Зарядное устройство с токовой стабилизацией. Стабилизатор тока для зарядки автомобильного аккумулятора


Простой стабилизатор напряжения к зарядному устройству

Давно известно, что внутреннее оборудование автомобиля не заряжает полностью аккумуляторную батарею. Для подзарядки используется специальное устройство. Его выбор требует определённых знаний.Автолюбителям, разбирающимся в радиотехнике, будет интересно познакомиться с простым стабилизатором напряжения, который с успехом используется в качестве зарядного устройства.

Выбираем зарядное устройство

Для качественной подзарядки аккумуляторной батареи требуются стабильные напряжение и ток.

Типовое зарядное устройство включает:

• узел питания. Предназначается для получения постоянного напряжения. С этой целью используется понижающий трансформатор или импульсное устройство с выпрямителем;• узел стабилизации тока. Предназначается для поддержания с высокой точностью заданного значения тока зарядки.По рекомендации изготовителей, зарядка производится током 1/10 величины ёмкости аккумуляторной батареи. К примеру, зарядный ток 6 А при ёмкости аккумулятора 60 А/ч;• узел стабилизации напряжения. Предназначается для формирования стабилизированного и регулируемого напряжения.Такое напряжение необходимо на заключительном этапе зарядки.Рекомендуется начинать зарядку током до 50% ёмкости батареи, а затем устанавливать напряжение 14,5 В. Заряжается автомобильный аккумулятор до 14,4 В.

Популярностью у автолюбителей, прежде всего, пользуются несложные схемы стабилизации напряжения.

Выбираем схему стабилизатора напряжения

В зарубежной технической литературе опубликована простая схема стабилизации напряжения. Её использование для подзарядки аккумуляторов, показало высокую эффективность и надёжность.

Устройство собрано на полевом (MOSFET) транзисторе Q1, который выполняет функции регулирующего силового элемента. Схема рассчитана на работу с полупроводником IRLZ44N в ключевом режиме.Устройство, в зависимости от установленного радиатора полевого транзистора, коммутирует токи до 10 А.

В качестве регулируемого стабилитрона U1 используется микросхема TL431.Совместно с переменным резистором RV1 настраивается выходное напряжение схемы. Отечественным аналогом микросхемы считается стабилитрон КР142ЕН19А.

Электролиты C1 C2 C3 на 50 В являются сглаживающими элементами. Они обеспечивают устойчивую работу схемы.

На вход схемы подаётся напряжение от 6 до 50 В, а на выходе формируется требуемое напряжение от 3 до 27 В.Минимальное напряжение 3 В определяется управляющим напряжением полевого транзистора.

Рассеиваемая мощность устройства не более 50 Вт.Для отвода тепла полевой транзистор устанавливается на радиатор с площадью эквивалентной 0,02 м2.Для улучшения теплоотвода применяется термопаста или резиновая подложка.

Соединительные провода подключаются к устройству с помощью двухполюсных колодок.

Печатная плата имеет следующий вид:

Собранное устройство, получается такого вида:

В общем, из недорогих и доступных радиодеталей собрано малогабаритное устройство с большими возможностями.Кстати, некоторые детали взяты с компьютерного блока питания.Желаем удачной сборки.

Автор; АКА КАСЬЯН

xn--100--j4dau4ec0ao.xn--p1ai

Зарядное устройство с токовой стабилизацией

Зарядное устройство со стабилизатором тока

      В этой статье поговорим еще об одном зарядном устройстве для автомобиля. Заряжать будем аккумуляторы стабильным током. Схема зарядного изображена на рисунке 1.

Зарядное устройство с токовой стабилизацией схема, shema2

      В качестве сетевого трансформатора в схеме применен перемотанный трансформатор от лампового телевизора ТС-180, но подойдут и ТС-180-2 и ТС-180-2В. Для перемотки трансформатора сначала его аккуратно разбираем, не забыв при этом заметить какими сторонами был склеен сердечник, путать положение U-образных частей сердечника нельзя. Затем сматываются все вторичные обмотки. Экранирующую обмотку, если будете пользоваться зарядным только дома, можно оставить. Если же предполагается использование устройства и в других условиях, то экранирующая обмотка снимается. Снимается так же и верхняя изоляция первичной обмотки. После этого катушки пропитываются бакелитовым лаком. Конечно пропитка на производстве происходит в вакуумной камере, если таких возможностей нет, то пропитаем горячим способом – в горячий лак, разогретый на водяной бане, бросаем катушки и ждем с часик, пока они не пропитаются лаком. Потом даем лишнему лаку стечь и ставим катушки в газовую духовку с температурой порядка 100… 120˚С. В крайнем случае обмотку катушек можно пропитать парафином. После этого восстанавливаем изоляцию первичной обмотки той же бумагой, но тоже пропитанной лаком. Далее мотаем на катушки по… сейчас посчитаем. Для уменьшения тока холостого хода, а он явно возрастет, так как необходимой ферропасты для склеивания витых, разрезных сердечников у нас нет, будем использовать все витки обмоток катушек. И так. Число витков первичной обмотки (см. таблицу) равно 375+58+375+58 = 866витков. Количество витков на один вольт равно 866витков делим на 220 вольт получаем 3,936 ≈ 4витка на вольт.

Данные трансформатора ТС-180, ТС-108-2, ТС-180-2В, table-1     Вычисляем количество витков вторичной обмотки. Зададимся напряжением вторичной обмотки в 14 вольт, что даст нам на выходе выпрямителя с конденсаторами фильтра напряжение 14•√2 = 19,74 ≈ 20вольт. Вообще, чем меньше это напряжение, тем меньшая бесполезная мощность в виде тепла будет выделяться на транзисторах схемы. И так, 14 вольт умножаем на 4витка на вольт, получаем 56 витков вторичной обмотки. Теперь зададимся током вторичной обмотки. Иногда требуется быстрехонько подзарядить аккумулятор, а значит требуется увеличить на некоторое время зарядный ток до предела. Зная габаритную мощность трансформатора – 180Вт и напряжение вторичную обмотки, найдем максимальный ток 180/14 ≈ 12,86А. Максимальный ток коллектора транзистора КТ819 – 15А. Максимальная мощность по справочнику данного транзистора в металлическом корпусе равна 100Вт. Значит при токе12А и мощности 100Вт падение напряжения на транзисторе не может превышать… 100/12 ≈ 8,3 вольта и это при условии, что температура кристалла транзистора не превышает 25˚С. Значит нужен вентилятор, так как транзистор будет работать на пределе своих возможностей. Выбираем ток равный 12А при условии, что в каждом плече выпрямителя уже будет стоять по два диода по 10А. По формуле:как определить диаметр обмоточного провода, dprovoda

           0,7 умножаем на 3,46, получаем диаметр провода ?2,4мм.

     Можно уменьшить ток до 10А и применить провод диаметром 2мм. Для облегчения теплового режима трансформатора вторичную обмотку можно не закрывать изоляцией, а просто покрыть дополнительно еще слоем бакелитового лака.

     Диоды КД213 устанавливаются на пластинчатые радиаторы 100×100х3мм из алюминия. Их можно установить непосредственно на металлический корпус зарядного через слюдяные прокладки с использованием термопасты. Вместо 213- х можно применить Д214А, Д215А, Д242А, но лучше всего подходят диоды КД2997 с любой буквой, типовое значение прямого падения напряжения у которых равно 0,85В, значит при токе заряда 12А на них выделится в виде тепла 0,85•12 = 10Вт. Максимальный выпрямленный постоянный ток этих диодов равен 30А, да и стоят они не дорого. Микросхема LM358N может работать с напряжениями входного сигнала близкими к нулю, отечественных аналогов я не встречал. Транзисторы VT1 и VT2 можно применить с любыми буквами. В качестве шунта применена полоска из луженой жести. Размеры моей полоски вырезанной из консервной банки (смотрим здесь)– 180×10х0,2мм. При указанных на схеме номиналах резисторов R1,2,5 ток регулируется в пределах примерно от 3 до 8А. Чем меньше номинал резистора R2, тем больше ток стабилизации устройства. Как рассчитать добавочное сопротивление для вольтметра прочитайте здесь.

Об амперметре. У меня, полоска вырезанная по указанным выше размерам, совершенно случайно имеет сопротивление 0,0125Ом. Значит при прохождении через ее тока в 10А, на ней упадет U=I•R = 10•0,0125=0,125В = 125млВ. В моем случае примененная измерительная головка имеет сопротивление 1200 Ом при температуре 25˚С.

Лирическое отступление. Многие радиолюбители, основательно подгоняя шунты для своих амперметров, почему то никогда не обращают внимание на температурную зависимость всех элементов собираемых ими схем. Разговаривать на эту тему можно до бесконечности, я вам приведу лишь небольшой пример. Вот активное сопротивление рамки моей измерительной головки при разных температурах. И для каких условий рассчитывать шунт?

Амперметр для зарядного, foto-1-2

     Это означает, что ток выставленный в домашних условиях, не будет соответствовать току выставленном по амперметру в холодном гараже зимой. Если вам это по барабану, то сделайте просто переключатель на 5,5А и 10… 12А и ни каких приборов. И не бойся, как бы их не разбить, это еще один большой плюс зарядного устройства со стабилизацией тока заряда.

     И так, дальше. При сопротивлении рамки равном 1200Ом и токе полного отклонения стрелки прибора 100мкА нам нужно подать на головку напряжение 1200•0,0001=0,12В = 120млВ, что меньше, чем падение напряжения на сопротивлении шунта при токе 10А. Поэтому последовательно измерительной головке поставьте дополнительный резистор, лучше подстроечный, что бы не мучиться с подборкой.

     Монтаж стабилизатора выполнен на печатной плате (см. фото 3). Максимальный ток заряда для себя я ограничил шестью амперами, поэтому при токе стабилизации 6А и падении напряжения на мощном транзисторе 5В, выделяемая мощность при этом равна 30Вт, и обдуве вентилятором от компьютера, данный радиатор нагревается до температуры 60 градусов. С вентилятором это много, необходим более эффективный радиатор. Примерно определить необходимую площадь радиатора можно по диаграмме. Мой вам всем совет — ставьте радиаторы рассчитанные для работы ПП приборов без куллеров, пусть лучше размеры прибора увеличатся, но при остановке этого куллера, ни чего не сгорит.

Стабилизатор тока, foto-345

     При анализе выходного напряжения осциллограмма его была сильно зашумлена, что говорит о нестабильности работы схемы т.е. схема подвозбуждалась. Пришлось дополнить схему конденсатором С5, что обеспечило стабильность работы устройства. Да, еще, для того, что бы уменьшить нагрузку на КТ819, я уменьшил напряжение на выходе выпрямителя до 18В (18/1,41 = 12,8В т.е. напряжение вторичной обмотки у моего трансформатора равно 12,8В). Скачать рисунок печатной платы. До свидания. К.В.Ю.

Скачать “Зарядное устройство с токовой стабилизацией” Zaryd_stab_tok.rar – Загружено 1618 раз – 16 KB

Дополнение. Аналог LM358 — КР1040УД1
Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:78 330

www.kondratev-v.ru

Самодельный стабилизатор тока для зарядного устройства

Опубликовал admin | Дата 13 июля, 2017

В этой статье пойдет речь о небольшой и простенькой приставке – стабилизаторе тока, для импульсного блока питания, предназначенного в прошлом для питания ЖКИ монитора. С ее помощью можно будет подзаряжать автомобильные аккумуляторы. Эта идея и просьба принадлежит одному из посетителей сайта.

Выходные данные блока питания можно увидеть на фотографии. Двадцать вольт на выходе при токе 3,25 А, это вполне достаточно не только для подзарядки, но и неспешной полной зарядки аккумуляторов.

Блок питания для монитора

А если убрать родной корпус, то улучшится тепловой режим платы ИИП, это даст возможность увеличить ток заряда. Схема стабилизатора тока представлена на рисунке 1.

Регулируемый стабилизатор тока на LM317 схема

Стабилизатор тока реализован на микросхеме LM317, отечественный аналог указан на схеме – КР142ЕН12А. Для увеличения тока заряда применен дополнительный транзистор структуры p-n-p, в данном случае, я испытывал схему с транзистором КТ818Г.

Работа схемы

Аналогичный стабилизатор тока был описан в предыдущей статье «Зарядное устройство для гелиевых аккумуляторов на кр142ЕН12А». В данной статье меня попросили наиболее подробно описать алгоритм работы устройства. И так, схема работает следующим образом. На вход приставки подано напряжение, к выходу подключен заряжаемый аккумулятор. Через устройство начинает течь ток заряда. На резисторе R1, при прохождении тока происходит падение напряжения, равное Iзаряда • R1. Как только это падение напряжения, приложенное к переходу база – эмиттер транзистора VT1, превысит порог в 0,7 вольта, мощный транзистор начнет открываться и весь основной ток заряда, будет течь через переход коллектор – эмиттер этого транзистора. Далее сумма токов, протекающих через регулирующую микросхему и транзистор, будет протекать через резистор R2, от величины которого зависит максимально возможный зарядный ток, когда движок переменного резистора находится в верхнем по схеме положении. На резисторе R2 также создается падение напряжения, которое приложено между выводами 2 и 1 данной микросхемы, т.е. между выходом и управляющим выводами. В данной микросхеме имеется ИОН с величиной в 1,25 вольта естественно с небольшим разбросом этого параметра и все регулировки в ней происходят относительно этой величины. Таким образом, при увеличении падения напряжения на резисторе R2 выше напряжения ИОН – 1,25 В, микросхема отрабатывает таким образом, что ее выходной транзистор начинает закрываться, удерживая выходной ток схемы на определенном уровне. Ток стабилизации в этом случае будет равен Iст = 1,25/R2; Для нашей схемы – 1,25/0,39 ≈ 3,205А. У собранного мной макета схемы, максимальный ток был чуть меньше – 3,16 А. Например, для тока заряда 5А потребуется резистор с величиной сопротивления равной – 1,25 В/5 = 0,25 Ом.

Далее ток течет через диод VD1, так как падение напряжения на прямо смещенном переходе диода мало зависит от проходящего через него тока, то диод в нашем случае играет роль стабилизатора напряжения, часть которого через переменный резистор плюсуется к падению напряжения на резисторе R2. Таким образом, имея возможность изменять напряжение на управляющем выводе микросхемы относительно ее выхода, мы можем управлять величиной тока стабилизации. В моей схеме ток регулировался от 1,16 А до 3,16 А. Минимальный ток можно еще уменьшить, включив последовательно с диодом VD1, еще такой же диод. В этом случае минимальный ток будет равен примерно 0,1… 0,2 А.

Микросхема, транзистор и диод установлены на одном теплоотводе, через слюдяные прокладки. Так как элементов схемы совсем немного, то монтаж можно сделать навесным способом.

Транзистор можно применить любой с током коллектора не менее 8 А и более. Можно применить КТ825 или импортные транзисторы типа TIP107.

Диод тоже любой с прямым током 10А и более.Вроде все. Успехов и удачи. К.В.Ю.

Чуть не забыл, чтобы не усложнять схему, вместо амперметра можно просто для переменного резистора сделать шкалу установки тока заряда.

Скачать статью

Скачать “reguliruemyj-stabilizator-toka-na-lm317” reguliruemyj-stabilizator-toka-na-lm317.rar – Загружено 490 раз – 65 KB

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:2 924

www.kondratev-v.ru

Зарядное устройство для автомобильных аккумуляторов — Поделки для авто

Компьютерный блок питания (КБП) можно легко переделать в зарядное устройство (ЗУ) для аккумуляторов стартерных автомобилей с емкостью до 120А/час.

Для переделки подойдут КБП в которых стоит микросхема ШИМ контроллера TL494 или его аналог К7500 (кстати, буквы зависят от фирмы-производителя, так что достаточно ориентироваться на цифры).Зарядное устройство для автомобильных аккумуляторов

Переделка состоит из 2-х основных шагов. Это получение на выходе напряжения около 15В и добавление регулируемого стабилизатора тока для установки нужного тока зарядки. Т.е. мы получим автоматическое ЗУ, заряжающее стабильным током. По мере зарядки ток будет уменьшаться и в конце будет равен нулю.Зарядное устройство для автомобильных аккумуляторов

КБП имеет несколько выходных напряжений: 3.3В, 5В, 12В. Нам понадобится только шина 12В (желтые провода). Для зарядки авто аккумуляторов требуется напряжение 14.5 -15В, следовательно, нам нужно повысить 12В до этого уровня.Зарядное устройство

Проверяем выбранный КБП на работоспособность. Для его запуска без компьютера надо соединить зеленый провод с черным (земля). Мультиметром проверяем все выходные напряжения, если все в порядке снимаем плату из корпуса и отпаиваем ненужные выходные провода. Оставляем только пару желтых, пару черных и зеленый. Рекомендую использовать достаточно мощный паяльник. для автомобильных аккумуляторов

Далее с помощью мультиметра находим резистор, идущий от первого вывода контроллера 7500 к 12В-ой шине. В моем БП это 27кОм. Затем отпаиваем один конец этого резистора (назовем его Rx) от платы. Берем переменный резистор около 10кОм (мощность неважна), соединяем проводом средний и один из крайних выводов друг с другом и с точкой на плате откуда выпаяли вывод Rx. Другой крайний вывод переменного резистора соединяем с оставшимся в воздухе выводом Rx. Т.о. мы получили последовательное соединение Rx и переменного резистора. Этим переменным резистором мы должны выставить выходное напряжение около 15В.

Стабилизатор или ограничитель тока построен на базе операционного усилителя (ОУ) LM358, впрочем, подойдут любые другие. В корпусе этого ОУ 2 элемента, но нам достаточно одного. ОУ подключен по схеме компаратора, сравнивающего напряжение на низкоомном резисторе R3 с опорным, который задается стабилитрономЗарядное аккумуляторов

Если регулятором R1 мы меняем это напряжение, то компаратор стремится сбалансировать напряжение на входах 2 и 3 изменением выходного напряжения (вывод1), тем самым управляя полевым транзистором. А он управляет током через нагрузку. Полевик должен быть достаточно мощным, т.к. через него проходит весь зарядный ток. Я применил IRFZ44 (можно ставить любой с аналогичными параметрами).Зарядное устройство для автомобильных аккумуляторов

Его надо обязательно поставить на теплоотвод, я просто прикрутил к корпусу. Нарисовал печатную плату для стабилизатора тока и спаял детали.Плата в формате .lay …

Зарядноеаккумуляторов

Теперь соединяем все узлы в соответствии с рисунком и монтируем в корпус.З усо для автомобильных аккумуляторов Зарядное устройство для автомобильных аккумуляторов IMG

На переднюю панель выведены регулятор ограничивающий ток заряда, стрелочный амперметр постоянного тока со шкалой до 10А (можно и цифровой), тумблер замыкающий зеленый провод с землей и выходные клеммы.

Автор; АКА КАсьян

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Зарядное для автоаккумуляторов | Все своими руками

Опубликовал admin | Дата 21 марта, 2016

     Здравствуйте дорогие читатели. Хочу предложить схему зарядного устройства со стабилизацией тока. При разработке схемы предполагалось, что данное устройство будет оставляться в рабочем состоянии без присмотра.

      Схема устройства представлена на рисунке 1. Вообще зарядное состоит из двух частей, стабилизатора напряжения и стабилизатора тока. Стабилизатор напряжения был описан в статье «Блок питания для автомагнитолы 12в », только он собран на транзисторах другой структуры. Из этой статьи можно взять и рисунок печатной платы для данного стабилизатора. Схема стабилизатора напряжения содержит всего два транзистора разной структуры, такая схема обладает триггерным эффектом, при котором при превышении тока нагрузки определенной величины, регулирующий транзистор VT2, резко закрывается, это обеспечивает защиту от коротких замыканий.

Зарядное устройство для автомобильных аккумуляторов, shema

     Выходное напряжение стабилизатора (рис.1) равно 10… 15В. Значение этого напряжения устанавливается с помощью резистора R11. Опорное напряжение стабилитрона определяет минимальный уровень выходного напряжения. При указанных номиналах резисторов и напряжении стабилизации стабилитрона 8,2 В, блок питания имеет следующие параметры:Выходное напряжение…………………… 10… 15ВТок срабатывания защиты………………... 5АТок короткого замыкания………………...0,038АКоэффициент стабилизации схемы определяется усилительными свойствами транзистора VT1. Максимальный ток стабилизации определяется регулирующим транзистором VT2 и ограничен мощностью, рассеиваемой транзистором VT2.     Уровень тока защиты регулируется величиной резистора R9. В качестве выпрямительных диодов можно применить любые диоды с максимальным прямым током в 10А – КД213А; КД201А,Б,В,Г; Д214А. Так как у диодов катод соединен с его корпусом, то их можно установить на одном радиаторе. Так же на радиаторы необходимо установить и регулирующие транзисторы VT2 и VT3. Приблизительно определить необходимую площадь радиаторов можно по диаграмме, которую можно посмотреть в статье «Расчет радиаторов». В качестве R11 можно применить любой резистор переменного сопротивления. Но лучше многооборотный.

     За стабилизатором напряжения следует стабилизатор тока, собранный на транзисторе VT2 и микросхеме DA2.1 — LM358N. Необходимый уровень тока стабилизации устанавливается переменным резистором R13. Датчиком тока является резистор R17. Данный стабилизатор тоже был описан ранее в статье «Зарядное устройство с токовой стабилизацией». Правда, в качестве регулирующего транзистора применен аналог транзистора КТ827, собранный на транзисторах КТ819 и КТ815. Применение регулирующего транзистора в минусовом проводе позволяет не изолировать радиатор этого транзистора от корпуса, или использовать в качестве радиатора сам корпус зарядного устройства, если он металлический конечно.     На втором операционном усилителе микросхемы DA2 собран компаратор блока защиты зарядного устройства от превышения температуры. В качестве датчика температуры используется терморезистор с отрицательным ТКС. В принципе, при возникновении внештатной ситуации вся дополнительная нагрузка ляжет на трансформатор, что приведет к повышению его температуры. Поэтому имеет смысл терморезистор через термопасту прикрепить именно к нему.     Работает эта схема следующим образом. В нормальных условиях, когда температура не превышает предельно допустимую, напряжение на неинвертирующем входе ОУ (вывод 5) больше, выставленного резистором R4, напряжения на инвертирующем входе (вывод 6). В такой ситуации на выходе DA2.2 будет присутствовать напряжение близкое к напряжению питания данного усилителя и светодиод оптотиристора ТО125 — 12,5 светиться не будет. Тиристор будет закрыт. При увеличении температуры величина сопротивления терморезистора RT, начнет уменьшаться, уменьшаться начнет и величина напряжения на неинвертирующем входе операционного усилителя DA2.2 (вывод 5). Как только величина этого напряжения будет меньше напряжения на выводе 6, на выходе этого ОУ напряжение уменьшится практически до нуля. Засветится светодиод оптотиристора, сам тиристор откроется — произойдет планируемое короткое замыкание. Предохранитель сгорит, это приведет к гарантированному отключению всего устройства от первичной сети переменного тока, а это в определенных случаях дорогого стоит. Лучше предохранитель новый купить, чем потом расплачиваться за содеянное. Резистор R2 — резистор положительной обратной связи. За счет его исключается «дребезг» переключения компаратора и возникает необходимый гистерезис между напряжением включения и выключения термореле.     Настройка зарядного устройства заключается в следующем. Берете ваш аккумулятор и заряжаете его по всем правилам. Зарядка должна быть полной, контроль только по плотности электролита с помощью ареометра. После этого замеряете напряжение на его клеммах и такое же напряжение устанавливаете на выходе стабилизатора резистором R11. Напряжение выставляется с точностью до десятых долей вольта. Поэтому для этой цели лучше использовать мультиметр. Добавочный резистор, т.е. его номинал зависит от сопротивления измерительной головки, которую вы найдете. Формулу для расчета добавочного сопротивления можно посмотреть в статье «Как рассчитать шунт и добавочное сопротивление» . И так напряжение выставили, теперь резистором R13 устанавливает необходимый зарядный ток, величину которого контролируем тем же мультиметром. В принципе, встраивать вольтметр и амперметр в устройство нет необходимости. Просто в процессе регулировки выставляете необходимые параметры заряда для именно вашего аккумулятора (одинаковых аккумуляторов не бывает) и все. Все! Подключайте аккумулятор. В первый момент, если он сильно разряжен, ток будет ограничиваться, выставленным вами уровнем, по мере заряда ток будет уменьшаться. После того, как напряжение на клеммах достигнет напряжения полностью заряженного аккумулятора, ток будет совсем не большим. В таком состоянии аккумулятор может находиться сколь угодно долго. Это зарядка аккумулятора по контролю напряжения. Успехов. К.В.Ю. Скачать статью

Скачать “Зарядное для аккумуляторов автомобиля” zaryadnoe-dlya-akkumulyatorov.rar – Загружено 628 раз – 67 KB

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:10 754

www.kondratev-v.ru

зарядные устройства

                           СТАБИЛИЗАТОР ТОКА ДЛЯ ЗАРЯДКИ АККУМУЛЯТОРОВ

Если в вашем хозяйстве есть какие - либо аккумуляторные батареи - вы можете самостоятельно изготовить простые стабилизаторы тока для их зарядки.

Рассмотрим сначала фабричное зарядное устройство типа "Электроника" ЗУ-05: 

Как видно из принципиальной схемы - это устройство собрано по так называемой бестрансформаторной схеме с реактивным сопротивлением (конденсаторы С1 и С2). Данное устройство предназначено для заряда от 1 до 4 аккумуляторов стабильным током 130 миллиампер. Если исключить из схемы один из реактивных конденсаторов - ток заряда уменьшится в два раза и составит 65 миллиампер. Аккумуляторы подключаются параллельно стабилитронам с соблюдением полярности. Отдельно следует сказать о стабилитронах. Эти стабилитроны служат эквивалентами аккумуляторных элементов для того, чтобы можно было заряжать одновременно от 1 до 4 элементов без использования переключателя. Когда элемент вставлен в ЗУ - на нем падает некоторое напряжение (зависит от степени заряда аккумулятора), которое может колебаться от 0,8 до 1,5 вольт (меньшее значение - при разряженном аккумуляторе, большее - при полностью заряженном). Это напряжение меньше, чем напряжение стабилизации стабилитрона. Стабилитрон закрыт. Если в ячейку не вставлен аккумулятор - стабилитрон открывается и пропускает ток. В данной схеме следует применять конденсаторы, рассчитанные на использование в цепях переменного тока (в заводском варианте применены конденсаторы типа К73-17С на рабочее напряжение 250 вольт). Если на место этих конденсаторов ставить конденсаторы, рассчитанные на постоянное напряжение - минимальное рабочее напряжение этих конденсаторов следует выбирать не менее 600 вольт. Резистор R1 служит для разрядки конденсаторов после отключения ЗУ от сети и на работу устройства не влияет. Его номинал может быть от 300 до 820 килоом. Резистор R2 должен иметь мощность рассеяния не менее 1 ватта. Этот резистор обеспечивает питание индикаторного светодиода. Свечение этого светодиода говорит о том, что через аккумуляторы течет ток зарядки...

Перед включением зарядного устройства в сеть - подключите аккумуляторные элементы!  Эксплуатируя данное устройство следует помнить, что его выходные клеммы имеют электрический контакт с сетью. Нельзя касаться во время работы ЗУ к его выходных клеммам  - можно получить удар электрическим током!

Схема более сложного зарядного устройства приведена ниже: 

Стабилизатор представляет собой простое устройство для поддержания стабильного тока на выходе.

Рассмотрим подробно работу стабилизатора: Сетевое напряжение поступает на первичную обмотку трансформатора. Со вторичной обмотки снимается низкое напряжение для питания устройства. Напряжение выпрямляется при помощи диодного моста. Пульсации сглаживаются при помощи конденсатора С1. На элементах R1-VD1 собран стабилизатор напряжения для питания базовой цепи транзистора. При помощи переменного резистора R2 можно регулировать ток стабилизации. При подаче на базу транзистора определенного напряжения - на эмиттере транзистора появляется напряжение, практически равное напряжению смещения на базу (на самом деле напряжение на эмиттере будет несколько ниже - на величину падения на переходе База-Эмиттер). Это напряжение будет оставаться неизменным несмотря на изменение сопротивления в цепи коллектора транзистора (любой источник тока - аккумулятор или гальванический элемент - обладает определенным внутренним сопротивлением, поэтому его можно рассматривать в данной схеме, как сопротивление нагрузки в коллекторной цепи транзистора). По мере заряда аккумулятора  - его внутреннее сопротивление уменьшается, что может привести к значительному увеличению зарядного тока, если не предусмотреть мер по стабилизации тока.

Максимальный ток, который можно получить от такого стабилизатора - зависит от сопротивления резистора R3 в эмиттерной цепи и от напряжения на базе транзистора. Напряжение на базе транзистора в данном случае ограничено при помощи стабилизатора напряжения и не может быть более 3,3 вольта. Резистор в эмиттерной цепи выбран номиналом в 33 ома. Исходя из этих данных - максимальный зарядный ток не может быть более I = U/R  , то есть не более 3,3-0,7(падение напряжения на переходе транзистора)/33 = 78 миллиампер.

О деталях: трансформатор использован готовый - типа ТВК-110Л от лампового черно-белого телевизора. Он имеет три обмотки. Для наших целей нужно использовать обмотку с максимальным сопротивлением (сетевая обмотка) и намотанную толстым проводом (вторичная обмотка). На вторичной обмотке после выпрямления получаем напряжение около 20 вольт, поэтому рабочее напряжение конденсатора С1 должно быть не менее 25 вольт. Емкость этого конденсатора может быть в пределах 200...1000 микрофарад. Вместо стабилитрона КС133А можно применить КС433А. Не стоит использовать стеклянные стабилитроны (с буквой "Г") - режим работы этой детали довольно жесткий - стеклянный стабилитрон может выйти из строя от перегрева. Переменный резистор может быть любого типа, номиналом от 750 ом до 3,3 килоом. Транзистор можно заменить на КТ829. Транзистор обязательно должен быть снабжён пластиной - теплоотводом, площадью не менее 50 квадратных сантиметров. В качестве теплоотвода можно применить медную или алюминиевую пластинку с размерами не менее, чем 5 на 5 сантиметров и толщиной не менее 1 миллиметра. Для уменьшения габаритов теплоотвода - пластинку можно согнуть, например в виде П-образной скобки. Здесь можно использовать и готовый теплоотвод промышленного производства с соответствующей площадью поверхности. Очень удобен  такой вариант, когда задняя стенка корпуса ЗУ изготовлена из металла и является теплоотводом для транзистора (только желательно в этом случае крепить транзистор к теплоотводу через изоляционную пластинку, например из слюды). Резистор R3 должен быть рассчитан на мощность рассеяния не менее 2 ватт. Приблизительно можно подсчитать мощность рассеивающуюся на этом резисторе по формуле P= U*I (падение напряжения на резисторе, умноженное на протекающий в его цепи ток), то есть 3,3(вольта)*0,1(ампера) = 0,33 (ватта). На самом деле, казалось бы, что можно применить резистор с мощностью 0,5 ватта, но при этом температура корпуса резистора будет более 100 градусов, что приведет к нагреву всего блока и, в конечном счете, к понижению надежности всей схемы. Вместо диодного моста можно применить четыре отдельных диода на выпрямленный ток не менее 100 миллиампер, например типа КД105, КД208, Д226 и т.п. Измерительного прибора (А) может и не быть, если на ось переменного резистора надеть ручку - "клювик"  и произвести предварительно градуировку, используя, например, цифровой миллиамперметр типа DT830. Можно также изготовить стабилизатор тока на несколько фиксированных значений, равных 1/10 от ёмкости имеющихся у вас аккумуляторов, но тогда переменный резистор удобнее  заменить подстроечным и вместо резистора R3 использовать несколько штук, произведя предварительно их расчёт на требуемые величины тока стабилизации. Переключать резисторы (во избежании порчи транзистора) нужно так называемым "безобрывным" переключением, фрагмент схемы которого приведён ниже.  Вторую секцию переключателя в данном варианте удобно использовать и для коммутации сетевого напряжения (попросту говоря - использовать в режиме выключателя). 

Окончательно ток стабилизации подстраиваем при помощи резистора в цепи базы на одном из режимов. Точность поддержания тока на остальных режимах будет зависеть от точности выбора соответствующих резисторов.

Для стабилизации тока зарядки вполне можно использовать и микросхемы-стабилизаторы напряжения. Для примера ниже показана схема простого стабилизатора тока на микросхеме КР142ЕН12:

В данной схеме величина сопротивления резистора зависит от тока стабилизации схемы. Примерно величину этого резистора можно подсчитать по формуле (ВАЖНО! Сопротивление получим в Килоомах!!!).

Где In -ток нагрузки в Миллиамперах, 1,2 минимальное напряжение стабилизации данной микросхемы. Если использовать в качестве микросхемы, например 5-вольтовую КРЕН-ку, следует в формуле соответственно изменить данный коэффициент.

Данную схему удобно применить для питания мощных светодиодов... Только не следует забывать об эффективном теплоотводе от корпуса микросхемы, так как микросхема при работе существенно греется... Кстати - для приобретения теплоотводов могу порекомендовать неплохой Китайский сайт www.tinydeal.com  - здесь вы сможете найти недорогие  (правда и небольшие!) теплоотводы и другую полезную мелочь. Сайт работает с клиентами всего Мира, зарегистрированными в системе PayPal. Если вы испытываете затруднения с приобретением товаров на этом сайте - пишите мне на мой е-мэйл и я постараюсь вам помочь. В своей "помощи" я использую только предоплату и платежную систему QIWI. Имейте это ввиду (а также некоторый процент, получамый мною за посредничество).

Несколько слов об "малоомных" резисторах. Их можно получить либо из провода с высоким удельным сопротивлением (например - Нихром), либо путем параллельного соединения нескольких с большими номиналами. Если взять, к примеру, несколько "одноомных" резисторов и включить их в параллель, то получим общее сопротивление в N  раз меньшее, чем у первоисточников... Для примера: Имеем 5 резисторов по 15 Ом, включаем из в парралель  - получаем резистор с номиналом 15/5=3 Ома. При этом еще и суммируется максимальная мощность, которую можно рассеять на этих резисторах...

Для зарядки маломощных аккумуляторов также можно использовать и нетрадиционные источники энергии. Об использовании энергии солнца мы уже с вами беседовали (смотри ссылку). Также возможно использование "бесплатной" природной энергии ветра и воды...

Если задуматься -  для зарядки аккумуляторов можно использовать обычную радиотрансляционную сеть! Простейшая схема такого "девайса"  показана ниже:

Схема представляет собой двухполупериодный выпрямитель, нагруженный на батарею из четырех никель-кадмиевых аккумуляторов. Для исключения перезарядки аккумуляторов в качестве первого диода применен стабилитрон. В качестве второго диода использован светодиод - он также служит и для индикации режима заряда. Конденсатор в данной схеме должен быть на рабочее напряжение не менее 100 (лучше на 200) вольт!

Рисунок печатной платки приведен ниже:

Позже я расскажу вам, как использовать данный принцип в трансляционной радиоточке для приема радиостанции "Маяк".

radiocon-net.narod.ru