Элементы легирующие. Влияние легирующих элементов на свойства стали и сплавов. Свойства легированная сталь
Элементы легирующие. Влияние легирующих элементов на свойства стали и сплавов
В строительстве, промышленности и некоторых направлениях сельского хозяйства можно наблюдать активное применение металлических изделий. Причем один и тот же металл в зависимости от сферы использования раскрывает разные технико-эксплуатационные свойства. Объяснить это можно процессами легирования. Технологической процедуры, в рамках которой базовая заготовка обретает новые качества или улучшается по имеющимся характеристикам. Этому способствуют активные элементы, легирующие свойства которых вызывают химические и физические процессы изменения металлической структуры.
Основные легирующие элементы
Большое, но неоднозначное значение в процессах легирования имеет углерод. С одной стороны, его концентрация в структуре металла порядка 1,2% способствует повышению прочности, твердости и уровня хладноломкости, а с другой – он же снижает теплопроводность и плотность материала. Но даже не это главное. Как и все элементы легирующие, его добавляют при выполнении технологической переработки под сильным температурным воздействием. Однако, далеко не все примеси и активные компоненты сохраняются в структуре после завершения операции. Как раз углерод может оставаться в металле и в зависимости от требуемых характеристик конечного изделия технологи принимают решение о доработке металла или сохранении его текущих качеств. То есть они варьируют уровень содержания углерода посредством специальной операции легирования.
Также в перечень основных элементов легирования можно внести кремний и марганец. Первый вносится в целевую структуру в минимальном проценте (не более 0,4%) и особого влияния на изменение качеств заготовки не оказывает. Тем не менее этот компонент, как и марганец имеет существенное значение как раскисляющее и связующее вещество. Эти свойства легирующих элементов обуславливают базовую целостность структуры, которая еще в процессе легирования делает возможным органичное восприятие других, уже активных элементов и примесей.
Вспомогательные легирующие элементы
В данную группу элементов обычно включают титан, молибден, бор, ванадий и т.д. Наиболее заметным представителем этого звена является молибден, который чаще используют в хромистых сталях. В частности, с его помощью повышается прокаливаемость металла, а также снижается порог хладоломкости. Полезно для строительных марок сталей и применение молибденовых компонентов. Это эффективные легированные элементы в стали, которые обеспечивают динамическую и статическую прочность металлов, устраняя при этом риски внутреннего окисления. Что касается титана, то его применяют нечасто и только для одной задачи – измельчения структурных зерен в хромомарганцевых сплавах. Целенаправленными можно назвать также добавки кальция и свинца. Их используют для металлических заготовок, которые в дальнейшем подвергаются операциям резки.
Классификации элементов легирования
Помимо весьма условного разделения легирующих элементов на основные и вспомогательные, также применяются и другие, более точные признаки различия. Например, по механике воздействия на характеристики сплавов и сталей элементы делятся на три категории:
- Оказывающие влияние с образованием карбидов.
- С полиморфными превращениями.
- С формированием интерметаллических соединений.
Важно учитывать, что в каждом из трех случаев влияние легирующих элементов на свойства интерметаллидов также зависит от сторонних примесей. Например, значение может иметь концентрация того же углерода или железа. Также существует классификация уже элементов полиморфного превращения по характеру воздействия. В частности, выделяются элементы, которые допускают наличие в сплаве легированного феррита, а также их аналоги, способствующие стабилизации оптимального содержания аустенита независимо от температуры.
Влияние легирования на сплавы и стали
Можно выделить несколько направлений, по которым могут быть улучшены качественные характеристики стали. В первую очередь это физические качества, определяющие технический ресурс материала. Легирование в этой части позволяет увеличить прочность, пластичность, прокаливаемость и твердость. Другим направление положительного влияния от легирующих элементов является улучшение защитных свойств. В этом плане стоит выделить сопротивляемость ударам, красностойкость, жаропрочность и высокий порог коррозийного поражения. Для некоторых сфер применения металлы готовят и с учетом электрохимических качеств. В данном случае элементы легирующие могут использоваться для повышения электро- и теплопроводности, сопротивления окислению, магнитопроницаемости и т. д.
Особенности влияния вредных примесей
Типичными представителями вредных примесей являются фосфор и сера. Что касается фосфора, то он при условии соединения с железом способен формировать хрупкие зерна, которые сохраняются после легирования. В итоге полученный сплав утрачивает высокую степень плотности, а также наделяется хрупкостью. Впрочем, соединение с углеродом дает и положительную характеристику, улучшая процесс отделения стружки. Это качество облегчает процессы механической обработки. Сера, в свою очередь, является еще более опасным веществом. Если влияние легирующих элементов на сталь в целом призвано улучшать сопротивляемость материала внешним воздействиям, то данная примесь нивелирует эту группу качеств. Например, ее высокая концентрация в структуре приводит к увеличению истираемости, снижению сопротивления усталости металла и минимизации коррозионной стойкости.
Технология выполнения легирования
Обычно легирование выполняется в рамках металлургического производства и представляет собой внесение в шихту или массу расплава дополнительных элементов, которые рассматривались выше. В результате термической обработки в структуре происходят химические и физические процессы соединения отдельных веществ, а также деформации. Таким образом, элементы легирующие позволяют улучшать качества металлургических изделий.
Заключение
Легирование является сложным технологическим процессом изменения характеристик металла. Сложность его главным образом заключается в первичном подборе оптимальных рецептов для достижения желаемого набора свойств заготовки. Как уже говорилось, влияние легирующих элементов разнопланово и неоднозначно. Один и тот же компонент активной добавки может, например, одновременно улучшать прочность металла и ухудшать его теплопроводность. Задача технологов заключается в разработке выигрышных комбинаций элементов, которые позволят сделать металлическую деталь или конструкцию наиболее приемлемой по своим качествам с точки зрения использования в конкретных целях.
fb.ru
Влияние легирующих элементов на свойства стали. Виды, марки и назначение сталей
Сталь – один из самых востребованных материалов в мире сегодня. Без нее сложно представить любую существующую строительную площадку, машиностроительные предприятия, да и много других мест и вещей, которые нас окружают в повседневной жизни. Вместе с тем, этот сплав железа с углеродом бывает достаточно различным, потому в данной статье будет рассмотрено влияние легирующих элементов на свойства стали, а также ее виды, марки и предназначение.
Общая информация
Сегодня многие марки стали широко применяются практически в любой сфере жизнедеятельности человека. Это во многом объясняется тем, что в этом сплаве оптимально сочетается целый комплекс механических, физико-химических и технологических свойств, которые не имеют какие-либо другие материалы. Процесс выплавки стали непрерывно совершенствуется и потому ее свойства и качество позволяют получить требуемые показатели работы получаемых в итоге механизмов, деталей и машин.
Классификация по назначению
Каждая сталь в зависимости от того, для чего она создана, в обязательном порядке может быть причислена в одну из следующих категорий:
- Конструкционная.
- Инструментальная.
- Специального назначения с особыми свойствами.
Самый многочисленный класс – это конструкционные стали, разработанные для создания разнообразных строительных конструкций, приборов, машин. Конструкционные марки разделяются на улучшаемые, цементуемые, пружинно-рессорные, высокопрочные.
Инструментальные стали дифференцируют в зависимости от того, для какого инструмента они производятся: режущего, измерительного и т. д. Само собой, что влияние легирующих элементов на свойства стали этой группы также велико.
Специальные стали имеют свое разделение, которое предусматривает следующие группы:
- Нержавеющие (они же коррозионностойкие).
- Жаропрочные.
- Жаростойкие.
- Электротехнические.
Группы сталей по химическому составу
Классификацией озвучиваются стали в зависимости от образующих их химических элементов:
- Углеродистые марки стали.
- Легированные.
При этом обе эти группы дополнительно разделяются еще и по количеству содержащегося в них углерода на:
- Низкоуглеродистые (карбона менее 0,3%).
- Среднеуглеродистые (концентрация карбона равно 0,3 – 0,7 %).
- Высокоуглеродистые (карбона более 0,7%).
Что такое легированная сталь?
Под этим определением следует понимать стали, в которых содержатся, параллельно с постоянными примесями, еще и добавки, внедряемые в структуру сплава, с целью увеличения механических свойств полученного в конечном счете материла.
Несколько слов о качестве стали
Этот параметр данного сплава подразумевает под собой совокупность свойств, которые, в свою очередь, обуславливаются непосредственно процессом его производства. К подобным характеристикам, которым подчиняются и легированные инструментальные стали, относятся:
- Химический состав.
- Однородность структуры.
- Технологичность.
- Механические свойства.
Качество любой стали напрямую зависит от того, сколько содержится в ней кислорода, водорода, азота, серы и фосфора. Также не последнюю роль играет и метод получения стали. Самым точным с точки зрения попадния в требуемый диапазон примесей является сопособ выплавки стали в электропечах.
Легированная сталь и изменение ее свойств
Легированная сталь, марки которой содержат в своей маркировке буквенные обозначения вводимых принудительно элементов, меняет свои свойства не только от этих сторонних веществ, но и также от их взаимного действия между собой.
Если рассматривать конкретно углерод, то по взаимодействию с ним легирующие элементы можно условно разделить на две большие группы:
- Элементы, которые формируют с углеродом химическое соединение (карбид) – молибден, хром, ванадий, вольфрам, марганец.
- Элементы, не создающие карбидов – кремний, алюминий, никель.
Стоит заметить, что стали, которые легируются карбидобразующими веществами, имеют очень высокую твёрдость и повышенное сопротивление износу.
Низколегированная сталь (марки: 20ХГС2, 09Г2, 12Г2СМФ, 12ХГН2МФБАЮ и другие). Особое место занимает сплав 13Х, который достаточно тверд для изготовления из него хирургического, гравировального, ювелирного оборудования, бритв.
Расшифровка
Содержание легирующих элементов в стали можно определить по ее маркировке. Каждая из таких вводимых в сплав составляющих имеет своё буквенное обозначение. Например:
- Хром – Cr.
- Ванадий –V.
- Марганец –Mn.
- Ниобий – Nb.
- Вольфрам –W.
- Титан – Ti.
Иногда в начале индекса марки стали стоят буквы. Каждая из них несет особый смысл. В частности, буква "Р" означает, что сталь является быстрорежущей, "Ш" сигнализирует, что сталь шарикоподшипниковая, "А" – автоматная, "Э" – электротехническая и т. д. Высококачественные стали имеют в своем цифро-буквенном обозначении в конце литеру "А", а особо качественные содержат в самом конце маркировки букву "Ш".
Воздействие легирующих элементов
В первую очередь следует сказать, что основополагающее влияние на свойства стали оказывает углерод. Именно этот элемент обеспечивает с повышением своей концентрации увеличение прочности и твердости при снижении вязкости и пластичности. Кроме того, повышенная концентрация углерода гарантирует ухудшение обрабатываемости резанием.
Содержание хрома в стали напрямую влияет на ее коррозионную стойкость. Этот химический элемент формирует на поверхности сплава в агрессивной окислительной среде тонкую защитную оксидную пленку. Однако для достижения такого эффекта в стали хрома должно быть не менее 11,7%.
Особого внимания заслуживает алюминий. Его применяют в процессе легирования стали для удаления кислорода и азота после ее продувки, дабы поспособствовать уменьшению старения сплава. Кроме того, алюминий значительно повышает ударную вязкость и текучесть, нейтрализует крайне вредное влияние фосфора.
Ванадий – это особый легирующий элемент, благодаря которому легированные инструментальные стали получают высокую твёрдость и прочность. При этом в сплаве уменьшается зерно и повышается плотность.
Легированная сталь, марки которой содержат вольфрам, наделена высокой твёрдостью и красностойкостью. Вольфрам хорош также и тем, что он полностью устраняет хрупкость во время запланированного отпуска сплава.
Для увеличения жаропрочности, магнитных свойств и сопротивления значительным ударным нагрузкам сталь легируют кобальтом. А вот одним из тех элементов, который не оказывает какого-либо существенного влияния на сталь, является кремний. Однако в тех марках стали, которые предназначены для сварных металлоконструкций, концентрация кремния должна быть обязательно в пределах 0,12-0,25 %.
Значительно повышает механические свойства стали магний. Его также используют в качестве десульфуратора в случае использования внедоменной десульфурации чугуна.
Низколегированная сталь (марки ее содержат легирующих элементов менее 2,5%) очень часто содержит марганец, что обеспечивает ей непременное увеличение твердости, износоустойчивости при сохранении оптимальной пластичности. Но при этом концентрация этого элемента должна быть более 1%, иначе не получится достигнуть указанных свойств.
Углеродистые марки стали, выплавляемые для различных масштабных строительных конструкций, содержат в себе медь, которая обеспечивает максимальные антикоррозионные свойства.
Для увеличения красностойкости, упругости, предела прочности при растяжении и стойкости к коррозии в сталь обязательно вводят молибден, который также еще и повышает сопротивление окислению металла при нагреве до высоких температурных показателей. В свою очередь церий и неодим применяются для снижения пористости сплава.
Рассматривая влияние легирующих элементов на свойства стали, нельзя обойти вниманием и никель. Данный металл позволяет стали получить превосходную прокаливаемость и прочность, повысить пластичность и ударопрочность и понизить предел хладноломкости.
Очень широко используется в качестве легирующей добавки и ниобий. Его концентрация, в 6-10 раз превышающая количество обязательно присутсвтующего углерода в сплаве, позволяет устранить межкристаллитную коррозию нержавеющей марки стали и предохраняет сварные швы от крайне нежелательного разрушения.
Титан позволяет получить самые оптимальные показатели прочности и пластичности, а также улучшить коррозионную стойкость. Те стали, которые содержит эту добавку, очень хорошо подвергаются обработке различным инструментом специального назначения на современных металлорежущих станках.
Введение в стальной сплав циркония дает возможность получить требуемую зернистость и при необходимости оказывать влияние именно на рост зерна.
Случайные примеси
Крайне нежелательными элементами, которые очень негативно сказываются на качестве стали, являются мышьяк, олово, сурьма. Их появление в сплаве всегда приводит к тому, сталь становится очень хрупкой по границам своих зерен, что особенно заметно при смотке стальных лент и в процессе отжига низкоуглеродистых марок сталей.
Заключение
В наше время влияние легирующих элементов на свойства стали довольно хорошо изучено. Специалисты тщательно провели анализ воздействия каждой добавки в сплаве. Полученные теоретические знания позволяют металлургам уже на этапе оформления заказа сформировать принципиальную схему выплавки стали, определиться с технологией и количеством требуемых расходных материалов (руды, концентрата, окатышей, присадок и прочего). Наиболее часто сталеплавильщики использую хром, ванадий, кобальт и другие легирующие элементы, которые являются достаточно дорогостоящими.
fb.ru
свойства, классификация, маркировка, назначение |
Для начала необходимо определить, какие стали называются легированными. Нержавеющая сталь легированная – это сплав, в составе которого, наряду с железом и углеродом, присутствуют дополнительные элементы (Cr, Si, Ni, Mn и др.). Эти легирующие добавки стали положительно влияют на физико-химические характеристики металла. Благодаря легированию расширяется спектр применения нержавеющего металла.
Классификация легированных сталей
Исходя из процента легирующих элементов в составе, нержавеющая сталь подразделяется на следующие классы:
- Низколегированная сталь (менее 2,5 %)
- Среднелегированная сталь (2,5 – 10%)
- Высоколегированная сталь (более 10%)
В качестве вспомогательных компонентов для низколегированных сталей обычно используется никель, молибден и хром. Одни из самых распространенных марок стали этой группы: 13Х (используется для изготовления ювелирного, гравировального и хирургического оборудования), жаропрочная конструкционная низколегированная сталь 12Х1МФ (применяется в производстве трубопроводов, фланцев, деталей цилиндров и др.) Свойства низколегированных сталей позволяют снизить вес конструкций, сэкономить металл за счет высокого предела текучести, повысить эксплуатационные характеристики конечного изделия.
В состав среднелегированной стали может входить никель, вольфрам, молибден, ванадий. Термическая и механическая обработка позволяет достичь оптимального соотношения прочности, вязкости и пластичности. Среднелегированная сталь незаменима в машиностроении, судостроении, для изготовления различных деталей (сверла, развертки и т.д.) Например, такие популярные марки как 9Х5ВФ, 8Х4ВЗМЗФ2 прокаливаются при более высоких температурах, чем низколегированные стали, они более долговечные и прочные.
Основные добавочные элементы высоколегированных сталей – хром и никель. Благодаря их высокому содержанию металл получает такие уникальные свойства как: резистентность к экстремальным температурам, коррозионная стойкость, жаропрочность. Высоколегированная нержавеющая сталь обязана своими исключительными характеристиками не только химическому составу, но и последующей обработке. Например, сталь марки 12Х18Н10Т, устойчивая к азотной кислоте и другим агрессивным воздействиям, идеально подходит для сварных конструкций; сталь 08Х14МФ используется для производства нержавеющих труб, оборудования пищевой промышленности.
Помимо классификации по содержанию легирующих элементов, легированная сталь различается по структуре (перлитная, мартенситная, аустенитная, ферритная, карбидная), по назначению (особого назначения, конструкционные, инструментальные) и по другим параметрам.
Маркировка легированных сталей
Обозначение легированных сталей осуществляется при помощи букв и цифр, которые указывают на состав сплава. Буквы соотносятся с химическими элементами, входящими в состав легированной стали, а цифры – с их содержанием в процентах. Для расшифровки химического состава легированных сталей можно использовать эту таблицу:
Маркировка | Элемент |
Х | Cr – хром |
Н | Ni – никель |
М | Mo – молибден |
С | Si – кремний |
Г | Mn – марганец |
В | W – вольфрам |
Т | Ti – титан |
Ю | Al – алюминий |
Д | Cu – медь |
Б | Nb – ниобий |
К | Co — кобальт |
Цифры, стоящее в начале марки, показывает среднее содержание углерода (одна цифра – десятая доля процента, две – сотая), а если марка начинается с буквы, то содержание углерода – 1% или выше. Например, 18ХГТ состоит из 0,18% углерода, и примерно по 1% приходится на хром, марганец и титан; 2Х17Н2 – 0,2% углерода, 17% хрома и 2% ниобия. Иногда в маркировке стали встречаются и вспомогательные обозначения (русская буква в начале марки): Р – быстрорежущая, Э – электротехническая, А – автоматная, I – шарикоподшипниковая и т.д.
Обратите внимание на то, что не существует универсальной системы обозначения марок стали. Российские марки нержавеющей стали (ГОСТ) имеют зарубежные аналоги: европейские (EN), американские (AISI), немецкие (DIN).
Свойства и назначение легированных сталей
Наличие легирующих элементов и последующая обработка обеспечивают стали ряд уникальных физико-химических свойств:
- Жароустойчивость
- Износостойкость
- Пластичность
- Коррозионная устойчивость
- Прочность и многие другие.
Благодаря этому легированные стали активно используются для выполнения различных технических задач практически во всех промышленных сферах: медицинское оборудование и инструменты, емкости и оборудование в пищевой промышленности, валы, шайбы, коробки передач, узлы, конструкционные элементы в строительстве и машиностроении т.д.
nercom.by
Свойство - легированная сталь - Большая Энциклопедия Нефти и Газа, статья, страница 1
Свойство - легированная сталь
Cтраница 1
Свойства легированных сталей в рабочих условиях определяются содержащимися в них углеродом и другими элементами, специально введенными в состав. В зависимости от микроструктуры различают стали перлитного, мартенситного, мар-тенситно-ферритного, ферритного, аустенитно-мартенситного, аустенитно-ферритного и аустенитного классов. В котлостроении применяют стали двух классов: перлитного и аустенитного. [1]
Свойства легированных сталей в рабочих условиях определяются содержащимися в них углеродом и другими элементами, специально введенными в состав. В зависимости от микроструктуры различают стали перлитного, мартенситного, мар-тенситно-ферритного, ферритного, аустенитно-мартенситного, аустенитно-ферритного и аустенитного классов. В котлостроении применяют стали двух классов: перлитного и аустенитного. [2]
Свойства низкоотпущенной легированной стали определяются прежде всего количеством находящегося в стали углерода. Сравнительно незначительное изменение содержания углерода сопровождается резким изменением механических свойств. При содержании углерода оксло 0 45 % достигается почти максимальный предел прочности стали; дальнейшее же увеличение процента углерода отмечается лишь снижением ударной вязкости стали. [3]
На свойства легированных сталей оказывает влияние толщина сечения отливок. [5]
Интенсивность изменения свойств легированной стали зависит не только от природы и количества легирующих элементов, введенных в сталь, но и от их взаимодействия с основными компонентами стали - железом и углеродом, а также от взаимодействия между собой, если введено несколько легирующих элементов. Различные легирующие элементы по-разному влияют на состояние и свойства железа и углерода ( цементита), а также на превращения, протекающие в стали при ее термической и химико-термической обработке. [6]
Интенсивность изменения свойств легированной стали зависит от природы и количества введенных в нее легирующих элементов, от их взаимодействия с основными компонентами стали - железом и углеродом, а также от взаимодействия между собой, если введено несколько легирующих элементов. Различные легирующие элементы по-разному влияют на структуру и свойства железа и углерода ( цементита), а также на превращения, протекающие в стали при ее термической и химико-термической обработке. [7]
Типичный пример изменения свойств легированной стали 37ХНЗА после ВТМО и НТМО приведен на рисунке. [8]
После закалки на мартенсит и низкого отпуска свойства легированной стали определяются концентрацией углерода в мартенсите. [9]
Все вместе взятое приводит к тому, что свойства легированных сталей при одинаковом отпуске отличаются от углеродистых. При этом чем более сталь легирована, тем выше прочность и ниже пластичность и вязкость. [11]
Карбиды железа и легирующих металлов, особенно тугоплавких - вольфрама, титана существенно определяют свойства легированных сталей, придавая им твердость, износостойкость. [12]
Из таблицы видно, что магнитные свойства сплавов алии и алнико ( алюминий, никель, кобальт) значительно превосходят свойства магнитнотвердой легированной стали. Неслучайно поэтому эти сплавы и особенно алии, как не требующий для своего изготовления дорогостоящего кобальта, получают все расширяющееся применение в технике. [13]
Карбиды, образованные легирующими элементами ( так же как и Fe3C), имеют высокие температуры плавления и твердость; наибольшая твердость у фаз внедрения. Многие свойства легированных сталей определяются процессами растворения карбидов при нагреве и выделения их при охлаждении; их величиной, формой и расположением. [14]
Фазовый состав ситалла, тип основной кристаллической фазы определяют термические, электрические, химические и другие свойства ситаллов. Твердость и износостойкость ряда ситаллов значительно превышают свойства легированных сталей. [15]
Страницы: 1 2
www.ngpedia.ru
Какими свойствами обладают легируемые стали?
Известно, что металлы с высокой степенью чистоты (99,99 и более процентов чистого вещества) обладают низкой прочностью, что затрудняет их использование. Исключение составляют алюминий и медь, применяемые в электротехнике. Стали же, в связи с их функционалом, должны обладать жесткостью, износостойкостью, твердостью, а также в ряде случаев пластичностью и упругостью, поэтому железо в чистом виде для их создания непригодно.
Легируемые стали от обыкновенных отличаются присутствием искусственно введенных добавок, которые предопределяют те или иные свойства будущего сплава. Так, в рядовой углеродной стали содержатся в тех или иных пропорциях «зерна» феррита, цементита и перлита. При введении легирующих элементов чаще всего сокращается количество углерода в перлите (увеличивается прочность стали).
Легируемые стали за счет введения дополнительных веществ часто имеют искаженную кристаллическую решетку, что может обеспечивать дополнительную вязкость (при измельчении зерен перлита и феррита), уменьшение внутреннего напряжения, снижение вероятности появления трещин при закалке или увеличение глубины прокаливания материала и др.
Свойства легированной стали напрямую зависят от дополнительных компонентов. К примеру, элементы хром и никель спасают металлические детали от коррозии, марганец повышает сопротивляемость ударам, увеличивает износостойкость и твердость. Такой элемент, как кремний, позволяет изделиям лучше противостоять воздействиям кислот, а кобальт увеличивает жаропрочность.
Легируемые стали по химическому составу делятся на высоко- , средне- и низколегированные (содержание добавок составляет более 10%, 2,5 – 10% и менее 2,5% соответственно). В массовом порядке выпускаются среднелегированные стали (дополнения составляют около 5-6%) перлитной структуры. Остальные структурные композиции сплавов (мартенситная, карбидная, аустенитная, ферритная) встречаются реже.
Для материалов такого типа, как и для других промышленных изделий, существует свой ГОСТ. Легированные стали классифицируются по государственным стандартам № 4543 – 71, из которых можно узнать количество дополнительных компонентов в стали той или иной марки. Например, хромомарганцовоникелевый сплав с титаном и молибденом образца 25ХГНМТ имеет в своем составе до 0,29% углерода, до 0,37% кремния, до 0,8 процента марганца, до 0,6% и 1,10% хрома и никеля (соответственно), до полупроцента молибдена и до 0,09 процента титана. Помимо сортамента и технических требований, ГОСТ содержит полные данные по методам испытания продукции, правилам приемки, транспортировки, упаковки и др.
Легируемые стали также подразделяются на несколько групп по своему назначению: конструкционные (применяются в машиностроении, сооружении мостов, вагонов, нефтегазопроводов, рессор, пружин и др.), инструментальные (из них выполняют режущие инструменты, вроде сверл, напильников, пил, фрез и др.) и стали специального назначения, имеющие высокую стойкость против коррозии электрохимического типа.
fb.ru
Структура, свойства, применение легированных сталей.
Московский государственный технический
университет им. Н.Э.Баумана
Калужский филиал
Е.В. Акулиничев
Методические указания к лабораторным работам по курсу «Материаловедение»
Под редакцией проф. Лебедева В.В.
Калуга 2002 г.
УДК 669.01
Данное методическое указание издается в соответствии с учебным планом
специальностей 200100; 320700; 120100; 120500; 120200; 170900; 311300;
Указание рассмотрено и одобрено: кафедрой «Материаловедение»
Протокол № ________от________
__________________зав. кафедрой В.Г. Косушкин
методической комиссией Калужского филиала
Протокол № ________от________
Председатель методической
__________________комиссии А.В.Максимов
Рецензент ____________________доцент кафедры М2-КФ
Г.В. Орлик
Автор _______________________ ст. преподаватель Е.В.Акулиничев
Аннотация.
В методических указания рассматривается роль легирующих элементов на формирование структуры и свойств, классификация легированных сталей по структуре после нормализации. Приводятся сведения о свойствах и применении сталей различных структурных классов.
Лабораторная работа №10 Структура, свойства, применение легированных сталей
Цель работы: Изучить микроструктуру некоторых легированных сталей и установить связь между химическим составом, структурой и свойствами.
Задание и порядок выполнения работы;
Зарисовать С-кривые для сталей разных структурных классов и кратко описать влияние легирующих элементов на положение С-кривых, а также на положение мартенситных точек М я и М к.
Изучить под микроскопом и схематично зарисовать микроструктуру сталей перлитного, мартенситного, аустенитного, ферритного и карбидного классов в нормализованном состоянии,
Под каждым рисунком указать марку стали, её структурный класс, структурные составляющие.
Выписать в виде таблицы марки исследуемых сталей, их химический состав, рекомендуемые режимы термической обработки, изменение структуры при термообработке, а также свойства и примерное назначение (см. табл.5).
Кратко описать, какова роль легирующих элементов в исследуемых марках сталей.
Зарисовать схему термической обработки быстрорежущей стали в координатах « температура-время»,
Описать особенности термической обработки и изменения структуры и свойств, происходящие при термообработке.
Необходимые материалы и оборудование
Комплект микрошлифов;
Металлографический микроскоп МИМ - 7;
Легированные стали
Легированными называют стали, в которые вводятся специальные легирующие элементы, способные улучшать механические, технологические, эксплуатационные свойства, а в некоторых случаях придавать стали особые физические или химические свойства.
Легирующие элементы могут растворяться в феррите, аустените., цементите, образовывать специальные карбиды (карбиды легирующих элементов в отличии от карбида железа) или интерметаллидные соединения с железом и между собой, например, FeCr, FeV и т.д.
Растворяясь в аустените или феррите, легирующие элементы упрочняют эти фазы, делают их более устойчивыми против распада при
нагреве и охлаждении, изменяя температуры фазовых превращений и структуру сталей.
studfiles.net
Влияние легирующих элементов на свойства стали. Основные легирующие элементы :: SYL.ru
Влияние легирующих элементов на свойства стали очень велико. Грамотно используя разнообразные добавки, можно получить самый разный материал, с самыми различными свойствами. Однако чтобы успешно использовать легирующие элементы, необходимо знать, что это такое, как они работают и как называются.
Общее описание веществ
Итак, как уже было сказано, влияние легирующих элементов на свойства стали велико. Что же это за элементы такие? Это вещества, которые вводятся в структуру стали и влияют на ее физические и химические характеристики. Материал, который получен в результате такого вмешательства, называется легированным. Сам же процесс – это технологическая процедура, основная задача которой - это улучшение или изменение изначальных характеристик сырья. Именно благодаря этой процедуре удается изменять любые свойства стали, делая ее пригодной для использования практически в любой сфере деятельности.
Легирующие элементы первого порядка
Естественно, что имеется несколько групп веществ, которые могут оказывать какое-либо действие на материал. В зависимости от степени использования и важности есть основные и вспомогательные реактивы. Влияние легирующих элементов на свойства стали из основной группы очень большое.
Наиболее распространенным считается углерод. Несмотря на то что он используется практически в любой процедуре, его влияние не совсем однозначное. С одной стороны содержание этого вещества в структуре около 1,2% улучшает такие качества, как прочность, твердость и хладноломкость. Однако с ростом этих свойств ухудшаются другие, к примеру, теплопроводность и плотность сырья. Кроме того, даже эти показатели не считаются главными. Как и введение любого другого вещества, добавление углерода в состав стали сопровождается определенной операцией. И вот здесь возникает важная разница. В результате этой процедуры не все реактивы способны сохранить свои компоненты в изначальной форме, некоторые просто теряются. Углерод же, в свою очередь, сохраняется полностью. Другими словами, во время проведения процедуры у операторов есть возможность полного контроля и регулирования количественного содержания этого вещества в структуре.
Другие вещества первой группы
Углерод – это не единственный легирующий элемент, влияющий на свойства стали сильнейшим образом. К основной категории относят также кремний и марганец. Хотя стоит отметить, что, к примеру, добавление кремния всегда очень минимальное, примерно 0,4%, а особых изменений этот реактив в структуру не вносит. Он используется в качестве основного окисляющего и связывающего вещества. Другими словами, эти компоненты являются связующим звеном, которое позволяет добавлять в состав стали другие важные компоненты таким образом, чтобы в итоге получилась целостная и прочная структура.
Элементы второго порядка
Количество веществ, входящих в эту группу, значительно больше. Влияние легирующих элементов на структуру стали из этой группы может быть самым разнообразным. Одним из наиболее используемых веществ стал молибден. Чаще всего эта добавка используется в хромистых сталях. Введение этой присадки значительно влияет на две характеристики стали – это увеличение прокаливаемости, а также значительное понижение порога хладноломкости. Чаще всего стали с содержанием молибдена используются строительной промышленностью. Кроме того, с его помощью создаются молибденовые компоненты. Эти вещества считаются очень эффективными, так как при добавлении их в материал они гарантируют динамическую, а также статическую прочность сырья. В то же время эти компоненты значительно уменьшают вероятность внутреннего окисления.
Еще одним представителем второй категории легирующих компонентов стал титан. Применение этой присадки довольно узкое, а используется она лишь в паре с хромомарганцевыми сплавами. В таких случаях титан способствует измельчению структурных зерен в этом материале. Содержание легирующих элементов, таких как кальций и свинец, к примеру, способствует тому, что процедура резки стали будет проходить гораздо легче. Потому и используются они лишь в тех металлических заготовках, которые после производства нужно будет резать на несколько частей.
Классификация реактивов
Стоит сказать, что кроме условного разделения на такие две категории, как основные и дополнительные элементы, существует более точная классификация. К примеру, это может быть связано с таким признаком, как степень механического воздействия на структуру вещества. По этому признаку все элементы можно разделить на три группы:
- влияние элементов, в результате которого образуются карбиды;
- элементы, оказывающие полиморфное влияние на сталь;
- элементы, введение которых формирует интерметаллические соединения.
Однако здесь очень важно отметить, что влияние реактивов из любой категории этого класса будет зависеть еще и от того, какие сторонние присадки будут присутствовать в сплаве. Кроме того, если углубляться в классификацию легирующих элементов в сплавах, то стоит сказать, что степень полиморфного влияния также можно разделить на несколько групп по характеру их воздействия на материал.
Общее описание улучшений посредством легирования
Если говорить в общем, то имеется несколько категорий, по которым можно разделить все легирующие элементы. Одни будут значительно влиять на механические качества материала, улучшая его технический ресурс. Чаще всего улучшаются такие показатели, как прочность, твердость, пластичность или же прокаливаемость. Еще одним направлением, на которое оказывают влияние эти элементы, являются защитные свойства. Легированная сталь отличается от обычной тем, что она значительно лучше противостоит ударам, у нее значительно выше красностойкость, повышена жаропрочность, а также улучшена стойкость к коррозии.
Некоторые сферы деятельности человека требуют улучшения таких качеств металла, которые можно отнести к электрохимическим. Если необходимо улучшить эту составляющую, то чаще всего акцентируют внимание на повышение электро- и теплопроводности, повышают сопротивляемость к окислению веществ.
Вредные присадки
Естественно, что любой процесс сопровождается еще и негативной стороной. Для легированных сталей такой стороной стало появление фосфора и серы, которые также относятся к легирующим реактивам. Однако от них стараются избавляться, а не добавлять в структуру. К примеру, наличие фосфора в составе железа сохранится даже после того, как пройдет весь процесс легирования. А взаимодействие этих двух компонентов вызывает хрупкость зерен стали. В результате продукт будет иметь более низкую прочность, а также повышенную хрупкость. Хотя стоит отметить, что если будут соединяться элементы фосфора и углерода, то будет улучшаться процесс отделения стружки, что поможет в дальнейшем легче обрабатывать сталь. Поэтому минимальное содержание фосфора все же присутствует в составе сплава.
Из основных легирующих элементов, которые считаются вредоносными, вторым стала сера. Стоит отметить, что содержание этой примеси еще хуже, чем фосфора. В частности это обусловлено тем, что сера нивелирует сопротивляемость металла внешним нагрузкам. Это значит, что наличие этого реактива в составе стали сделает ее менее устойчивой к коррозии, значительно повысит истираемость, а также снизит сопротивляемость усталости металла.
Как проходит легирование
Чаще всего процесс легирования проходит на металлургическом производстве. В расплавленную массу или же шихту добавляют необходимое количество тех веществ, которые были описаны выше. В результате последующей термической обработки происходит процесс соединения отдельных реактивов в цельную структуру и некоторая деформация. Таким образом, происходит улучшение качества сплава.
Подробное описание элементов
Далее будет представлена более подробная характеристика легирующих элементов.
Название легирующего элемента | Свойства сплава |
Хром | Наличие этого вещества в составе сплава увеличивает его прочность и твердость, однако несколько снижается пластичность. Влияет на увеличение такой характеристики, как стойкость к коррозии. Если добавить более чем 13% хрома в структуру, то материал перейдет в группу нержавеющих сталей. |
Никель | Введение этого компонента также влияет на увеличение сопротивляемости коррозии. Повышается прочность и пластичность сырья. Увеличивается степень прокаливаемости, а также изменяется коэффициент теплового расширения. |
Вольфрам | Присадка в виде вольфрама дает толчок к образованию таких веществ, как карбиды. Эти элементы сильно влияют на такие свойства, как красностойкость и твердость. Кроме того, устраняет процесс роста зерен во время нагрева, а также убирает хрупкость, возникающую во время отпуска изделия. |
Ванадий | Так же, как и хром, увеличивает прочность и твердость, однако не вызывает ухудшения пластичности. Измельчает зерно. Способствует повышению плотности стали, так как выступает в роли окислителя. |
Кремний | Если ввести в состав стали более 1% кремния, то это значительно увеличит прочность и сохранит вязкость материала. Также с ростом процентного содержания реактива будет увеличиваться электрическое сопротивление. |
Марганец | Влияние марганца на свойства стали будет происходить лишь в том случае, если его содержание будет также 1% или более. Будет расти твердость, стойкость к износу, повышаться стойкость к ударным нагрузкам. При этом пластичность материала останется прежней. |
Кобальт | Способствует повышению жаропрочности и магнитным свойствам сырья. |
Молибден | Усиливает такие характеристики, как красностойкость, упругость и предел прочности. Кроме того, увеличивает сопротивление окислению при повышенных температурах. |
Титан | Улучшает прочность, а также плотность стали. |
Ниобий | Добавление ниобия усиливает стойкость к окислению. |
Алюминий | Способствует измельчению зерна. |
Медь | Используется для сталей строительного предназначения. Улучшает стойкость к коррозии. |
Цирконий | Введение циркония измельчает зерно, а также позволяет получать в результате обработки материал с заранее заданной зернистостью. |
Также стоит добавить, что имеется обозначение легирующих элементов, которое служит для того, чтобы можно было быстро понять, какие именно вещества использовались для улучшения структуры.
Что происходит при введении реактивов?
Не стоит думать, что добавление таких веществ не влияет на взаимодействие их между собой. Чем больше вводится разнообразных легирующих веществ, тем сложнее протекает этот процесс. Введение новых элементов создает новые фазы, изменяет процесс термической обработки, приводит к созданию новых структурных составляющих. Также здесь стоит отметить, что все элементы находятся в разном положении. Некоторые находятся в свободном состоянии (медь, свинец), некоторые образуют интерметаллидные соединения – металл-металл и т. д.
Мартенситные стали
Имеется такой вид стали, который относят к мартенситному. Введение определенных легирующих элементов в состав такого материала будет сказываться довольно негативным образом. К примеру, марганец, молибден или хром будут снижать мартенситную точку нагрева, а также способствовать увеличению аустенитного остатка. Эти качества будут негативно сказываться на конечном качестве материала после закалки.
Отпуск сырья
Присутствие легирующих элементов также оставит свой отпечаток и на отпуске стали. Большое количество реактивов будет уменьшать скорость превращения и повышать температуру, требуемую для превращения. По этой причине все легированные сплавы отпускаются при температуре на 100-150 градусов выше, чем обычные.
Подведение итогов
Процесс легирования – это сложный технологический процесс, который используется для улучшения или изменения изначальных характеристик стали. Во время этой процедуры используются основные легирующие элементы или второстепенные. Могут использоваться реактивы из обеих групп сразу. Также стоит помнить о том, что добавление некоторых элементов будет не только улучшать определенные характеристики, но и ухудшать другие. А потому прежде, чем приступить к данному процессу, необходимо проводить тщательные расчеты. Для выполнения этой задачи на заводах и фабриках присутствуют технологи, которые устанавливают состав для каждой марки стали, а также точно определяют количество, какое необходимо добавить в массу, чтобы достичь нужного эффекта.
www.syl.ru