняется при температурном показателе в 300 градусов.
Пламя свечи
Пламя, которое каждый человек может наблюдать при горении свечи, спички или зажигалки, представляет из себя поток раскалённых газов, которые вытягиваются вертикально вверх, благодаря силе Архимеда. Фитиль свечи вначале нагревается и начинает испаряться парафин. Для самой нижней части характерно небольшое свечение синего цвета — там мало кислорода и много топлива. Именно из-за этого топливо не полностью сгорает и образуется оксид углерода, который при окислении на самом крае конуса пламени ему придаёт синий цвет.
За счёт диффузии в центр поступает немного больше кислорода. Там происходит последующее окисление топлива и температурный показатель растёт. Но для полного сгорания топлива этого недостаточно. Внизу и в центре содержатся частицы угля и несгоревшие капельки. Они светятся из-за сильного нагревания. А вот испарившееся топливо, а также продукты сгорания, вода и углекислый газ практически не светятся. В самом верху наибольшая концентрация кислорода. Там не догоревшие частицы, которые в центре светились, догорают. Именно по этой причине эта зона практически не светится, хотя там наиболее высокий температурный показатель.
Классификация пламени
Классифицируют свечение огня следующим образом.
- По восприятию визуальному: цветные, прозрачные, коптящие.
- По высоте: короткие и длинные.
- По скорости распространения: быстрые и медленные.
- По температурному показателю: высокотемпературные, низкотемпературные, холодные.
- По характеру перемещения среды реакционной: пульсирующие, турбулентные, ламинарные.
- По состоянию горючей среды: предварительно перемешанные и диффузионные.
- По излучению: бесцветные, окрашенные, светящиеся.
- По агрегатному состоянию горючих веществ: пламя аэродисперсных и твёрдых реагентов, жидких и газообразных.
В диффузном ламинарном пламени выделяют три оболочки (зоны). Внутри конуса пламени существует:
- зона тёмная, где нет горения из-за малого количества окислителя — 300−350 градусов;
- зона светящаяся, где осуществляется термическое разложение горючего и оно сгорает частично — 500−800 градусов;
- зона слегка светящаяся, где окончательно сгорают продукты разложения горючего и достигается максимальный температурный показатель в 900−1500 градусов.
Температурный параметр пламени зависит от интенсивности подвода окислителя и природы горючего вещества. Пламя распространяется по предварительно перемешанной среде. Происходит распространение по нормали от каждой точки фронта к поверхности пламени.
По реально существующим смесям газовоздушным распространение всегда осложнено возмущающими внешними воздействиями, которые обусловлены трением, конвективными потоками, силами тяжести и прочими факторами.
Именно из-за этого реальная скорость распространения от нормальной всегда отличается. В зависимости от того, какой характер носит скорость распространения, различают такие диапазоны:
- При горении детонационном — более 1000 метров в секунду.
- При взрывном — 300−1000.
- При дефлаграционном — до 100.
Пламя окислительное
Оно располагается в самой верхней части огня, которая имеет наибольший температурный показатель. В этой зоне горючие вещества почти полностью превращены в продукты горения. Здесь наблюдается недостаток топлива и избыток кислорода. Именно по этой причине вещества, которые помещены в эту зону, окисляются интенсивно.
Пламя восстановительное
Эта часть наиболее близка к центру или находится чуть ниже его. Здесь мало кислорода для горения и много топлива. Если в эту область внести вещество, в котором имеется кислород, то он отнимется у вещества.
Температура огня в зажигалке
Зажигалка — это устройство портативное, которое предназначено для получения огня. Она может быть бензиново или газовой, в зависимости от применяемого топлива. Ещё существуют зажигалки, в которых собственного топлива нет. Они предназначаются для поджига газовой плиты. Качественная турбозажигалка — это прибор относительно сложный. Температура огня в ней может достигать 1300 градусов.
Химический состав и цвет пламени
У карманных зажигалок небольшой размер, это позволяет их переносить без каких-либо проблем. Довольно редко можно встретить настольную зажигалку. Ведь они из-за своих больших размеров для переноски не предназначены. Их дизайн разнообразен. Есть зажигалки каминные. Они имеют небольшую толщину и ширину, но довольно длинные.
На сегодняшний день становятся популярными рекламные зажигалки. Если в доме нет электроэнергии, то невозможно ей поджечь газовую плиту. Газ поджигает образующаяся электрическая дуга. Достоинствами этих зажигалок являются следующие качества.
- Долговечность и простота конструкции.
- Быстрое и надёжное зажигание газа.
Первая зажигалка с современным кремнём создана в Австрии в 1903 году после изобретения ферроцериевого сплава бароном Карлом Ауэром фон Вельсбахом.
Ускорилось развитие зажигалок в период Первой мировой войны. Солдаты начали применять спички для того, чтобы видеть в темноте дорогу, но их местоположение выдавала интенсивная вспышка при поджиге. Необходимость в огне без значительной вспышки способствовало развитию зажигалок.
В то время лидерами производства зажигалок «кремнёвых» были Германия и Австрия. Такое портативное устройство, которое предназначено для получения огня, находящиеся в кармане многих курильщиков, при неправильном обращении может таить в себе немало опасностей.
Зажигалка в период работы не должна вокруг себя разбрызгивать искры. Огонь должен быть стабильным и ровным. Температура огня в зажигалках карманных достигает примерно 800−1000 градусов. Свечение красного или оранжевого цвета вызвано частицами углерода, которые раскалились. Для бытовых горелок и турбозажигалок применяется в основном газ бутан, который легко сжигается, не имеет запаха и цвета. Бутан получают путём переработки при высоких температурах нефти, а также её фракций. Бутан — это легковоспламенимые углеводороды, но он абсолютно безопасен в конструкциях современных зажигалок.
Подобные зажигалки в быту очень полезны. Ими можно поджечь любой воспламеняющийся материал. В комплект турбозажигалок входит настольная подставка. Цвет пламени зависит от горючего материала и температуры горения. Пламя костра или камина в основном имеет пёстрый вид. Температура горения дерева ниже температуры горения фитиля свечи. Именно из-за этого цвет костра не жёлтый, а оранжевый.
Медь, натрий и кальций при высоких температурных показателях светятся различными цветами.
Электрическая зажигалка была изобретена в 1770 году. В ней водородная струя воспламенялась от искры машины электрофорной. Со временем бензиновые зажигалки уступили место газовым, которые более удобные. В них обязательно должна находиться батарейка — источник энергии.
Не очень давно появились зажигалки сенсорные, в которых без механического воздействия происходит зажигание газа воздействием на сенсорный датчик. Сенсорные зажигалки карманного типа. В основном, в них содержится информация рекламного типа, которая нанесена при помощи тампонной или шелкотрафаретной печати.
tokar.guru
Температура огня разных источников пламени
Температура огня заставляет в новом свете увидеть привычные вещи – вспыхнувшую белым спичку, голубое свечение горелки газовой печки на кухне, оранжево-красные язычки над пылающим деревом. Человек не обращает внимания на огонь, пока не обожжёт кончики пальцев. Или не спалит картошку на сковороде. Или не прожжёт подошву кроссовок, сохнущих над костром.
Когда первая боль, испуг и разочарование проходят, наступает время философских размышлений. О природе, цветовой гамме, температуре огня.
Горит, как спичка
Кратко о строении спички. Она состоит из палочки и головки. Палочки изготавливают из дерева, картона и хлопчатобумажного жгута, пропитанного парафином. Дерево выбирают мягких пород – тополь, сосну, осину. Сырьё для палочек называют спичечной соломкой. Чтобы избежать тления соломки, палочки пропитывают фосфорной кислотой. Российские заводы мастерят соломку из осины.
Головка спички проста по форме, но сложна по химическому составу. Темно-коричневая голова спички содержит семь компонентов: окислители - бертолетова соль и дихромат калия; стекляннюу пыль, сурик свинцовый, серу, костный клей, цинковые белила.
Головка спички при трении воспламеняется, нагреваясь до полутора тысяч градусов. Порог воспламенения, в градусах Цельсия:
- тополь – 468;
- осина – 612;
- сосна – 624.
Температура огня спички равна температуре возгорания древесины. Поэтому белая вспышка серной головки сменяется желто-оранжевым язычком спички.
Если пристально разглядывать горящую спичку, то взгляду предстают три зоны пламени. Нижняя – холодная голубая. Средняя в полтора раза теплее. Верхняя – горячая зона.
Огненный художник
При слове «костёр» вспыхивают не менее ярко ностальгические воспоминания: дым костра, создающий доверительную обстановку; красные и желтые огни, летящие к ультрамариновому небу; переливы язычков с голубого до рубиново–красного цвета; багровые остывающие угли, в которых печётся «пионерская» картошка.
Изменяющийся колер пылающего дерева сообщает о колебаниях температуры огня в костре. Тление дерева (потемнение) начинается со 150°. Возгорание (задымление) происходит в интервале 250-300°. При одинаковом поступлении кислорода породы деревьев горят при несовпадающих температурах. Соответственно, градус костра тоже будет отличаться. Берёза горит при 800 градусах, ольха – при 522°, а ясень и бук – при 1040°.
Но цвет огня также определяется химическим составом горящего вещества. Желтый и оранжевый цвет огню вносят соли натрия. Химический состав целлюлозы содержит и соли натрия, и соли калия, придающие пылающим углям дерева красный оттенок. Романтические голубые огоньки в древесном костре возникают из-за недостатка кислорода, когда вместо СО2 образуется СО – угарный газ.
Энтузиасты научных опытов измеряют температуру огня в костре прибором под названием пирометр. Изготовляют три типа пирометров: оптические, радиационные, спектральные. Это бесконтактные приборы, разрешающие оценивать мощность теплового излучения.
Изучаем огонь на собственной кухне
Кухонные газовые плиты работают на двух видах топлива:
- Магистральный природный газ метан.
- Пропан–бутановая сжиженная смесь из баллонов и газгольдеров.
Химический состав топлива определяет температуру огня газовой плиты. Метан, сгорая, образует огонь мощностью 900 градусов в верхней точке.
Сжигание сжиженной смеси даёт жар до 1950°.
Внимательный наблюдатель отметит неравномерность раскраски язычков горелки газовой плиты. Внутри огненного факела происходит деление на три зоны:
- Тёмный участок, расположенный возле конфорки: здесь нет горения из-за недостатка кислорода, а температура зоны равна 350°.
- Яркий участок, лежащий в центре факела: горящий газ разогревается до 700°, но топливо сгорает не до конца из-за недостатка окислителя.
- Полупрозрачный верхний участок: достигает температуры 900°, и сгорание газа полноценное.
Цифры температурных зон огневого факела приведены для метана.
Правила безопасности при огневых мероприятиях
Разжигая спички, камин, газовую плиту, позаботьтесь о вентиляции помещения. Обеспечьте приток кислорода к топливу.
Не пытайтесь самостоятельно ремонтировать газовое оборудование. Газ не терпит дилетантов.
Хозяйки отмечают, что горелки светятся голубым цветом, но иногда огонь становится оранжевым. Это не глобальное изменение температуры. Изменение цвета связано с изменением состава топлива. Чистый метан горит без цвета и без запаха. В целях безопасности в бытовой газ добавляют серу, которая при сгорании окрашивает газ в голубые оттенки и сообщает продуктам сгорания характерный запах.
Появление оранжевых и желтых оттенков в огне конфорки сообщает о необходимости профилактических манипуляций с плитой. Мастера прочистят оборудование, удалят пыль и сажу, горение которых и изменяет привычный цвет огня.
Иногда огонь в горелке становится красным. Это сигнал опасного содержания угарного газа в продуктах сгорания. Поступления кислорода к топливу настолько мало, что плита даже тухнет. Угарный газ без вкуса и запаха, и человек рядом с источником выделения вредного вещества заметит слишком поздно, что отравился. Поэтому красный цвет газа требует немедленного вызова мастеров для профилактики и наладки оборудования.
fb.ru
От чего зависит цвет пламени?
Пламя бывает разного цвета. Посмотрите в камин. На поленьях пляшут желтые, оранжевые, красные, белые и синие языки пламени. Его цвет зависит от температуры горения и от горючего материала. Чтобы наглядно себе это представить, вообразите спираль электрической плитки. Если плитка выключена — витки спирали холодные и черные. Допустим, вы решили подогреть суп и включили плитку. Сначала спираль становится темно-красной. Чем выше поднимается температура, тем ярче красный цвет спирали. Когда плитка разогревается до максимальной температуры, спираль становится оранжево-красной.
Естественно, спираль не горит. Вы же не видите пламени. Она просто очень горячая. Если нагревать ее дальше, то будет меняться и цвет. Сначала цвет спирали станет желтым, затем белым, а когда она раскалится еще больше, от нее будет исходить голубое сияние.
Нечто подобное происходит и с пламенем. Возьмем для примера свечу. Различные участки пламени свечи имеют разную температуру. Огню нужен кислород. Если свечу накрыть стеклянной банкой, огонь погаснет. Центральный, прилегающий к фитилю участок пламени свечи, потребляет мало кислорода, и выглядит темным. Верхушке и боковым участкам пламени достается больше кислорода, поэтому эти участки ярче. По мере того как пламя продвигается по фитилю, воск тает и потрескивает, рассыпаясь на мельчайшие частички углерода. (Каменный уголь тоже состоит из углерода.) Эти частички увлекаются пламенем кверху и сгорают. Они очень горячие и светятся, как спираль вашей плитки. Но частички углерода намного горячее, чем спираль самой жаркой плитки (температура сгорания углерода примерно 1 400 градусов Цельсия). Поэтому свечение их имеет желтый цвет. Около горящего фитиля пламя еще горячее и светится синим цветом.
Пламя камина или костра в основном пестрого вида. Дерево горит при более низкой температуре, чем фитиль свечи, поэтому основной цвет костра — оранжевый, а не желтый. Некоторые частички углерода в пламени костра имеют довольно высокую температуру. Их немного, но они добавляют пламени желтоватый оттенок. Остывшие частички раскаленного углерода — это копоть, которая оседает на печных трубах. Температура горения дерева ниже температуры горения свечи. Кальций, натрий и медь, нагретые до высокой температуры, светятся разными цветами. Их добавляют в порох ракет для расцвечивания огней праздничных фейерверков.
Цвет пламени и химический состав
Цвет пламени может меняться в зависимости от химических примесей, содержащихся в поленьях или другом горючем веществе. В пламени может находиться, например, примесь натрия.
Горение натрия
Еще в древние времена ученые и алхимики пытались понять, что за вещества сгорают в огне, в зависимости от того, в какой цвет окрашивался огонь.
- Натрий — это составная часть поваренной соли. Если натрий раскалить, он окрашивается в ярко — желтый цвет.
- В огонь может попасть кальций. Мы все знаем, что кальция много в молоке. Это металл. Раскаленный кальций окрашивается в яркий красный цвет.
- Если в огне горит фосфор, то пламя окрасится в зеленоватый цвет. Все эти элементы или содержатся в дереве, или попадают в огонь с другими веществами.
- Практически у всех дома есть газовые плиты или колонки, пламя в которых окрашено в голубой оттенок. Это обусловлено сгораемым углеродом, угарным газом, который и дает этот оттенок.
Смешение цветов пламени, как и смешение цветов радуги, может дать белый цвет, поэтому в пламени костра или камина видны белые участки.
Температура пламени при горении некоторых веществ:
Спичка | 750-1200°С | |
Природный газ | 400-800°С | |
Спирт | 900°С | |
Керосин | 1100°С | |
Бензин | 1300-1400°С | |
Магний | 2200°С |
Как получить ровный цвет пламени?
Для исследования минералов и определения их состава используется бунзеновская горелка, дающая ровный бесцветный цвет пламени, не мешающий ходу эксперимента, изобретенная Бунзеном в середине XIX века.
Бунзеновская горелка
Бунзен был ярым поклонником огненной стихии, часто возился с пламенем. Его увлечением было стеклодувное дело. Выдувая из стекла различные хитрые конструкции и механизмы, Бунзен мог не замечать боли. Бывали, что его заскорузлые пальцы начинали дымиться от горячего еще мягкого стекла, но он не обращал на это внимания. Если боль уже выходила за грань порога чувствительности, то он спасался своим методом – сильно прижимал пальцами мочку уха, перебивая одну боль другой.
Именно он и был родоначальником метода определения состава вещества по цвету пламени. Конечно, и до него ученые пытались ставить такие эксперименты, но у них не было бунзеновской горелки с бесцветным пламенем, не мешающим эксперименту. Он вводил в пламя горелки различные элементы на платиновой проволоке, так как платина не влияет на цвет пламени и не окрашивает его.
Казалось бы, метод хороший, не нужен сложный химический анализ, поднес элемент к пламени – и сразу виден его состав. Но не тут то было. Очень редко вещества встречаются в природе в чистом виде, обычно они содержат большой набор различных примесей, изменяющих окраску.
Бунзен пробовал различные методы вычленения цветов и их оттенков. Например, пытался смотреть через цветные стекла. Скажем, синее стекло гасит желтый цвет, который дают наиболее распространенные соли натрия, и можно было различить малиновый или лиловый оттенок родного элемента. Но и с помощью этих ухищрений определить состав сложного минерала удавалось лишь раз из ста.
Это интересно! Благодаря свойству атомов и молекул испускать свет определенного цвета был разработан метод определения состава веществ, который называется спектральным анализом. Ученые исследуют спектр, который испускает вещество, например, при горении, сравнивают его со спектрами известных элементов, и, таким образом, определяют его состав.
Видео
Источники
mfina.ru
Температура пламени свечи – парафиновая свеча по зонам
Всем привет!
Продолжаю и заканчиваю тему огня и свечей, начатую в недавних статьях. Сегодняшняя статья будет теоретической – как появились свечи, как они устроены и работают, что из себя представляет парафин, какая температура пламени свечи – все это будем разбирать сегодня.
Немного истории
Прежде, чем начать, хочу посоветовать тем, кто заинтересовался темой свечей и огня, почитать замечательную книгу английского ученого Майкла Фарадея «История свечи». Ее легко можно найти и бесплатно скачать в интернете. Именно на эту книгу я буду опираться в своем сегодняшнем рассказе об устройстве свечи и пламени.
Есть предположения, что впервые свечи появились в Древнем Египте. Материалом для них служили растительные и животные жиры, например, говяжье или баранье сало. Именно поэтому на Руси такие свечи называли сальными.
Фитили поначалу делали из щепок, затем стали использовать вымоченную сердцевину тростника. В том же Египте для изготовления фитиля использовали папирус, свернутый в трубочку и смоченный животным жиром.
Позже, уже в Средние века, фитили стали делать из туго скрученных или плетеных растительных волокон. Чтобы они лучше горели, их смачивали растворами селитры или хлористого аммония.
В настоящее время фитиль делают из хлопчатобумажных нитей, которые пропитывают растворами солей фосфорной и борной кислот. Это нужно для того, чтобы фитиль сгорал полностью, без остатка, без образования нагара или хотя бы с как можно меньшим его количеством.
Сами свечи внешне были совершенно далеки от нынешних – плошки с налитым в них жиром. Чуть позже появились и более-менее похожие на нынешние формы свечей – когда стали использовать обрезки того же тростника, бамбука или камыша. В общем, кто во что горазд. Конец этому беспределу положили древние римляне, которые догадались, как использовать свойства животного жира. Раз он очень быстро застывает, то не использовать ли его как форму, не заморачиваясь с плошками и сосудами из камыша?
Сказано – сделано. Так появились свечи, которые стали называть моканными или макаными. Для их изготовления фитиль опускали в растопленный жир и ждали, пока он застынет, покрыв фитиль тонким слоем. Затем снова опускали (макали) в растопленный жир, получая таким образом второй слой. И снова, и снова… Такая технология изготовления свечей просуществовала аж до 15-го века.
Именно в 15 веке неугомонные французы придумали использовать литые формы для свечей. Фитиль пропускали через форму конусовидной формы, заливали ее свечной массой (кроме воска, он не подходил для этого), ждали, пока застынет, после чего вытряхивали полученный продукт, в результате получалась коническая свеча, стоящая на устойчивом широком основании.
Не забываем, что до сих пор речь шла о сальных свечах. Их явным недостатком было то, что они воняли (сами знаете, какой неприятный запах издает нагретый животный жир) и нещадно чадили, покрывая все в жилище копотью.
История свечей из жира закончилась только в начале 19 века, когда французский химик Мишель Эжен Шевроль синтезировал стеарин. С его появлением закончилась эра копоти и неприятного запаха. Зато появилась проблема изготовления — технологии макания и литья не годилась из-за своей невысокой производительности.
Извечные противники французов – англичане – придумали новую технологию изготовления свечей, где свечи из формы вынимались автоматически. Благодаря этой придумке производство свечей резко увеличилось.
А когда в 1850 году был получен парафин, для огня настал настоящий праздник – все жилища осветились чистыми, непахнущими свечами. Их недостаток, правда, был в том, что парафин имеет низкую температуру плавления, и такие свечи быстро оплывали, поэтому их стали делать из смеси парафина со стеарином, получив замечательное средство для освещения жилищ.
Но это оказалось лебединой песней свечи – технологии на месте не стояли, сначала появились керосиновые лампы, а в конце 19 века – и электрические. В 1879 году Эдисон поразил мир лампой накаливания.
Чем закончилось дело, мы знаем. Электрическое освещение сейчас везде. Больше всего свечей, пожалуй, используется церковью. Также свечи остались как атрибут романтических вечеров и дань энергетикам с внезапными отключениями света.
Когда-то, года три назад, я писала небольшой рассказ, с которым участвовала в интернет-конкурсе фантастических рассказов. Я не прошла даже в отборочный тур, так как мой рассказ не вписался в условия конкурса, ну да ладно. Все равно это был лишь случайный, совершенно спонтанный всплеск моих литературных способностей, который затих также быстро, как и начался. Больше я даже и не пыталась ничего писать.
Чтобы рассказ не валялся просто так «в столе» (на жестком диске компьютера то есть), выкладываю его сюда, не пропадать же добру . Загляните, если интересно, он как раз частично связан со свечами.Как «работает» свеча
Если у вас дома есть свечка, попробуйте, зажгите парафин, из которого она сделана. Я имею ввиду, не подожгите фитиль, а попробуйте поджечь сам парафин, то есть твердое вещество, «тело» свечи. Получилось?
А теперь подожгите фитиль. Парафин, соприкасающийся с ним, тает, образуя вокруг фитиля углубление, заполненное жидким парафином. А теперь наклоните свечку так, чтобы лужица жидкого парафина потекла и попала на фитиль. Что получилось?
Такой опыт мы проделывали с сыном, когда «играли с огнем», о чем я писала в двух предыдущих статьях. Жидкий парафин потушил огонь, как обычная вода. Почему так происходит?
Дело в том, что фитиль, как я уже писала выше, сделан из скрученных или плетеных нитей. Вот смотрите, я специально разобрала обычную магазинную свечу. В ней фитиль выполнен плетеной «косичкой».
Таким образом, площадь поверхности у фитиля достаточно большая. Расплавленный у основания фитиля жидкий парафин пропитывает фитиль и по его капиллярам поднимается вверх, в зону горения. Там температура достаточно высокая, парафин начинает испаряться, и вот как раз эти пары и горят.
Таким образом, те, кто думают, что горит фитиль, ошибаются, это горят пары парафина. Фитиль служит своеобразным транспортом, доставляющим парафин в зону горения – расплавленный от тепла парафин поднимается по капиллярам фитиля вверх и горит.
Свойства пламени
Пламя имеет форму конуса за счет того, что поднимающиеся потоки воздуха обтекают его со всех сторон. Образующиеся продукты горения – углекислый газ и вода – поднимаются вверх вместе с теплым воздухом, нагретым, от огня, образуя язычок пламени. Потоки воздуха охлаждают внешнюю поверхность свечи, поэтому ее спокойно можно держать рукой почти без риска обжечься. Я говорю «почти», потому что плавящийся и стекающий парафин все-таки довольно горячий, температура здесь может быть в пределах 45-65 градусов. Конечно, смертельный ожог вы не получите, но приятно тоже не будет.
Как я уже рассказывала в одной их предыдущих статей, пламя свечи состоит из трех достаточно хорошо видимых зон разного цвета. Приведу фото, взятое мной из интернета:
Нижняя часть пламени имеет сине-фиолетовый цвет. Здесь находятся тяжелые пары парафина, которые смешаны с воздухом. Если вы внесете в эту часть спичку, то она загорится лишь спустя некоторое время, не сразу. Эта часть наименее горячая, она имеет температуру 300-350 градусов. Некоторые ловкачи даже демонстрируют залихватское тушение свечи пальцами именно в этой части пламени.
Во второй части температура пламени достигает 500-800 градусов. Здесь самое яркое пламя из-за того, что именно здесь происходит разложение углеводородов, образующиеся частицы чистого угля сильно накаляются и излучают свет. Именно из-за этого образующегося угля свеча иногда может коптить – если он сгорает не полностью по каким-то причинам. Например, мало кислорода или фитиль сделан из неподходящего материала. Тогда углерод и выпадает в виде сажи – копоти.
Самая горячая часть – верхняя. Если помните, на уроках химии в школе учитель наверняка говорил вам во время практических и лабораторных работ, что пробирку нужно нагревать в верхней части пламени, так она быстрее нагреется. Здесь температура 900-1500 градусов. В этой внешней части пламени полностью сгорают углеводороды с образованием углекислого газа и воды. Это пламя практически не видно, оно почти не светится.
Почему такой разброс температур, например 900-1500 градусов? Это зависит от природы сгорающего вещества, а также концентрации и скорости подвода к нему окислителя, например, кислорода воздуха или же чистого кислорода (например, в лабораторных условиях).
Не путаем!
Не будем путать воск, стеарин и парафин. Это три разных вещества.
Воск состоит из сложных эфиров жирных кислот растительного и животного происхождения.
Стеарин – это воскоподобная смесь пальмитиновой и стеариновой кислот (иногда еще есть олеиновая), содержащая примеси некоторых других насыщенных и ненасыщенных жирных кислот. Стеарин жирный на ощупь (отсюда и произошло название – от греческого слова stear – сало, жир), белого или желтоватого цвета, плавится при температуре 50-65 градусов.
Парафин – смесь насыщенных углеводородов, также имеет воскоподобную консистенцию, бесцветный. Он легче воды, плавится в интервале температур 45-65 градусов.
Получают его, в основном, при переработке нефти. При комнатной температуре он химически инертен, а при высокой температуре сгорает с образованием углекислого газа и воды.
Именно из него в настоящее время готовят свечи в промышленном масштабе. Если же вы хотите сделать свечу самостоятельно, то можете найти и купить для этого в разных интернет-магазинах и воск, и стеарин, и парафин. В общем, все, что пожелаете.
О том, как сделать свечу своими руками, я сейчас рассказывать не буду. Возможно, чуть позже напишу об этом отдельную статью.
Еще немного похимичим
Какие еще эксперименты можно провести с обычной парафиновой свечкой?
Задуйте ее. Смотрите, от фитиля идет шлейф дыма с достаточно сильным запахом. Попробуйте быстро поджечь эту дымящуюся ленту. Вы увидите, как пламя побежит по ней к фитилю, и тот снова загорится.
Так происходит потому, что вот этот белый шлейф, идущий от задутой свечи, это пары парафина, которые не успели сгореть.
Вот и все на сегодня. Надеюсь, эта статья была интересна для вас.
А я немного похвастаюсь: недавно участвовала в конкурсе по вязанию домашних тапочек на блоге Ольги Смирновой и совершенно неожиданно получила приз за свой небольшой мастер-класс по вязанию тапочек-следков. Было очень приятно
Удачи! До встречи в следующей статье!
Наталья Брянцева
KidsChemistry теперь есть и в социальных сетях. Присоединяйтесь прямо сейчас! Google+, В контакте, Одноклассники , Facebook, Twitter
kidschemistry.ru
Наиболее горячая часть - пламя
Наиболее горячая часть - пламя
Cтраница 2
Качество пайки в значительной степени зависит от положения руки паяльщика. Рука, держащая горелку, не должна быть па весу. Пайку лучше вести вдвоем: помощник паяльщика переставляет щипцы, следит за подачей газа, собирает и разбирает подмостку под шаблоны и соединительные полосы. Подачу пропан-бутана и кислорода, водорода и воздуха так регулируют, чтобы добираться максимальной концентрации пламени и вести пайку наиболее горячей частью пламени. [16]
Наиболее высокая температура пламени - до 1500 С достигается в почти бесцветной зоне В, где горение газа проходит наиболее энергично благодаря большому притоку воздуха. Эта часть пламени называется окислительной, при нагревании в ней вещество соединяется с кислородом. Зная строение пламени, легко сделать практический вывод. Пользуясь горелкой, не следует нагреваемый предмет глубоко опускать в пламя; необходимо его помещать так, чтобы верхняя, наиболее горячая часть пламени лишь слегка касалась предмета. [18]
Наиболее высокая температура пламени - до 1500 С - достигается в почти бесцветной зоне 3, где горение газа проходит наиболее энергично благодаря большому притоку воздуха. Эта часть пламени называется окислительной, при нагревании в ней вещество соединяется с кислородом. Зная строение пламени, легко сделать практический вывод. Пользуясь горелкой, не следует нагреваемый предмет глубоко опускать в пламя; необходимо его помещать так, чтобы верхняя, наиболее горячая часть пламени лишь слегка касалась предмета. [20]
Получение кремния и силанов. В ступке тщательно растирают 1 г порошкообразного магния с 4 г SiOa. Сильно нагревают дно пробирки в наиболее горячей части пламени газовой горелки ( до начала реакции), после этого нагревание прекращают. Смесь раскаляется за счет выделяющейся при реакции теплоты; при этом наряду с кремнием образуется силицид магния. [21]
Получение кремния и силанов. В ступке тщательно растирают 1 г порошкообразного магния с 4 г SiCb. Сильно нагревают дно пробирки в наиболее горячей части пламени газовой горелки ( до начала реакции), после этого нагревание прекращают. Смесь раскаляется за счет выделяющейся при реакции теплоты; при этом наряду с кремнием образуется силицид магния. [22]
Существуют две основные теории, поясняющие механизм детектирования: при одной предполагается ионизация за счет энергии пламени, при другой за счет столкновений возбужденных молекул и атомов. В последнее время было показано, что термическая ионизация играет не столь существенную роль в механизме ионизации, как это предполагалось ранее. В 1963 г. Калма-повский предложил теорию детектирования, которая основана на том, что ионизация происходит не за счет энергии пламени, а в основном за счет энергии окисления углерода. В определенной зоне пламени происходит предварительное термическое разложение углеводородных молекул, попадающих в пламя вместе с газом-носителем; образуются содержащие углерод радикалы, которые, по-видимому, должны находиться в пламени в возбужденном состоянии, так как только в этом случае облегчается последующая их ионизация. Эти радикалы поступают затем в наиболее горячую часть пламени, в которой происходит сгорание водорода в кислороде. В этой зоне углерод окисляется и ионизируется. [24]
Существуют две основные теории, поясняющие механизм детектирования: при одной предполагается ионизация за счет энергии пламени, при другой за счет столкновений возбужденных молекул и атомов. В последнее время было показано, что термическая ионизация играет не столь существенную роль в механизме ионизации, как это предполагалось ранее. В 1963 г. Калма-новский предложил теорию детектирования, которая основана на том, что ионизация происходит не за счет энергии пламени, а в основном за счет энергии окисления углерода. В определенной зоне пламени происходит предварительное термическое разложение углеводородных молекул, попадающих в пламя вместе с газом-носителем; образуются содержащие углерод радикалы, которые, по-видимому, должны находиться в пламени в возбужденном состоянии, так как только в этом случае облегчается последующая их ионизация. Эти радикалы поступают затем в наиболее горячую часть пламени, в которой происходит сгорание водорода в кислороде. В этой зоне углерод окисляется и ионизируется. [26]
После проведения подготовительных работ бандажное кольцо быстро и равномерно нагревают 2 - 3 горелками до температуры 160 - 180 С. Нагрев свыше 180 С запрещается, так как это может повлечь за собой снижение прочности бандажа. Температуру нагрева бандажей контролируют с помощью термопар или палочкой из сплава с температурой плавления 160 С. Для равномерного нагрева бандажа пламя горелок необходимо непрерывно перемещать по его поверхности, не касаясь ее наиболее горячей частью пламени и контролируя равномерность нагрева и отсутствие местных перегревов кольца. Затем простукиванием легким молотком по звуку определяют момент отделения бандажного кольца от припоя. [27]
Страницы: 1 2
www.ngpedia.ru
Цвет пламени - Интересные статьи
Пламя бывает разного цвета. Посмотрите в камин. На поленьях пляшут желтые, оранжевые, красные, белые и синие языки пламени. Его цвет зависит от температуры горения и от горючего материала. Чтобы наглядно себе это представить, вообразите спираль электрической плитки. Если плитка выключена — витки спирали холодные и черные. Допустим, вы решили подогреть суп и включили плитку. Сначала спираль становится темно-красной. Чем выше поднимается температура, тем ярче красный цвет спирали. Когда плитка разогревается до максимальной температуры, спираль становится оранжево-красной.
Естественно, спираль не горит. Вы же не видите пламени. Она просто очень горячая. Если нагревать ее дальше, то будет меняться и цвет. Сначала цвет спирали станет желтым, затем белым, а когда она раскалится еще больше, от нее будет исходить голубое сияние.
От чего зависит цвет пламени
Нечто подобное происходит и с пламенем. Возьмем для примера свечу. Различные участки пламени свечи имеют разную температуру. Огню нужен кислород. Если свечу накрыть стеклянной банкой, огонь погаснет. Центральный, прилегающий к фитилю участок пламени свечи, потребляет мало кислорода, и выглядит темным. Верхушке и боковым участкам пламени достается больше кислорода, поэтому эти участки ярче.
По мере того как пламя продвигается по фитилю, воск тает и потрескивает, рассыпаясь на мельчайшие частички углерода. (Каменный уголь тоже состоит из углерода.) Эти частички увлекаются пламенем кверху и сгорают. Они очень горячие и светятся, как спираль вашей плитки. Но частички углерода намного горячее, чем спираль самой жаркой плитки (температура сгорания углерода примерно 1 400 градусов Цельсия). Поэтому свечение их имеет желтый цвет. Около горящего фитиля пламя еще горячее и светится синим цветом.
Пламя камина или костра в основном пестрого вида. Дерево горит при более низкой температуре, чем фитиль свечи, поэтому основной цвет костра — оранжевый, а не желтый. Некоторые частички углерода в пламени костра имеют довольно высокую температуру. Их немного, но они добавляют пламени желтоватый оттенок. Остывшие частички раскаленного углерода — это копоть, которая оседает на печных трубах. Температура горения дерева ниже температуры горения свечи. Кальций, натрий и медь, нагретые до высокой температуры, светятся разными цветами. Их добавляют в порох ракет для расцвечивания огней праздничных фейерверков.
Цвет пламени и химический состав
Цвет пламени может меняться в зависимости от химических примесей, содержащихся в поленьях или другом горючем веществе. В пламени может находиться, например, примесь натрия. Натрий — это составная часть поваренной соли. Если натрий раскалить, он окрашивается в ярко – желтый цвет. В огонь может попасть кальций.
Мы все знаем, что кальция много в молоке. Это металл. Раскаленный кальций окрашивается в яркий красный цвет. Если в огне горит фосфор, то пламя окрасится в зеленоватый цвет. Все эти элементы или содержатся в дереве, или попадают в огонь с другими веществами. Смешение цветов пламени, как и смешение цветов радуги, может дать белый цвет, поэтому в пламени костра или камина видны белые участки.
Интересные статьи:
Рейтинг: 4.6/5. Из 59 голосов.
Please wait...
www.voprosy-kak-i-pochemu.ru
Урок-практикум "Горение свечи"
Разделы: Химия
Форма проведения урока: исследование с элементами межпредметной интеграции.
Нельзя кого-либо изменить, передавая ему готовый опыт. Можно лишь создать атмосферу, способствующую развитию человека.К.Роджерс
Цель урока: посмотреть на пламя свечи и на саму свечу глазами исследователя.
Задачи урока:
- Начать формирование важнейшего метода познания химических явлений – наблюдения и умения описывать его;
- Показать в ходе практической работы существенные отличия физических и химических реакций;
- Актуализировать опорные знания о процессе горения с учетом материала, усвоенного на уроках других учебных дисциплин;
- Проиллюстрировать зависимость реакции горения свечи от условий проведения реакции;
- Начать формирование простейших приемов проведения качественных реакций по обнаружению продуктов горения свечи;
- Развивать познавательную активность, наблюдательность, расширять кругозор в области естественнонаучного и художественно- эстетического познания действительности.
Этапы урока:
I Организационный момент. Вступительное слово учителя.
Свеча? — традиционное приспособление для освещения, представляющее собой чаще всего цилиндр из твердого горючего материала (воск, стеарин, парафин) служащий своего рода резервуаром твёрдого топлива, подводимого в расплавленном виде к пламени фитилём. Предки свечи — светильники; чаши, наполненные растительным маслом или легкоплавким жиром, с фитилем или просто щепочкой для подъёма горючего в зону горения. Некоторые народы использовали в качестве примитивных светильников фитили, вставленные в необработанный жир (даже тушку) животных, птиц или рыб. Первые восковые свечи появились в Средневековье. Свечи долгое время были очень дороги. Чтобы осветить большое помещение, требовались сотни свечей, они чадили, черня потолки и стены. Свечи прошли огромный путь с момента их создания. Люди изменили их предназначение и сегодня у человека есть другие источники света в домах. Но, тем не менее, сегодня свечи символизируют праздник, помогают создать романтическую обстановку в доме, успокаивают человека, и являются неотъемлемой частью декора наших жилищ, принося с собой в дом комфорт и уют. Свечку можно изготовить из свиного или говяжьего жира, масел, пчелиного воска, китового жира, парафина, который получают из нефти. Сегодня легче всего встретить свечи, изготовленные из парафина. С ними мы сегодня и будем проводить опыты.
II Актуализация знаний учащихся.
Инструктаж. Правила по технике безопасности
Беседа:
Зажгите свечу. Вы увидите, как начинает таять парафин около фитиля, образуя круглую лужицу. Какой процесс здесь имеет место? Что происходит, когда горит свеча? Ведь парафин просто плавится. Но откуда тогда тепло и свет?
- Что происходит, когда горит электрическая лампочка?
Ответы учеников.
Учитель:
Когда парафин просто плавится, нет ни тепла, ни света. Большая часть парафина сгорает, превращаясь в углекислый газ и водяной пар. Из-за этого и появляется тепло и свет. А от тепла часть парафина плавится, ведь он боится горячего. Когда свеча сгорит, парафина останется меньше, чем было вначале. Но когда горит электрическая лампочка, тоже выделяется тепло и свет, а лампочка не становится меньше? Горение лампочки – это не химическое, а физическое явление. Она горит не сама по себе, а превращает в свет и тепло энергию электричества. Как только электричество отключаешь, лампочка гаснет. А свечу стоит лишь зажечь, дальше она горит сама.
А теперь наша задача посмотреть на пламя свечи и на саму свечу глазами исследователя.
III Изучение нового материала.
Опыт “Строение свечи”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
1. Рассмотрели парафиновую и восковую
свечу. 2. Отделили фитиль. |
Свеча состоит из стержня и фитиля из туго скрученных ниток в центре столбика. | Основу свечи составляет воск или
парафин. Фитиль - это своеобразный капилляр, по
которому расплав свечной массы попадает в зону
горения. Фитили сплетают из хлопчатобумажных нитей. Восковые свечи должны иметь рыхло сплетенный фитиль из толстых волокон, для всех остальных свечей фитили делают из туго сплетенных нитей. Это связано с вязкостью свечной массы в расплавленном состоянии: для вязкого воска нужны широкие капилляры, а легкоподвижные парафин, стеарин и жиры требуют более тонких капилляров, иначе из-за избытка горючего материала свеча станет сильно коптить. |
Опыт “Изучение физических и химических процессов, происходящих при горении свечи”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
1.Зажгли свечу. | 1.Горение свечи. Если поднести ладони к пламени чувствуется тепло. | 1.Свеча - источник тепла, т.к. процесс сгорания газообразного парафина является экзотермическим. |
2.Изучили последовательность процесса горения свечи. Наблюдали фазовые превращения, которые происходят со свечой. | 2. Парафин начинает таять около фитиля и из твердого состояния переходит в жидкое состояние, образуя круглую лужицу. | 2. При горении свечи наблюдаются фазовые превращения парафина (физические явления), осмотическое явление, химические превращения. |
3. Вели наблюдение за хлопчатобумажным фитилем, выяснили его роль при горении свечи. | 3. Свеча не горит вдоль всего фитиля. Жидкий парафин смачивает фитиль, обеспечивая его горение. Сам парафин не горит. Хлопчатобумажный фитиль перестает гореть на том уровне, где появляется жидкий парафин. | 3. Роль жидкого парафина – не дать фитилю сгореть быстро, способствовать его долгому горению. Жидкий парафин возле огня испаряется, освобождая углерод, пар которого поддерживает горение. При достаточном количестве воздуха возле пламени оно горит ясно. Растопленный парафин гасит пламя, поэтому свеча не горит вдоль всего фитиля. |
Опыт “Изучение строения пламени свечи. Обнаружение продуктов горения в пламени. Наблюдение за неоднородностью пламени”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
1.Зажгли свечу, поставленную в подсвечник. Дали ей хорошо разгореться. | Пламя свечи имеет продолговатую форму.
В разных частях пламени наблюдается разный цвет. В спокойном пламени свечи выделяются 3 зоны. Пламя имеет несколько вытянутый вид; вверху оно ярче, чем внизу, где среднюю его часть занимает фитиль, и некоторые части пламени вследствие неполного сгорания не так ярки, как вверху. |
Явление конвенции, теплового
расширения, закона Архимеда для газов, а также
закон всемирного тяготения с силами тяжести
заставляют приобрести характерную конусовидную
форму пламени. Восходящий ток воздуха придает пламени продолговатую форму: т.к. пламя, которое мы видим, вытягивается под воздействием этого тока воздуха на значительную высоту. |
2. Взяли тоненькую длинную щепку, которую держим горизонтально и медленно проводим ее сквозь самую широкую часть пламени, не позволяя ей загореться и сильно задымиться. | На щепке остается след, оставленный пламенем. Над его внешними краями копоти больше, над серединой больше. | Часть пламени, которая непосредственно
прилегает к фитилю, состоит из тяжелого пара
парафина – кажется, что она сине – фиолетового
цвета. Это самая холодная часть пламени. Вторую, самую светлую часть, создают раскаленные пары парафина и частички угля. Это самая горячая зона. Третий, внешний слой содержит больше всего кислорода и светится слабо. Температура его достаточно высока, но несколько ниже температуры светлой части. Он как бы охлаждается окружающим воздухом. |
3. Взяли кусок белого плотного картона, держим его горизонтально в руке, быстро опускаем его сверху на пламя горящей свечи. | На верхней стороне картона появляется опалина от пламени. | На картоне образовалась кольцевидная опалина, т.к. центральная часть пламени является недостаточно горячей, чтобы обуглить картон. Пламя имеет разные температурные участки. |
4. В пламя свечи внесли стеклянную палочку. | Пламя свечи имеет желтовато оранжевый
цвет и светится. На поверхности стеклянной палочки образуется копоть. |
Светящийся характер пламени обусловлен
степенью расходования кислорода и полнотой
сгорания парафина, конденсацией углерода и
свечением его раскалившихся частиц. Копоть свидетельствует о неполном сгорании парафина и о выделении свободного углерода. |
5. Сухую пробирку закрепили в держателе, перевернули вверх дном и держали над пламенем спиртовки. | Стенки пробирки запотели. На стенках пробирки образуются капельки воды. | Вода – продукт сгорания свечи. |
Опыт “Изучение зависимости высоты пламени свечи от длины фитиля”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
1.Зажгли свечу. | Фитиль свечи загорается, пламя свечи – высокое. | Жидкий парафин смачивает фитиль, обеспечивая его горение. Сам парафин не горит. Роль жидкого парафина – не дать фитилю сгореть быстро, способствовать его долгому горению. Жидкий парафин возле огня испаряется, освобождая углерод, пар которого поддерживает горение. При достаточном количестве воздуха возле пламени оно горит ясно. |
2. Подрезали часть подгоревшего фитиля | Размеры пламени изменились, оно уменьшилось в размерах. Пламя опускается вниз по фитилю до расплавленного парафина и меркнет. В верхней части оно горит дольше. Часть парафина, более близкая к фитилю, от тепла плавится. | Капли жидкого парафина притягиваются друг к другу слабее, чем к фитилю, и легко втягиваются в мельчайшие щели между нитками. Такое свойство вещества называется капиллярностью. |
Опыт “Доказательство горения свечи в кислороде воздуха”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
1. Посреди тарелки поставили горящую
свечку (тоненькую, небольшую, прикрепленную при
помощи пластилина) В тарелку долили подкрашенную воду (чтобы скрыло дно), свечу накрыли граненым стаканом. |
Вода начинает забираться под стакан Свечка постепенно гаснет. |
Свеча горит, пока в стакане есть
кислород. По мере расходования кислорода, свеча
гаснет. За счет вакуума, который там образовался,
вода поднимается вверх. Горение – это сложный физико-химический процесс взаимодействия компонентов горючего вещества с кислородом, протекающий с достаточно большой скоростью, с выделением тепла и света. |
Опыт “Влияние воздуха на горение свечи. Наблюдение за пламенем горящей свечи”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
Поднесли зажженную свечу к приоткрытой двери. 1. Поставили свечку на пол. 2. Осторожно встали на табуретку возле приоткрытой двери, держим зажженную свечу в верхней части двери. | 1.Пламя отклоняется в сторону комнаты. 2. Пламя отклоняется в сторону коридора. |
Теплый воздух наверху вытекает из комнаты, тогда как внизу холодный поток направлен внутрь нее. |
3.Опрокинули свечку так, чтобы горючее стекало на фитиль. | Свечка погаснет | Пламя не успело нагреть горючее настолько, чтобы оно могло гореть, как это происходит наверху, где горючее поступает в фитиль в небольшом количестве и подвергается полному воздействию пламени. |
Опыт “Изучение дыма погасшей свечи”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
1.Аккуратно затушили свечу. | 1.Появляется запах задутой свечки. От фитиля поднимается дымок. | 1.Дым – это твердые частицы. Задувая пламя, мы заставляем остыть газообразный парафин |
2.Подожгли ленту дыма | 2. По струе дыма пламя перескакивает на фитиль | 2. Горящая лента дыма доказывает, что мы имеем дело с еще неостывшим парафином. |
Опыт “Качественная реакция по обнаружению продуктов горения свечи”
ЧТО ДЕЛАЛИ? | ЧТО НАБЛЮДАЛИ? | ВЫВОДЫ |
1.В стакан налили известковую воду. Огарок свечи насадили на проволоку, чтобы его удобнее было опускать в стакан. |
Известковую воду можно приготовить следующим образом: надо взять немного негашеной извести, разболтать ее в воде и процедить сквозь промокательную бумагу. Если раствор получится мутный, необходимо процедить его еще раз, чтобы он был совсем прозрачный. | |
2. Зажгли огарок свечи и опустили его
осторожно на дно пустого стакана. Вытащили огарок, зажгли его и снова опустили в банку. |
Огарок некоторое время горит, а затем
гаснет. Огарок сразу же гаснет |
В стакане находится газ без цвета и запаха, который не поддерживает горения и мешает свече гореть. Это - углекислый газ - СО2.. |
3. Добавили в стакан известковой воды. | Вода в стакане становится мутной. | При горении свечи образуется углекислый газ. Углекислый газ делает известковую воду мутной. |
IV Закрепление изученного материала.
Фронтальный опрос:
- Перечислите последовательность процессов горения свечи.
- Какие фазовые превращения наблюдаются при горении свечи?
- Что является горючим материалом свечи?
- Для чего нужен хлопчатобумажный фитиль?
- Какое явление позволяет поднимать жидкий парафин на некоторую высоту?
- Где самая горячая часть пламени?
- Почему происходит уменьшение длины свечи?
- Почему пламя свечи не гаснет, хотя при горении образуются вещества, не поддерживающие горения?
- Почему свеча гаснет, когда мы на нее дуем?
- Какие условия необходимы для более длительного и качественного горения свечи?
- Как можно погасить свечу? На каких свойствах основаны эти способы?
- Что является качественной реакцией на углекислый газ?
Учитель:
Рассмотрение строения и горения свечи убедительно иллюстрирует сложность окружающих нас самых тривиальных бытовых предметов, свидетельствует о том, насколько неразрывны такие науки как химия и физика Свеча – настолько интересный объект изучения, что считать тему исчерпанной никак нельзя.
В заключение нашего урока хочу вам пожелать, чтобы вы, как и свеча, излучали свет и тепло для окружающих, и чтобы вы были красивыми, яркими, нужными, как пламя свечи, о котором мы с вами сегодня говорили.
V Домашнее задание.
1. Задание для желающих осуществить дома исследовательскую работу:
Возьмите для опыта любую вещь, где есть застежка – молния. Несколько раз откройте и закройте застежку молнии. Запомните свои наблюдения. Натрите парафиновой свечкой застежку молнии, например, на спортивной кофте. (Не забудьте спросить разрешения у мамы, когда будете брать кофту для опыта). Изменилось ли движение застежки молнии?
Ответьте на вопрос: “Зачем иногда натирают застежки молнии свечкой?”
(Вещества, из которых делают столбик свечки (стеарин, парафин), являются хорошей смазкой, которая уменьшает трение между звеньями застежки.)
2. Задание для желающих осуществить дома исследовательскую работу.
Возьмите 3 свечи разные по составу, сделанные из парафина, воска, стеарина. Свечи можно купить в магазине, а можно сделать самим. (Попросите маму или папу наблюдать с вами за прохождением опыта). Дождитесь сумерек, установите свечки недалеко друг от друга и подожгите их. Заполните таблицу, по мере наблюдения за горящими свечами.
Задания | Восковая свеча | Парафиновая свеча | Стеариновая свеча |
Опишите внешний вид свечи | |||
Опишите пламя свечи | |||
Время горения свечи | |||
Наличие запаха при горении свечи |
Использованная литература.
1. Фарадей М.., История свечи, М., Наука, 1980.
xn--i1abbnckbmcl9fb.xn--p1ai