Ремонт зарядных устройств (блоков питания) ноутбуков. Схема блока питания ноутбука


Ремонт зарядных устройств (блоков питания) ноутбуков

Читать все новости ➔

Фактически, узел питания и зарядное устройство ноутбука состоит из двух частей, - узла аккумуляторного питания (в нем же и система контроля зарядки) и внешнего зарядного устройства, которое обычно представляет собой импульсный блок питания с выходным напряжением 19V. Именно о этой, внешней, части и пойдет речь в данной статье. Пример схемы блока питания для ноутбуков фирмы Acer с выходным напряжением 19V при максимальном токе 3.5А показан на рисунке. Следует заметить что блоки питания и для других ноутбуков построены по аналогичной схеме, поэтому материалом изложенным в этой статье можно пользоваться при ремонте блоков питания для самых разных ноутбуков, и вообще импульсных блоков питания.0 И так, источник питания выполнен по импульсной схеме и базируется на основе микросхемы TOP258EN (U1) фирмы Power Integrations. Данная микросхема обладает встроенным контроллером и силовым MOSFET ключом, которым управляет, путем изменения широты импульсов, поступающих на его затвор, основываясь на сигнале обратной связи.

Сетевое напряжение поступает через предохранитель F1 и экстратоковую защиту на силовом терморезисторе RT1 на входной дроссель L1, подавляющий помехи. Далее следует мостовой выпрямитель на диодах D1-D4. При нормальной работе на конденсаторе С4 выделяется постоянное напряжение около 305V. Этим напряжением питается импульсный генератор на основе микросхемы U1 и импульсного трансформатора Т1.

1Резисторы R3 и R4 создают пусковое напряжение питания микросхемы U1, необходимое для первичного запуска её генератора в момент включения питания. Генератор запускается, и дает первые импульсы на затвор ключевого транзистора микросхемы. На выводе D U1 возникают мощные импульсы тока, который протекает через первичную обмотку трансформатора Т1. Это приводит к наведению во вторичных обмотках напряжения. Обмотка Т1 4-5 служит для рабочего питания микросхемы, на которое микросхема переходит после удачного запуска блока. Выпрямитель состоит из диода D6 и конденсатора С10. Если запуск прошел нормально, что стабилитрон VR2 открывается и через него на контроллер U1 поступает питание. Теперь контроллер с режима запуска переходит на рабочий режим.

Для слежения за состоянием схемы у контроллера микросхемы U1 есть два входа - С и X. Вход X служит для контроля за величиной сетевого напряжения. Датчиком величины сетевого напряжения является делитель на резисторах R1, R2 и R9. Величина сетевого напряжения оценивается по величине напряжения на резисторе R9. Вход С служит для слежения за состоянием выхода. Между ним и выпрямителем на диоде D6 включен фототранзистор оптопары U2, а светодиод её подключен к вторичной цепи (к выходу выпрямителя на диодах D7, D8 и конденсаторе С 13 через ИМС U3, контролирующей состояние выхода).

Вот вкратце, описание работы блока питания. Теперь переходим к «типовым» неполадкам.

1. Блок не работает, в сеть включаем, а на выходе напряжения нет, никаких звуков, никакого стрекотания тоже нет. Самая распространенная неисправность. Здесь может быть неисправность как на входе, так и на выходе (о банальном обрыве в сетевом шнуре или выходном шнуре говорить не будем), так и в самом импульсом генераторе.

Итак, если блок питания не работает, а предохранитель F1 цел, то лучше всего начинать поиск неисправностей с проверки напряжения на выходе сетевого выпрямителя.

Это напряжение должно составлять около +305 V (во всяком случае в пределах 280-310V), при питающем напряжении сети переменного тока равном 220 В. Кроме того, проверьте с помощью осциллографа амплитуду пульсаций этого напряжения. Если напряжение существенно ниже вышеуказанного значения или вовсе отсутствует, проверьте выпрямитель сетевого напряжения. Повышенная амплитуда пульсаций при пониженном напряжении указывает на неисправность конденсатора С4 либо на обрыв диодного выпрямителя на диодах D 1-D4.

Полное отсутствие напряжения на С4 говорит о обрыве в цепи от сетевой вилки до С4. Очень возможно сгорел RT1 или диоды моста, дроссель L1. Но если предохранитель все же цел, то неисправность может быть в банальном дефекте пайки (расшатан какой-то вывод в этой цепи, поврежден коррозией), трещине в печатной дорожке. Отключите от сети и найдите неисправность путем прозвонки цепей.

При перегорании предохранителя повторное включение имеет смысл проводить подключая источник питания к сети через лампу накаливания на 220V мощностью не менее 100W. Это позволит обезопасить другие части схемы, которые «спас» предохранитель. Например, при КЗ в С4 при повторном включении в сеть предохранитель может не успеть сработать, что приведет к повреждению диодов выпрямителя, обмоток дросселя и др.

А лампа накаливания ограничит ток К.З.

Перегорание предохранителя (или пробой диодов выпрямителя, резистора RT1) скорее всего связано пробоем (междуобкладочным замыканием) конденсатора С 4. Дополнительным признаком пробоя конденсатора может быть изменение формы его корпуса (выбухание донной части, разрыв её). Реже это связано с пробоем транзистора микросхемы U1.

Следует знать, что пробой мощного переключательного транзистора микросхемы не обязательно бывает самопроизвольным, а часто вызывается неисправностью какого-либо другого элемента. В частности, в рассматриваемой схеме это может быть обрыв одного из элементов демпфирующей цепи D5, R6, С6, VR1, R7, а так же наличие короткозамкнутых витков в первичной обмотке трансформатора Т1.

Поэтому перед заменой микросхемы   в случае пробоя выходного транзистора желательно проанализировать возможные причины его выхода из строя и провести необходимые проверки, иначе для устранения неисправности придется запастись большим количеством дорогостоящих, мощных транзисторов.

Кроме того может быть и междуобкладочное замыкание СЗ. Но при этом перегорает только предохранитель.

Если напряжение +305V есть на С4 это говорит что цепи первичного выпрямителя исправны и неработоспособность блока питания может быть связана с неисправностью в генераторе на ИМС U1 и трансформаторе Т1.

Блок питания может просто не запускаться при включении из-за обрыва в резисторах R3-R4. В этом случае при включении в сеть питание на генератор ИМС U1 не поступает, и он не работает. Другой случай - обрыв в выходном ключе микросхемы.

Наиболее редкий случай - обрыв обмоток трансформатора, в частности первичной обмотки. В этом случае блок питания вообще не работает. Определить это можно измерив постоянное напряжение на выводе D микросхемы U1 Если на нем напряжения 305V нет, а на С4 (конденсаторе фильтра сетевого выпрямителя) есть, то, скорее всего, оборвана первичная обмотка импульсного трансформатора (в данной схеме обмотка 1—3 трансформатора Т1).

Хотя не следует исключать и обрыв в печатных дорожках или некачественных пайках. Перед принятием решения о замене трансформатора необходимо выяснить, не было ли причиной этого обрыва короткое замыкание в цепи первичной обмотки, например, пробой выходного транзистора U1 (не должно звониться в обоих направлениях между выводами D и S U1).

Возможно аварийное состояние блока из-за короткого замыкания во вторичной цепи. Либо ошибочного состояния системы контроля вторичной цепи из-за повреждения U3 или в элементах её «обвязки». Замыкание во вторичной цепи чаще всего возникает из-за пробоя одного из электролитических конденсаторов.

Пульсация источника питания (кратковременный запуск при включении в сеть, без перехода на рабочий режим) может быть вызвана неисправностью в цепи выпрямителя на D 6, С 10, а так же стабилитрона VR2.

Автор: Андреев С.

Возможно, Вам это будет интересно:

meandr.org

Зарядные устройства ноутбуков. Основы функционирования и схемотехники. (Часть I).

Журнал "Мир периферийных устройств ПК" 

Конягин Алексей, Учебный центр "Эксперт"

автор и преподаватель курса "Ремонт ноутбуков и нетбуков" 

Зарядные устройства, обозначаемые на схемах, как Charger, являются ключевым звеном в процессе запуска ноутбука.Название «зарядное устройство» совсем не означает, что оно используется только для заряда аккумулятора. Этим модулем формируется первичное напряжение, из которого затем вырабатываются все остальные напряжения, т.е. Сharger является одним из ключевых звеньев во всей системе энергообеспечения ноутбука. И поэтому неудивительно, что статистика неисправностей ноутбуков говорит о необходимости обсуждения схемотехники данного модуля.

 

В среде специалистов и пользователей ноутбуков так сложилось, что зарядными устройствами часто называют блоки питания, формирующие постоянное напряжение величиной примерно +19V. Это напряжение получают из сетевого переменного напряжения 220 Вольт путем импульсного преобразования. Но называть этот преобразователь, этот блок питания,  зарядным устройством как-то не совсем корректно. К нему в большей степени подходит термин «сетевой адаптер». 

Зарядное устройство (Charger) в ноутбуках выполняет, как правило, следующие основные функции:

  • формирование зарядного напряжения/тока для аккумуляторной батареи;
  • коммутацию «первичного» напряжения, необходимого для формирования всех системных напряжений;
  • информирование системных контроллеров о подключении сетевого адаптера;
  • автоматическое управление мощностью, потребляемой от сетевого адаптера (функция DPM) .

Упрощенную функциональную схему Charger'а мы попытались представить на рис.1.

charger1_1

Рис.1 Блок-схема зарядного устройства ноутбука

 

Формирование зарядного напряжения аккумулятора

Исходя из названия модуля, эта функция является его важнейшей функцией. Как известно, в аккумуляторных батареях ноутбуков, в настоящее время широко применяются литий-ионные аккумуляторы (LiOn). Номинальным напряжением одного литий-ионного элемента является 3.6 Вольт. На практике же, заряд этих элементов осуществляется напряжением 3.9 – 4.3 вольт/элемент. Также хорошо известно, что увеличение емкости батарей достигается последовательно-параллельным включением нескольких аккумуляторов.

 

charger1_2

Рис.2 Трехэлементная (3-Cell)  батарея. Каждый элемент состоит из двух параллельно-включенных  "банок". В результате получаем батерю типа "3S-2P"

 

Чаще всего, батарея образована тремя элементами (Cell's), каждый из которых, в свою очередь, состоит из двух или трех параллельно-включенных «банок» (рис.2). Разумеется, что такие много-секционные батареи требуют увеличенного зарядного напряжения, величину которого очень легко подсчитать: необходимо напряжение заряда одного элемента умножить на количество элементов в цепочке. Таким образом, простая арифметика показывает, что для заряда 3-элементных батарей необходимо напряжение 11,7...12,9 Вольт. Отличить 3-элементные батареи можно следующим образом:

  • во-первых, в прайс-листах реселлеров эти батареи могут быть обозначены, как 3-Cell;
  • во-вторых, по напряжению батареи – 3-х элементные аккумуляторы имеют выходное напряжение, равное 10.8 Вольт (иногда попадаются батареи с напряжением 11.1 Вольт). Еще раз обращаем внимание, что это лишь номинальные напряжения аккумуляторов, а на самом деле напряжение на них несколько выше, например, 12.6 Вольт.

Наряду с 3-Cell батареями, существуют и 4-х элементные аккумуляторы (рис.3). Эти батареи требуют зарядного напряжения величиной от 15.6 В до 17.2 В. Аккумуляторы этого типа в прайс-листах обозначаются, как 4-Cell, а их выходное напряжение, как правило, равно 14.4 В (но изредка попадаются батареи с выходным напряжением 14.8 Вольт).

 

 

charger1_3

Рис.3 Четырехэлементная (4-Cell)  батарея. Каждый элемент состоит из двух параллельно-включенных  "банок". В результате получаем батерю типа "4S-2P"

 

Кроме того, ряд ноутбуков позволяет работать как с 3-элементными, так и с 4-элементыми батареями, автоматически изменяя формируемое зарядное напряжение, в зависимости от типа подключенной батареи. Естественно, что Charger таких ноутбуков должен «уметь заряжать» батареи разных типов, формируя разное выходное напряжение и разные выходные токи.

Сетевой адаптер (блок питания), являющийся главным источником энергии для ноутбука, формирует постоянное напряжение номиналом 19 Вольт. А для заряда аккумуляторов, как мы видели, требуется меньшее напряжение. Поэтому в составе ноутбука присутствует зарядное устройство, формирующее напряжение соответствующего номинала, достаточное и необходимое для заряда батареи. Таким образом, фактически, Charger представляет собой понижающий DC-DC преобразователь импульсного типа, в котором могут быть реализованы и некоторые дополнительные функции. Например, такие как:

  • включение и выключение преобразователя по командам от управляющего контроллера;
  • контроль выходного тока, т.е. контроль тока, потребляемого аккумуляторной батареей в момент ее заряда;
  • контроль выходного зарядного напряжения, прикладываемого к аккумулятору, с целью его регулировки и стабилизации;
  • управление величиной зарядного тока;
  • определение подключения аккумуляторной батареи с целью предотвращения работы в режиме холостого хода и др.

 

 

Коммутация первичного напряжения

Источником энергии для ноутбука может являться либо сетевой адаптер, когда он подключен к питающей сети 220 Вольт, либо аккумуляторная батарея. В составе Charger'а имеются транзисторные ключи, которые коммутируются таким образом, чтобы на выходе Charger'а всегда присутствовало напряжение VDC, из которого затем формируются все необходимые для работы ноутбука напряжения. Это напряжение VDC является либо напряжением сетевого адаптера (т.е. напряжением 19В), либо напряжением от аккумулятора (например, 12 В).

Логика работы данной схемы очень простая. Если сетевой адаптер подключен и формирует напряжение 19В, то Charger на свой выход начинает транслировать именно это напряжение. Если же напряжение сетевого адаптера не обнаружено, то происходит переключение на аккумуляторную батарею. Фактически, схема коммутации первичного напряжения представляет собой два ключа и контроллер, анализирующий наличие входного напряжения 19В (рис.4).

 

charger1_4 

Рис.4 Принцип выбора "первичного" источника энергии для питания ноутбука

 

К функциям входных коммутаторов, можно отнести и функцию контроля входного тока. Для этого в схему Charger'а вводится цепь измерения тока, традиционно состоящая из токового датчика, в виде низкоомного резистора. Эта цепь позволяет измерять величину тока, потребляемого источниками питания ноутбука от сетевого адаптера, т.е. позволяет измерять ток в канале 19V. Величину входного тока анализирует контроллер зарядного устройства, и, если измеренное значение превышает заданную величину, контроллер зарядного устройства закрывает входной ключ канала 19V. Такая защита позволяет исключить работу сетевого адаптера в случае коротких замыканий при неисправностях в питающих каскадах ноутбука.

 

Информирование о подключении сетевого адаптера

Эта функция тесно связана с предыдущей. Если контроллер Charger'а обнаружил наличие напряжения 19В от сетевого адаптера, то он не только переключает ноутбук на работу именно от этого напряжения, но и «сообщает» об этом контроллеру клавиатуры - KBC (EC) или «южному мосту» посредством генерации сигнала, часто обозначаемого на схемах, как ACOK. Активность сигнала ACOK приводит к тому, что зарядное устройство запускается и начинается зарядка аккумуляторной батареи, а, кроме того, выводится соответствующая индикация режима работы ноутбука.

nout1

Сделав краткий обзор общих принципов функционирования Charger'а, переходим к рассмотрению схемотехнических решений, положенных в основу построения зарядных устройств.

Центральным элементом любого Charger'а является микросхема-контроллер, набор функциональных возможностей которого может быть очень широким. Однако для построения Charger'а могут быть использованы и достаточно примитивные контроллеры.

В некоторых, уже достаточно старых, моделях ноутбуков в качестве микросхем контроллеров зарядного устройства приходилось встречаться с такой микросхемой общего применения, как TL494 (специалисты, которые занимались системными блоками питания AT и ранними ATX, с этой микросхемой должны быть очень хорошо знакомы). Естественно, что такое решение отличается достаточно громоздкой схемотехникой и сложностью реализаций даже самых простых функций. Поэтому о подобных схемах следует говорить, как об экзотике, и брать их за пример для обсуждения не стоит.

В настоящее время существует целый ряд специализированных микросхем, разработанных исключительно для применения в ноутбуках и именно в качестве Charger'а. Микросхемы этого класса выпускаются, в основном, такими производителями, как Maxim, Intersil, Fujitsu Electronics, Texas Instruments (семейство BQ). Интегрированные Charger'ы позволяют значительно упростить разработку схемы зарядного устройства и снизить ее габариты. Кроме того, такие контроллеры «нагружены» большим количеством дополнительных функций, о которых говорилось в начале статьи. В результате, в современных ноутбуках повсеместно применяются интегральные Charger'ы, и схемотехника всего зарядного устройства определяется типом и функциональными характеристиками именно этой микросхемы.

Так как микросхем интегральных Charger'ов сейчас достаточно много, то и различных вариантов построения зарядного устройства тоже хватает. Однако, несмотря на все разнообразие схем зарядных устройств и применяемых в них контроллеров, постараемся выделить и охарактеризовать их основные элементы.

 

Детектор сетевого адаптера

Определение входного питающего напряжения, формируемого сетевым адаптером, относится к основным функциям Charger'а. Практически во всех современных микросхемах Charger'ов эта функция является внутренней, и для ее реализации имеется отдельный контакт, на который подается напряжение, пропорциональное уровню входного напряжения 19VDC, формируемого адаптером. В наименовании этого контакта чаще всего встречается аббревиатура "AC" (например, ACIN или ACSET и т.п.), указывающая на то, что данным сигналом детектируется подключение ноутбука к питающей сети переменного тока.

 

charger1_5

 

Рис.5  Детектор сетевого адаптера

 

Детектор сетевого адаптера представляет собой делитель напряжения и компаратор, интегрированный в микросхему Charger'а (рис.5). На вход детектора подается напряжение +19V, которое резистивным делителем уменьшается до напряжения, допустимого для входа микросхемы, например, до 5 Вольт или до 2.5 Вольт. Далее, внутри микросхемы это напряжение сравнивается с внутренним опорным напряжением, номинал которого является уникальным для каждой микросхемы Charger'а (но обычно близок к уровню 1.2В или 2В). Компаратор осуществляет контроль входного напряжения ноутбука, т.е. не позволяет ноутбуку начать работу от адаптера при слишком низком питающем напряжении.

Схема детектора сетевого адаптера формирует сигнал, который мы условно назовем «ACOK». Активизация сигнала ACOK подтверждает, что обнаружено подключение сетевого адаптера, и что его напряжение соответствует рабочему диапазону. Сигнал ACOK, как правило, является выходом с открытым коллектором (стоком), а его уровень активности (высокий или низкий) определяется типом микросхемы Charger'а (рис.6). Сигнал ACOK подается на вход микросхемы ICH («южный мост») или на вход микросхемы управляющего контроллера, в качестве которого обычно используется KBC.

 

charger1_6

Рис.6  Выходной сигнал детектора может быть активен как высоким уровнем, так и низким

 

Выход с открытым коллектором/стоком предполагает «подтягивание» этого контакта к шине питания через ограничивающий резистор. Но откуда же возьмется «подтягивающее» напряжение, если ноутбук и все его элементы еще не начали свою работу?

Очень часто подтягивающее напряжение для выхода ACOK формируется самой микросхемой Charger-контроллера. В состав контроллера вводится линейный стабилизатор, формирующий постоянное напряжение из питающего напряжения микросхемы, т.е. из +19V, подаваемых на вход DCIN. Выход линейного стабилизатора часто обозначается как LDO (рис.7). Выходное напряжение этого линейного стабилизатора обычно равно +5 Вольт. В некоторых случаях в качестве «подтягивающего» напряжения для выхода ACOK используется опорное напряжение, также формируемое внутренним источником опорного напряжения, и обозначаемое VREF.

 

charger1_7

Рис.7 "Подтягивание" выхода с открытым стоком к логической единице. Источником напряжения является внутренний линейный стабилизатор LDO.

 

Напряжение +19V для детектора сетевого адаптера берется непосредственно с входного питающего разъема (см.рис.5), но в некоторых ноутбуках на входе зарядного устройства устанавливается ключ, открывающийся самостоятельно или Charger-контроллером в момент появления входного напряжения +19V (рис.8). Такой ключ можно рассматривать в качестве буферного элемента, выполняющего функцию защиты от всплеска напряжения и от влияния переходных процессов при подключении. Также этот ключ не позволит включиться схеме при недостаточном напряжении от адаптера, что можно рассматривать в качестве защиты от неисправности сетевого адаптера, хотя функция защиты от запуска ноутбука при неисправном адаптере, обычно реализована, компаратором сигнала ACIN. Ведь если входное напряжение ACIN будет меньше порогового напряжения компаратора, выходной сигнал ACOK не должен генерироваться.

 

charger1_8

Рис.8 Входной транзистор, открывающийся автоматически

 

Входной ключ Charger'а является полевым P-канальным транзистором. Чаще всего это AP4435 или его аналоги. В случае неисправности входного транзистора зарядного устройства и невозможности идентификации его маркировки, можно смело ставить именно AP4435. Следует отметить, что неисправность этого транзистора является одной из основных проблем Charger'а.

С другой стороны, нередки и схемы без входных транзисторных ключей. Однако современная схемотехника ноутбуков нацелена на применение входных транзисторных ключей, так как их наличие, кроме всего прочего, позволяет организовать дополнительные функции.

 

charger1_9

 

Рис.9  Реализация дополнительных защитных функций в Charger'е ноутбука Samsung NP-P55

 

В качестве примера такой дополнительной функции, можно привести схему «зарядника» ноутбука Samsung NP-P55 (рис.9). В этой схеме первоначальное открывание ключа обеспечивается резистивным делителем R516/R517, который создает на затворе транзистора Q2 напряжение, меньшее, чем на его истоке. Это и является условием открывания Q2. В результате, на стоке Q2 появляется напряжение VDC_ADPT, равное 19 Вольтам. Это напряжение используется для питания Charger-контроллера и формирования всех остальных напряжений ноутбука.

Кроме делителя, состоянием транзистора Q2 управляет еще и транзистор Q503. Открывание транзистора Q503 приводит к подаче на затвор транзистора Q2 напряжения от сетевого адаптера, т.е. напряжения на истоке и затворе выравниваются. Это приводит к запиранию Q2. Осталось выяснить, что же может привести к открыванию транзистора Q503.

Затвор транзистора Q503 управляется триггером, состоящим из транзисторов Q501 и Q502. Срабатывание триггера произойдет в случае открывания хотя бы одного из стабилитронов ZD500, ZD501 или ZD503. В свою очередь, эти стабилитроны открываются в случае значительного превышения напряжения в каналах 5V, 1.8V, 1.05V, 1.25V, 1.5V. Перечисленные напряжения питают процессор, чипсет, графический контроллер и память, и увеличение этих напряжений способно натворить много бед. Критическое превышение номинала этих напряжений может произойти только в случае пробоя транзисторных ключей в DC-DC преобразователях, формирующих эти напряжения из напряжения VDC.

Срабатывание триггера означает, что Q501 и Q502 оказываются открытыми, и это будет продолжаться до тех пор, пока на входе ноутбука будет присутствовать напряжение +19V. В этом случае, для повторного запуска ноутбука необходимо обязательно вынуть штекер сетевого адаптера, подождать некоторое время и снова подключить ноутбук к источнику питания.

Открытый триггер обеспечивает подачу на затвор Q503 низкого уровня, что приводит к открыванию Q503 и закрыванию Q2. В результате, 19V (VDC) перестает подаваться на DC-DC преобразователи и ноутбук выключается. Работа при повышенном напряжении основных элементов системы исключается.

Так как для работы детектора и его компаратора требуется наличие опорного напряжения, то, разумеется, необходимо обеспечить питанием микросхему Charger-контроллера. Питающим напряжением для микросхемы является все те же 19V от сетевого адаптера. Только эти 19 Вольт для обеспечения питания подаются на другой контакт, традиционно обозначаемый DCIN. Но об этом мы продолжить говорить уже в следующем номере нашего журнала.

 

Перейти ко второй части статьи

 

Понравилась статья? Узнали что-то новое и интересное?

Вы можете выразить благодарность автору статьи скромным денежным переводом.

www.mirpu.ru

Универсальный блок питания для ноутбука 96W (сразу ремонт и доработка)

Стоимость: $9,96

У меня давно возникла необходимость в приобретении универсального блока питания для ноутбуков . Такого чтобы имел разные разъемы и мог регулировать напряжение. А раз нужно — покупаем. 

Выбрал такой:

5

LED Indicator.Input power:100w.Output power:96w.Input voltage range: Ac110-240v.Adjustable Output Voltage:12v/15v/16v/18v/19v/20v/24v.Overload and short circuit protection.Compatible with SONY/HP/IBM notebook,etc.8 DC Plug as picture.

1

4

Ехала посылка долго. Упакован блок питания был плохо, в обычный пакетик, но на удивление, ничего не сломалось.

Сменные элементы включаются в такую вот розетку на проводе. Контакты разной толщины, защита от «дурака».

IMG_20151003_150129

Перед включением произвел внешний осмотр.

IMG_20151003_150143

В блоке питания стандартная трехконтактная розетка с заземлением для подключения стандартного компьютерного кабеля.

IMG_20151003_150155

Кабель в комплекте… ужас. 

IMG_20151003_150322

Даже при внешнем осмотре он такой тонкий…

IMG_20151003_150356

На кабеле написано 250V 10A. Ну, на заборе тоже много чего написано. 

IMG_20151003_150231

Еще на проводе указан какой-то второсортный китайский брэнд и толщина 3х0,5мм.кв. Ну, и откуда здесь взяться 10 Амперам? Почему брэнд второсортный? Нормальный производитель не станет делать такие убогие и небезопасные кабеля. Тут погоня только на низкой себестоимостью, остальным пренебрегли.

Я, если честно, думаю что 0,5 квадрата тоже завышено, реально там еще меньше, пару тонюсенький волосков, к тому же не медных, а стальных, омедненных. Они так эффектно перегорают… С треском и искрами.

Этот кабель, конечно, выдержит работу с этим блоком питания. Но так как у него стандартный компьютерный разъем, его лучше сразу порезать на куски и выбросить. Зачем порезать? Чтобы кто-нибудь случайно не нашел и не включил с его помощью какой-нибудь энергопотребляющий электроприбор, так как это почти 100% гарантия разогрева и сгорания этого кабеля, как минимум с вонью и искрами, и как максимум — короткое замыкание, выбивание предохранителей или пожар.

При внешнем обзоре выявлено следующее: если потрясти блок питания, в нем что-то гремит, причем солидно так. Было решено не включать блок питания в розетку, а сразу вскрыть его и проверить.

Забегая вперед, скажу что это было правильное решение, позволившее избежать ремонта.

Итак, блок вскрыт. Из него выпадает приличная такая сопля припоя, примерно 7х2мм.

IMG_20151001_203855

Этот кусочек припоя и гремел внутри. Он вполне мог что-нибудь закоротить и привести к выходу блока питания из строя.

IMG_20151003_104529

Смотрим дальше. Плата односторонняя, монтаж двусторонний. То есть установлены как обычные, так и smd элементы. Заземление с разъема никуда не заведено, просто висит в воздухе.

Плата достаточно качественная, но вот как монтаж, так и пайка, представляют собой жалкое зрелище.

IMG_20151003_104540

В «горячей» части, некоторые элементы не установлены. Часть деталей установлена с занижением параметров и не так как было предусмотрено при проектировании. На плате нанесена маркировка, какие элементы должны быть установлены и как.

Зато стоит NTC терморезистор, предотвращающий бросок тока при включении блока питания в розетку. Странно что и его не заменили перемычкой, еще могли пару центов сэкономить.

Высоковольтный конденсатор стоит всего 22мкФ (это крайне мало), даже на плате написано 47мкФ, нет фильтрующего дросселя во входных цепях, нет фильтрующего конденсатора, конденсатор питания микросхемы ШИМ стоит вертикально, хотя должен лежать на плате, предохранитель сомнительного номинала и качества установлен так, что заменяет собой фильтрующий дроссель.

И это не все косяки…

Дальше-больше.

IMG_20151003_104629

Переключение напряжения стабилизации блока питания производится переключением резисторов в плече делителя на микросхеме TL431. Пайка ужасная.

IMG_20151003_104641

Вся плата во флюсе, никто и не пытался его отмыть. 

IMG_20151003_141739

Но неотмытый флюс — не самое страшное. Плата плохо пропаяна, некоторые выводы просто-напросто висят в  воздухе.

IMG_20151003_141750 

Вот например здесь: сдвоенный диод Шоттки. Один из выводов непропаян, второй оторван и дорожка висит в воздухе. Блок питания в таком состоянии работать будет, но как долго?

Понятно, что ни о каком контроле качества или отладке разговор просто не идет. Хорошо если эти блоки питания вообще включали…

IMG_20151003_104551

Микросхема ШИМ — UC3843AN — достаточно распространенная. На ней делается много разных блоков питания и StepDown преобразователей

IMG_20151003_104617

Выходная часть тоже проще уже некуда. После выпрямительного диода стоит один-единственный электролитический конденсатор. Ни о каком фильтре речи нет. Нет даже шунтирующей керамики. Можно предположить что если все оставить как есть, учитывая что корпус практически герметичный, работа такого блока питания не будет долгой. Конденсатор очень скоро вздуется.

Силовой транзистор и выпрямительный сдвоенный диод стоят на общем радиаторе (конечно, никакой термопасты нет в помине). Радиатор — плохо обработанная алюминиевая пластинка с заусенцами, никак не зафиксирована и держится на самом транзисторе и диоде. Логично, что диод и транзистор запаяли высоковато и когда корпус закрывали, приложили усилие и транзистор с диодом  просто просели вниз и оторвали дорожки с платы. 

IMG_20151003_111815

Смотрится ужасно, все висит в воздухе, хотя я верю что контакт был и блок питания, возможно, запускался даже в таком состоянии. Но оставлять такое безобразие как есть я не могу. 

Короче, данный блок питания — набор косяков и недоделок. В нем требует доработки или замены почти все: горячая часть, холодная часть, провод питания.

IMG_20151003_141556

Первым делом, выпаиваю с платы «стратегические» перемычки, сомнительный предохранитель, высоковольтный конденсатор, конденсатор питания ШИМ. 

Запаиваю фильтрующий дроссель, нормальный предохранитель на 2 А, фильтрующий конденсатор, кладу на бок торчащий в торону резистор питания ШИМ. Заменяю конденсатор питания ШИМ 47мкФ 63V на 100 мкФ 63V. (47мкФ хватило бы, но у меня не нашлось под руками такого с длинными выводами). Конденсатор должен размещаться «лежа», чтобы не мешать установке высоковольтного конденсатора большей емкости и, соответственно, большего размера. Высоковольтный конденсатор я поставил 47мкФх400V. Именно такой номинал и указан на плате. Больший, скорее всего, было бы проблематично поставить, так как он скорее всего не поместился бы в корпус. Тут видно что плату разводили не очень профессионально. Высоковольтный конденсатор расположен горизонтально над конденсатором питания ШИМ, самой микросхемой ШИМ и мощным резистором. Это не смертельно, но не очень грамотно. Но тут уж как есть — так есть.

Далее, выпаиваю фильтрующий конденсатор на выходе блока питания. Иначе просто не получится открутить радиатор с силового транзистора выпрямительного диода.

IMG_20151003_142039

Радиатор снят. Термопасты там даже не планировалось, видна экономия по-китайски во всем. Транзистор в корпусе TO-218-ISO, который полностью изолирован от радиатора, поэтому можно обойтись без изолирующих прокладок.

IMG_20151003_142116

Испытанная КПТ-8 как всегда нам поможет. Может это и не самая лучшая термопаста, но я ей больше доверяю чем непонятно-какой китайского происхождения.

IMG_20151003_142250 

Ну вот, силовые элементы теперь на термопасте. Надеюсь им это чуть облегчит жизнь. Транзистор и диод посажены ниже, чтобы радиатор упирался в плату. 

С «горячей» частью закончено.

IMG_20151003_143741

Возвращаю выходной электролитический конденсатор на место, перерезаю длинную и широкую плюсовую дорожку на плате, сверлю 2 дырки и в разрыв впаиваю дроссель. Параллельно проводам питания после дросселя впаиваю конденсатор.

IMG_20151003_143835

Фильтрующий электролитический конденсатор шунтирую «керамикой».

Пропаиваю все непропаи (которых на плате хватает) и оторванные дорожки. Мою плату, сушу.

IMG_20151003_145927

Сборки и тестовое включение. Все работает.

IMG_20151003_145937

Напоследок, делаю дремелем несколько пропилов в корпусе для воздхообмена. Это должно дать возможность нагретому воздуху выходить их корпуса и немного улучшить охлаждение.

Может это не очень красиво, но улучшит тепловой режим работы блока питания. 

Теперь в данном блоке питания установлены все элементы, все пропаяно, улучшена фильтрация. Теперь его не страшно подключить к достаточно дорогому ноутбуку или монитору.

Выводы: это недоразумение, этот  набор косяков, который ошибочно назвали универсальным блоком питания нельзя просто использовать после покупки без доработки и переделки. Это просто опасно.

Только то что блок питания был вовремя вскрыт, помогло предотвратить его быстрый выход из строя.

Да, он стоит недорого, гораздо дешевле чем нормальные блоки питания, готовые к эксплуатации сразу после покупки. Доработка его до рабочего состояния не требует больших денежных вложений, но она требует наличия кое-каких деталей, паяльника, прямых рук и минимальных знаний. Для людей у которых все это есть,  данный блок питания — выгодная покупка. Для остальной части населения, не умеющей держать в руках паяльник, данный блок питания к покупке не рекомендуется.

P.S. При попытке использования с ноутбуком после 20-30 минут работы данный блок питания сгорел с громким бабахом, вспышкой и дымом. При этом он утащил с собой плату заряда ноутбука, хорошо хоть ее удалось купить на e-bay. В блоке питания сгорел транзистор, раскрылась микросхема ШИМ, подозрительно почернел трансформатор. Блок питания отправился в мусорную корзину. Ремонтировать это недоразумение не вижу смысла. Покупать никому не советую.

 

Возможно, вам будет интересно:

www.kupislonica.ru

Зарядное устройство из блока питания ноутбука

Зарядное устройство из блока питания ноутбука

Изготавливать самодельное зарядное для аккумулятора автомобиля не всегда проще и выгоднее. Даже используя самый простые схемы необходимо думать о покупке трансформатора или о самостоятельной его перемотке, решать, из чего изготовить корпус и т.д. Гораздо проще переделать уже готовый блок питания на зарядное устройство. Большой популярностью среди автолюбителей пользуется переделка блока питания ATX, но ничего не мешает использовать подобный подход и смастерить зарядное устройство из блока питания ноутбука. Сегодня мы расскажем, как можно переделать блок питания ноутбука в зарядное устройство. И так, поехали!

Зарядное устройство из блока питания ноутбука

Напрямую сразу подключать блок питания ноутбука клеммам АКБ нельзя. Напряжение на выходе составляет около 19 В, а сила тока около 6 А. Силы тока для зарядки 60 А/ч аккумулятора достаточно, а что делать напряжением? Тут есть варианты.

Зарядное устройство из блока питания ноутбука может быть реализовано двумя абсолютно разными путями.

  • Без переделки блока питания. Необходимо последовательно с автомобильным АКБ подключить мощную лампочку от фары. Такая лампочка в данном случае будет служить токоограничителем. Решение очень простое и доступное.
  • С переделкой блока питания. Тут необходимо снизить напряжение блока питания ноутбука для нормальной зарядки до 14 — 14,5 В.

Мы пойдем более интересным путем и в вкратце расскажем, как легко можно понизить напряжение блока питания ноутбука. Подопытным блоком станет универсальная зарядка к ноутбуку под название Great Wall.

Зарядное устройство из блока питания ноутбука

Первым делом разбираем корпус, стараемся сильно его не растрепать, нам еще им пользоваться.

Зарядное устройство из блока питания ноутбука

Как видим, блок выдает напряжение — 19 В.

Зарядное устройство из блока питания ноутбука

Плата построена на TEA1751+TEA1761.

Зарядное устройство из блока питания ноутбука

Для лучшего понимания дела на одном из китайских сайтов была схема ну очень похожего блока.

Отличие лишь в номиналах некоторых деталей.

Зарядное устройство из блока питания ноутбука

Для снижения напряжение на выходе ищем резистор, который соединяет шестую ножку TEA1761 и плюс с выхода блока питания (на фото отмечен красным).

Зарядное устройство из блока питания ноутбука

На схеме этот резистор состоит из двух (они тоже обведены красной линией).

Зарядное устройство из блока питания ноутбука

Для удобства приводим назначение и расположение ножек из datasheet TEA1761.

Зарядное устройство из блока питания ноутбука

Выпаиваем этот резистор и измеряем его сопротивление – 18 кОм.

Зарядное устройство из блока питания ноутбука

Достаем из закромов переменный или подстроечный резистор на 22 кОм и настраиваем его на 18 кОм. Впаиваем его на место предыдущего.

Зарядное устройство из блока питания ноутбука

Постепенно снижая сопротивление добиваемся показания 14 — 14,5 В на выходе блока питания.

Зарядное устройство из блока питания ноутбука

Получив необходимое напряжение можно его отпаять от платы и измерить текущее сопротивление – оно составило 12,37 кОм.

Зарядное устройство из блока питания ноутбука

После всего нужно подобрать постоянный резистор, с как можно близким к этому значению номиналом. У нас это будет пара 10 кОм и 2,6 кОм. Увы, в SMD исполнение ничего подобного не нашлось, пришлось кончики резисторов посадить в термокембрик.

Зарядное устройство из блока питания ноутбука

Паяем данные резисторы.

Зарядное устройство из блока питания ноутбука

Тестируем работу блока – 14,25 В на выходе. Напряжение для зарядки автомобильного АКБ в самый раз.

Зарядное устройство из блока питания ноутбука

Собираем блок питания и подключаем крокодилы на конце шнура. (Необходимо тщательно проверять полярность на выходе шнура, в некоторых блоках питания «-» — это центральный провод, а «+» — оплетка).

Зарядное устройство из блока питания ноутбука

Зарядное устройство из блока питания ноутбука работает как положено, ток в середине процесса зарядки составляет около 2-3 А. При падении тока зарядки до 0,5-0.2 А, процесс зарядки можно считать оконченным.

Зарядное устройство из блока питания ноутбука

Для удобства зарядное можно снабдить амперметром, прикрученным на корпус, или контрольным светодиодом, который будет сигнализировать об окончании заряда. Как дополнительную меру предосторожности можно посоветовать использовать хоть какую-то защиту от переполюсовок.

Подобные материалы:

Зарядное устройство из блока питания светодиодных лент

Зарядное устройство из блока питания компьютера

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Несколько слов о HP блоках питания.

На днях приобрел внешнюю АКБ с солнечной батарейкой на спине.Солнышкоуловитель, конечно слабенький, но куплено устройство было не сколько из-за него, сколько из-за емкости равной 23*10E3 миллиампер час.

Вот собственно, как он выглядит:

И хотя в спецификации указано, что он поддерживает различные ноутбуки в том числе HP, но оказалось, что не все.Среди переходников у него действительно есть штеккеры для HP, но на серию EliteBook, они никакого влияния не оказывают, разряженный в ноль ноут не запускается.

Чтобы было понятно, штеккер блока питания HP имеет 3, образно выражаясь, пина.

Внешнее кольцо, внутреннее кольцо, разделенное изолятором и "игла" ("ID") - средний пин.

Как показало исследование, таблица напряжений выглядит следующим образом:(Щуп "масса" к левой части пары, чуп измерения к правой части пары.То есть "3-2" 19,55В означает, что "масса" ("-") на площадке "3", а "+" на "2". Не знаю как еще объяснить. Кратко: положительная полярность на "2".)

Пин-пинБез нагрузкиПод нагрузкой
3-219,55В19,53В
3-116,2В3,4В
1-2-0,06В-15,6В
То есть задача подключения внешней АКБ превращалась в преобразование обычного двух-пинового питания в 3х пиновое.

Исследование интернет опыта показало, что подача 19В на пин приводит к трагедии в жизни ноутбука по причине скоропостижной смерти компаратора в цепи питания.Например вот так:

Перспектива скорого похода в сервис совсем не воодушвляла, поэтому возникло желание выяснить четко, кто и за что отвечает.Первое, что бросилось в глаза - это гуляющая по сети вот такая схема:

Все просто, обычный делитель напряжения, а ID вроде бы индикатор "родного" блока питания.Смутило только сопротивление гасящего резистора 334 Ома.Это практический риск подать на пин вольт 18-19 и отправить бедную микросхему на "тот" свет.Но схема гуляет, только уверенности в ее работоспособности не много.Народ на форумах колдует и иногда радостно заявляет, что у них заработало, у кого то не заработало, номинал плавает от 300 килоом, до нескольких сот Ом.

В общем, под сильными сомнениями пришлось искать дальше.В интернете гуляет схема ноутбука EliteBook 6930, но в части питания там как то скудновато. По крайней мере 34 страница не дает ответа о роли среднего пина ("иглы").

И на сайте El-Shema.Ru я нахожу что-то похожее на блок питания.В частности, там нарисована схема формирования ID сигнала.И мои опасения подтверждаются, номинал резистора 5,6 килоома (R30 на схеме).

После этого был проведен ряд экспериментов, где оказалось, что при напряжении 1,7 - 1,8 Вольта (пара 3-1), ноутбук сигнализирует о необходимости воспользоваться более мощным блоком питания.Но уже с 3 вольт начинает спокойно воспринимать питание и заряжаться.----После того, как стендовая схема была спаяна, выяснилось, что внешняя АКБ при работающем ноуте минуты через 3 отключается.

Причина - превышение потребляемой мощности.Тут надо отметить очень интересный эффект.При подключении ноута к АКБ, ток потребления где-то 1 Ампер, медленно растет вверх, примерно со скоростью 1А в минуту, доходит до потолка в 3 Ампера внешней АКБ и продолжает расти до 3,45, где фиксируется.АКБ некоторое время работает в этом режиме, потом отключается. Логичное действие на длительную перегрузку, приятное поведение батарейки.

Работающий ноут с батареей, как я сказал, потребляет 19V 3,45А.Работающий ноут без батареи - примерно около 19V 2,2AВыключенный ноут с батареей - примерно 19V 1,2А.

То есть с батареей в ноуте можно работать только если она заряжена до 97%, в этом случае, логика подзарядки деактивирована.Дальше работать на ноуте можно, только вынув батарею. Что в общем то не фатально, если не забывать поглядывать за уровнем заряда внешней АКБ, потому что об окончании заряда никто уведомлять не будет.Ну и еще один вариант, это просто зарядка выключенного ноута.

Сама батарея лежа на подоконнике в пасмурный зимний день сигнализирует, что заряжается, что в общем то является несомненно полезной функцией. Полезней ее отсуствия.

Из-за моей любви ко всяким индикаторам, результирующая схема оказалась следующей:R1 = 30 КОмR2 = 5 КОмС1 = 100 НфVD1 = 1N4148 VD2 = Какой-то 12В, красный, взят из одноцветной гирлянды.

Так что при включении, светодиод уровнем яркости показывает уровень напряжения на "игле", относительно массы, что больше приятно, чем полезно.

Надеюсь, кому нибудь эта информация поможет.

fwsx.livejournal.com

Зарядник из адаптера от ноутбука

Целью проекта является постройка универсального регулируемого блока питания, который может быть использован для зарядки никелевых или свинцовых аккумуляторов, причем не только автомобильных. Зарядное устройство позволит заряжать аккумуляторы с напряжением от 4 до 30 В.

Первое, что понадобится для реализации этого проекта, — это корпус. Подойдет, например, от китайского инвертора 12-220 В. Он монолитный и изготовлен из алюминия.

корпус

Можно взять любой другой подходящего размера, к примеру, от компьютерного блока питания.

Второе – это сетевой понижающий импульсный блок питания.

блок питания

Напряжение на выходе используемого в этом проекте блока составляет 19 В при токе около 5 А.

блок питания

Это дешевый универсальный адаптер для ноутбука. Он построен на ШИМ-контроллере из семейства UC38, имеет стабилизацию и защиту от коротких замыканий.

Третье – это цифровой или аналоговый вольтамперметр. Представленный здесь вольтамперметр был изъят из китайского стабилизатора напряжения (30 В, 5 А).

вольтамперметр

Четвертое – это немного таких электронных компонентов, как клеммы и шнур питания.

клеммы и шнур питания

Устройство схематически изображено на нижеследующей картинке:

схема

Теперь взгляните на схему блока питания. Микросхема TL431 располагается возле оптрона. Именно эта микросхема задает выходное напряжение. В обвязке всего 2 резистора, и путем их подбора можно получить нужное выходное напряжение.

схема

Далее, нужно проследить цепь резистора, которая идет от управляющего вывода микросхемы к выходному плюсу. (Всю схему можно скачать в конце статьи)

схема

На этой схеме он обозначен как R13. В имеющемся блоке его сопротивление составляет 20 кОм. Последовательно этому резистору нужно подключить переменный на 10 кОм, примерно, как на картинке:

переменный на 10 кОм

Путем вращения переменного резистора необходимо добиться выходного напряжения в районе 30 В. Затем нужно отключить «переменник» и замерить его сопротивление, при котором напряжение на выходе было 30 В, и заменить R13 на резистор с подобранным сопротивлением. Получилось примерно 27 кОм. На этом переделка адаптера завершена.

Для ограничения тока будет использоваться метод ШИМ-регулировки, поскольку выходной ток с адаптера от ноутбука очень мал.

ШИМ-регулировки

Вообще, эта схема представляет собой ШИМ-регулятор напряжения без отдельного узла ограничения тока. Этот генератор прямоугольных импульсов построен на базе таймера NE555, который работает на определенной частоте. Диоды служат для постоянной смены времени заряда и разряда частотозадающего конденсатора. Благодаря этому явлению имеется возможность менять скважность выходных импульсов. Поскольку силовой транзистор работает в режиме ключа (он либо открыт, либо закрыт), то можно наблюдать довольно высокий КПД. Переменный резистор регулирует скважность импульсов.

Установить необходимый ток заряда можно изменением напряжения, то есть вращением многооборотного переменного резистора.

многооборотного переменного резистора

Транзистор подойдет буквально любой. Здесь используется n-канальный полевой транзистор с напряжением 60 В и током от 20 А.

Транзистор

Из-за ключевого режима работы его нагрев не будет большим, в отличие от линейных схем, но теплоотвод не помешает. В этом проекте в качестве теплоотвода используется алюминиевый корпус.

Схема ШИМ-регулятора действительно проста, экономична и надежна, но тоже нуждается в небольшой доработке. Дело в том, что, согласно документации, микросхема NE555 имеет максимально допустимое напряжение питания 16 В. А на выходе переделанного адаптера напряжение практически в 2 раза выше, и при подключении схемы таймер однозначно сгорит.

Схема

Решений в данной ситуации несколько. Взгляните на 3 из них:

  1. Использовать линейный стабилизатор, скажем, от 5 до 12 В из семейства 78xx или

построить простой стабилизатор по следующей схеме:

линейный стабилизатор

линейный стабилизатор

  1. Использовать для запитки таймера отдельный адаптер питания, к примеру, зарядку от мобильного телефона. зарядку от мобильного телефона
  2. Намотать дополнительную обмотку на силовом трансформаторе. Дополнить обмотку выпрямителем и небольшим конденсатором на выходе. Намотать дополнительную обмотку

Намотать дополнительную обмотку

Наипростейшим решением будет являться внедрение в схему линейного стабилизатора, к примеру, 7805. Но следует помнить, что максимальное напряжение питания в зависимости от производителя разнится от 24 до 35 В. В этом проекте используется стабилизатор КА7805 с максимальным входным напряжением 35 В по даташиту. Если не удается достать такую микросхему, можно построить стабилизатор всего из трех деталей.

даташит

После сборки нужно проверить ШИМ-регулятор.

На плате адаптера есть 2 активных компонента, которые подвергаются нагреву – силовой транзистор высоковольтной цепи преобразователя и сдвоенный диод на выходе схемы. Они были отпаяны и прикреплены к алюминиевому корпусу. При этом их нужно изолировать от основного корпуса.

Лицевая панель изготовлена из куска пластика.

В схеме адаптера имеется защита от короткого замыкания, но не имеет защиты от переполюсовки. Но это поправимо.

Поскольку в ходе тестирования выходное напряжение адаптера превысило 30 В, цифровой вольтамперметр сгорел. Не допускайте превышения напряжения ни на 1 В. Придется обойтись без него. Ток заряда будет показываться с помощью мультиметра.

даташит

Зарядник получился неплохой – заряжает также без проблем аккумуляторы от шуруповерта.

Зарядник получился неплохой

Зарядник получился неплохой

Автор: АКА КАСЬЯН.

Прикрепленные файлы: СКАЧАТЬ.

 

volt-index.ru

КАК РАЗОБРАТЬ БЛОК ПИТАНИЯ НОУТБУКА

   Многие, как и я, рано или поздно приходят к тому что надо что-то переделать из имеющегося под рукой, и не охота просто с нуля создавать, например, блок питания в целом. Но у каждого валяется без дела один, а то и более ноутбучных блоков, как правило такой блок питания это довольно таки мощный импульсный БП, но вот беда - напряжение на выходе у таких устройств порядка 18-22 вольт, что не совсем и нужно обычному радиолюбителю. Поэтому как есть использовать такой блок не получится.

коробка ноутбучных блоков

   Нужно переделать схему изменив параметры для ШИМа, а для начала его разобрать. Берем в руки блок и как ни старайся если подковыривать даже умело отверткой или медиатарами или другим спец пластиком для вскрытия корпусов ничего не получится, особенно если это блок питания от производителя Самсунг.

КАК РАЗОБРАТЬ БЛОК ПИТАНИЯ

   Все дело в том, что многие производители довольно точно и прочно соединяют обе половинки пластикового корпуса, причем с одной стороны по всему параметру получается выступ, а с другой паз, в который этот выступ по всему периметру и входит, причем все это дело промазано клеем и соединено при температуре выше 60 градусов, при остывание получается весьма прочное соединение, которое даже при падении блока с нескольких метров под своим весом не удастся разрушить, а тем более ковыряния чем либо выше описанным вообще ничего не дадут, разве что надломите края и все поцарапаете, ну или сломаете сам материал.

КАК РАЗОБРАТЬ БЛОК ПИТАНИЯ НОУТБУКА

   Что же делать? Нужно же добраться как-то до платы, фишка проста – берем прочный толстый нож с острым лезвием, желательно что-нибудь строительное или прочный скальпель, ставим на угол и бьем молотком с изрядной силой пару раз, так делаем для каждого из четырех углов, а потом проходимся и по всему периметру тоже постукивая, но с меньшей силой.

КАК РАЗОБРАТЬ БЛОК ПИТАНИЯ в пластмассе

   До этого такие вещи никогда не разбирал, но как видите все получилось идеально и с первого раза! Далее вытаскиваем начинку, и тут главное от радости не начать выдирать металлический экран, который, как правило, обволакивает плату блока. Нужно найти место где она паяется на массу, прогреть мощным паяльником ватт на 40 и оттянуть в стороны затем сняв ее.

Надо РАЗОБРАТЬ БЛОК ПИТАНИЯ НОУТБУКА

   Удалить фольгу, если она там есть, или же пластиковый желтый скотч.

Плата БЛОКА ПИТАНИЯ НОУТБУКА

   Кстати, белый клей, которым залито все вокруг, как полагается легко отходит – достаточно выставить температуру фена на 80-90 градусов погреть с минуту и просто отламывать толстым пинцетом.

Плата ШИМ БЛОКА ПИТАНИЯ

   Все! Теперь плата со всеми элементами в том числе и модулем ШИМ доступна, ищем даташит, и скорее всего в оптопаре на выходе просто пересчитываем делитель и выставляем нужные значения, причем если уменьшаем напряжение, то тока блок даст еще и больше (мощность ведь сохраняется неизменной), можно впаять и простой переменник и снабдив блок вольтметром использовать для какого-то подобия приличного лабораторного БП. Более подробно о их ремонте и схемотехнике читайте далее.

el-shema.ru