Что происходит с двигателем во время горения газа? Температура горения пропана


Температура горения газа в газовой плите

В нашей стране, богатой таким ресурсом, как природный газ, довольно сильно распространено использование бытовых приборов, работающих на «голубом топливе». Оно применяется как для обогрева, так и для приготовления пищи. Образующееся при сгорании газа тепло прекрасно подходит для приготовления пищи на газовой плите, а максимальная температура горения будет зависеть от качества применяемых смесей.

Газовая плита

Используемое топливо

Газ, подаваемый в магистрали жилого дома, обычно на девяносто восемь процентов состоит из метана. Остальной объем занимают:

  • незначительные примеси серы;
  • углекислый газ;
  • азот.

При воспламенении эта смесь выдает шестьсот сорок пять – семьсот градусов Цельсия. Температура самой газовой плиты может подниматься от восьмисот до девятисот градусов.

Такой солидный нагрев требует от пользователя соблюдения мер безопасности и присмотра за плитой. Небрежное обращение с устройством может привести к воспламенению или даже взрывам.

При подключении к плите газового баллона используется сжиженный газ. Для его получения бутан смешивают с пропаном в соотношении 65 на 35 процентов. Другой вид смеси может содержать 85% бутана и 15% пропана. При сгорании этого топлива температура пламени не поднимается выше тысячи градусов.

Горит конфорка

Определение температурного режима

Выяснить значение нагрева бытового устройства поможет знание определенных параметров. К примеру, включенный на максимум вентиль газовой духовки раскаляет ее до двухсот восьмидесяти градусов. Средний огонь разогревает печь до двухсот двадцати, а при минимальной подаче газа до ста шестидесяти. Помимо этого, можно ориентироваться по закипанию различных жидкостей:

  • питьевая вода закипает при ста градусах;
  • оливковое масло при двухстах пятидесяти;
  • подсолнечное масло при двухстах;
  • соевое и кукурузное масло при ста пятидесяти градусах цельсия.

Закипание воды

С развитием бытовой техники такие неточные способы уходят в прошлое. Сверхчувствительные термометры и датчики, которыми оснащена современная печь, с точностью до градуса отображают температуру пламени. Это позволяет регулировать его и добиваться идеальных условий для приготовления изысканных блюд.

Использование газа в качестве топлива вполне оправдано. Экологически чистый, он не наносит вред окружающей среде при сгорании. Всегда помните о технике безопасности при использовании «голубого топлива» — халатное обращение с огнем может причинить вред здоровью. При выборе газовой плиты обязательно обращайте внимание на наличие функции «газ-контроль».

tehnika.expert

Что происходит с двигателем во время горения газа?

За последние 10 лет технологии в газовом оборудовании сделали колоссальный прорыв, и все детские болезни ушли в прошлое. Газовое оборудование абсолютно нормально работает на всех двигателях и при нормальной эксплуатации ресурс двигателя зачастую выше. При нынешнем развитии технологий ГБО, можно смело заявлять о возможности установки газового оборудования на любой двигатель внутреннего сгорания (вопрос только в том, является это обоснованным с экономической точки зрения)...    Многократные исследования, которые начинаются с 60-х годов прошлого века подтверждают факт, что скорость горения газа (пропан-бутана) практически сопоставима с бензиновой, однако присутствует одна важная физическая характеристика газа: газ, до 5-го поколения ГБО, попадает в камеру сгорания в испаренном виде (в 5-м поколении ГБО он испаряется во впускном коллекторе). "Ну и что...", многие скажут, но будут не правы. Жидкий бензин, попадая на впускные клапана, на стенки цилиндра и поршень, испаряется и так же поглощает температуру. При повышенных нагрузках на двигатель это свойство часто используется автомобильными конструкторами, чтобы снять термо нагрузку с двигателя (при этом растет расход бензина пропорционально скорости). По этому при повышенных нагрузках (не скоростях) газ не способен так же хорошо снимать температурную нагрузку в двигателе. В таком случае это может привести к более быстрому износу клапанов и седел в головке блока цилиндра.   КАК ЭТО ПРОИСХОДИТ НА ПРАКТИКЕ:  Вы часами едете на скоростях свыше 150 км в час, при этом кратковременные обгоны не в счет. Двигатель работает в режиме повышенной нагрузки в котором, на бензине, подается топливо в излишке(богатая смесь) чтобы "охладить" поршневую группу. Газ на это не способен и металл начинает нагреваться до более высоких температур. Это приводит к тому, что  металл становиться менее прочным и процесс износа ускоряется.    Машины, которые ездят регулярно на трассе быстро, без дополнительного наблюдения, которое производится при регламентном обслуживании ГБО, могут возыметь определенные сложности через 70-100 тыс. км пробега в виде тяжелого запуска двигателя/вибраций на холостом ходе и впоследствии прогара клапанов. А вот автомобили, чья среда обитания в городе таких проблем практически не имеют.     ПРИ РЕШЕНИИ УСТАНОВИТЬ ГБО ГЛАВНОЕ ЗАПОМНИТЬ ВАЖНЫЙ МОМЕНТ: Газовое оборудование вы ставите, чтобы экономить! Для спортивной езды(как стиля вождения) газ не подходит. Чтобы избежать прогара клапанов при езде на газе, вам просто необходимо избегать повышенных скоростей.      Повышенные скорости для бюджетных и среднего класса автомобилей - это 135+ км\час Повышенные скорости для автомобилей премиум класса 150-170 км\час   Для автомобилей немецкого автопрома 190-220 км\час     Почему у немецких автомобилей не прогорают клапана\нет сложностей с усадкой клапанов на газе?   Все очень просто. В Германии очень важной частью инфраструктуры являются автобаны на которых вы можете ехать с любой скоростью часами, пока у вас не закончится топливо... Даже, к примеру, когда вы заезжаете на заправку на автобане, для удобства, все топливные колонки настроены на заправку "до полного" и клиент сам контролирует то количество топлива, которое ему необходимо.    При этом "честность" клиента контролируется десятками видеокамер на каждой колонке...   Так вот немецкие автопроизводители заведомо зная о потенциальных возможностях скоростных режимах в своей стране, закладывают значительный запас прочности в двигатели.     Какие возможные технические решения для снижения рисков прогара клапанов при езде на газе?     Решение №1 Исключение механических и электронных погрешностей ГБО   В газовом оборудовании BRC, благодаря тому, что все компоненты были разработаны одним производителем, стало возможным использование очень сложных и тонких алгоритмов, которые позволяют избежать проблем с клапанами, а именно:   1. Высокоточная электроника точно и быстро производит расчет необходимой порции газа для каждого отдельного цилиндра   2. Газовый редуктор точно и стабильно обеспечивает подачу подогретого должным образом газа при постоянном давлении.   3. Газовые форсунки не подвержены загрязнению и тем самым сохраняют свои первоначальные параметры многие годы (но помните, что нужно периодично...раз в 10 тысяч км производить плановую замену фильтров). Так как в газовом блоке управления содержится информация о параметрах производительности форсунки, возможно применение очень интересного алгоритма сохранения клапанов (головки блока цилиндра)...     Решение №2 Внедрение специальных алгоритмов в газовой электронике   Это очень интересный момент, который раньше практиковался в ручном режиме с меньшей точностью из-за того, что использовались постоянно разные комплектующие, с разбросом характеристик... итак...   В электронике газового оборудования BRC было применено два очень точных и продуманных алгоритма.     Алгоритм №1 VSR - Valve Seat Recession ( дословно "усадка седел клапанов")        Суть данного алгоритма в том, что установщик выставляет(если знает что и как делать) порог оборотов и нагрузки двигателя, после которых газовый блок управления ГБО начинает замещать часть газа и подавать вместо него порцию бензина. Внимание: двигатель не переходит на бензин выше определенных оборотов...вместо этого происходит подача микро доз бензина и только при достижении определенной нагрузки. Этот алгоритм возможно реализовать только, если вы знаете точную дозировку газовой форсунки, характеристики редуктора. С ГБО BRC это возможно.    Так же благодаря этому режиму возможна установка ГБО на скоростные/спортивные автомобиля без ущерба ресурсу.      Алгоритм №2 Leaning in open loop strategy (дословно "обеднение смеси при разорванной петле" лямбда регулирования)          Помните, как я писал выше о методах снятия температурных нагрузок на бензине? Подавая в избыточном количестве бензин, он будет отбирать тепло с мест, где слишком жарко(во время испарения). На газе этого сделать эффективно не удастся (на 6-м поколении ГБО это возможно), так как в камеру сгорания он попадает уже испаренным. При этом в прямом смысле газ при повышенных нагрузках вылетает в выхлопную трубу и нагружает катализатор (который должен дожечь избыточное топливо).        Суть данного алгоритма в том, что установщик может убрать излишки газа в режимах повышенных нагрузок, а газовая электроника это сможет четко реализовать.        Для наглядности поясню, что на некоторых автомобилях речь идет о 20...а иногда и о 30% уменьшения расхода на газе на режимах разгона и повышенной нагрузке!!! Именно поэтому на ГБО BRC, возможно очень точно настроить параметры расхода газа. А по большому счету цель заказчика, который решил установить ГБО - экономить на топливе и не иметь головной боли с газовым оборудованием.     ...и самое последнее...   Газовое оборудование возможно настроить только с использованием OBD сканера и только в движении.   Регулировка ГБО в статике не дает гарантии аккуратной настройки всех параметров и расхода           Так же возможен вариант применения динамометрического стенда с замерами мощности и крутящего момента...но при наличии хорошей трассы, вы получаете дополнительно такие вводные параметры, как свежий воздух, лобовое сопротивление при повышенных скоростях и реальное сопротивление качению. При этом двигатель работает в штатных нагрузках.

rosavtogas.ru

Цены: Температура пропана жидкого | Стоимость газификации домов, дач, коттеджей в Москве и Московской области

1 О пропан-бутане. Пропан-бутановая смесь обладает огромным коэффициентом большого расширения водянистой фазы, который для пропана составляет 0,003, а для бутана — 0,002 на 1&deg,С увеличения температуры газа. Для сопоставления: коэффициент большого расширения пропана в 15 раз, а бутана — в 10 раз, больше, чем у воды. Техническими нормативами и регламентами устанавливается, что cтепень наполнения резервуаров и баллонов находится в зависимости от марки газа и разности его температур во время наполнения и при следующем хранении. Для резервуаров, разность температур которых не превосходит 40&deg, С, степень наполнения принимается равной 85%, при большей разности температур степень наполнения должна понижаться. Баллоны заполняются по массе в согласовании с указаниями «Правил устройства и неопасной эксплуатации сосудов, работающих под давлением».

Температура пропана жидкого

Хим состав сжиженных углеводородных газов различен и находится в зависимости от источников их получения. Сжиженные газы из попутных неф&shy,тяных и газоконденсатных месторождений состоят из предельных (насыщенных) углеводородов — алканов, имеющих общую хим формулу С n Н 2n+2 . Основными компонентами этих углеводородов являются пропан и бутан. Неприемлимо наличие в сжиженном газе в значимых количествах этана и метана (они резко наращивают упругость насыщенных паров), пентана и его изомеров (так как это тянет за собой резкое понижение упругости насыщенных паров и увеличение точки росы). Сжиженные газы, получаемые на предприятиях в процессе переработки нефти, не считая алканов содержат непредельные (ненасыщенные) углеводороды — алкены, имеющие общую хим формулу С n Н 2n (начиная с n = 2). Не считая пропана и бутана, в состав СУГ заходит малозначительное количество метана, этана и других углеводородов, которые могут изменять характеристики консистенции. Так, этан обладает завышенным, по сопоставлению с пропаном, давлением насыщенных паров, что может оказать отрицательное воздействие при положительных температурах. Изменение объема водянистой фазы при нагревании.

Для очень прохладных районов: летний период — с 1 июня по 1 сентября, зимний период — с 1 сентября по 1 июня. Таблица 5. Физико-химические и эксплуатационные характеристики сжиженных газов (ГОСТ Р 52087-2003). Допускается не определять интенсивность аромата при массовой доле меркаптановой серы в сжиженных газах марок ПТ, ПБТ и БТ 0,002% и поболее, а марок ПА и ПБА — 0,001% и поболее.

От вредных примесей газообразное горючее очищают. В согласовании с требованиями ГОСТ допускается на 100 м3 газа примесей менее: 2 г сероводорода либо аммиака, 5 г цианистых соединений, 10 г нафталина, смолы, пыли и других веществ менее 0,1 %. Пары его могут скапливаться в естественных и искусственных ложбинках, образуя взрывоопасную смесь. Таблица 2.

Газообразное горючее представляет собой смесь горючих и негорючих газов, содержащую некое количество примесей. К горючим газам относятся углеводороды, водород и окись углеводов. Негорючие составляющие — это азот, двуокись углерода и кислород. Они составляют балласт газообразного горючего. К примесям относятся водяные пары, сероводород, пыль. Физико-химические характеристики сжиженного углеводородного газа по ГОСТ 27578-87. Компонентный состав сжиженного газа регламентируется техническими нормами ГОСТ 27578-87 «Газы углеводородные сжиженные для авто транспорта. Технические условия» и ГОСТ 20448-90 «Газы углеводородные сжиженные топливные для коммунально-бытового употребления. Технические условия». 1-ый эталон обрисовывает состав сжиженного газа, применяемом в авто транспорте. Огромное преимущество пропан-бутановых консистенций — их близость по главным чертам к обычным моторным видам горючего. Конкретно это качество позволило им занять уверенные позиции на рынке. Углеводороды, входящие в состав попутного нефтяного газа, при обычных критериях находятся в газообразном состоянии, но при увеличении наружного давления меняют свое агрегатное состояние и преобразуются в жидкость. Это свойство позволяет достигнуть высочайшей энергетической плотности и хранить сжиженный углеводородный газ (СУГ) в сравнимо обычных по конструкции резервуарах.

По этим причинам при переводе термических установок с 1-го газа на другой нужно уделять свое внимание на близость не только лишь значений чисел Воббе обоих газов, которые обеспечивают всепостоянство термический мощности всех горелок, да и всех их физико-химических черт. Подсчет чисел Воббе делается по ГОСТ 22667-82 (табл. 3.2), в каком приведены все нужные для этого данные (высшая и низшая теплота сгорания газов и их относительная плотность) с учетом коэффициента сжимаемости Z разных газов и паров. Сжиженные углеводородные газы. Пропан С3Н8 и бутан С4Н10 извлекают из природного нефтяного газа либо получают искусственно как побочный продукт при тепловой переработке нефти на газобензиновых заводах. Лишнее давление насыщенных паров сжиженного газа обычно составляет более 0,16 МПа. Автономная газификация дома. газгольдеры резервуары испарители СУГ автономная газификация автономное газоснабжение.

В закрытом резервуаре СУГ образует двухфазную систему. Давление в баллоне находится в зависимости от давления насыщенных паров (давления паров в замкнутом объеме в присутствии водянистой фазы) и охарактеризовывает испаряемость сжиженного газа, которая, в свою очередь, находится в зависимости от температуры водянистой фазы и процентного соотношения пропана и бутана в ней. Виды горючих газов, их главные характеристики и состав. Газоснабжение жилых построек существенно улучшает условия быта населения городов и населенных пт. Применение газа в городском хозяйстве, индустрии и энергетике делает подходящие условия для улучшения технологических процессов производства, позволяет использовать прогрессивную и экономически эффективную технологию, увеличивает технический и культурный уровень производственных, коммунальных и энергетических установок, позволяет повысить экономическую эффективность работы производства в целом. Для газоснабжения жилых построек, коммунальных и промышленных компаний употребляют природные, искусственные и смешанные газы. Базой для широкого развития газовой индустрии являются значимые припасы природного газа.

В газоконденсатных, кроме метана, в значимой доле содержатся этан, пропан, бутан и других более томные углеводороды, прямо до бензиновых и керосиновых фракций. В попутных нефтяных газах находятся легкие и томные углеводороды, растворенные в нефти. Согласно требованиям ГОСТ 5542-87, горючие характеристики природных газов характеризуются числом Воббе, которое представляет собой отношение теплоты сгорания (низшей либо высшей) к корню квадратному из относительной (по воздуху) плотности газа: Пределы колебания числа Воббе очень широки, потому для каждой газораспределительной системы (по согласованию меж поставщиком газа и потребителем) требуется установить номинальное значение числа Воббе с отклонением от него менее &plusmn,5%, чтоб учитывать неоднородность и непостоянство состава природных газов.

В почти всех случаях «подошвой» для их служат нефть и вода. В сухих месторождениях газ находится в большей степени в виде незапятнанного метана с очень малым количеством этана, пропана и бутанов. Наибольшая допустимая температура нагрева баллона не должна превосходить 45&deg,С, при всем этом упругость паров бутана добивается 0,385 МПа, а пропана — 1,4-1,5 МПа. Баллоны должны предохраняться от нагрева солнечными лучами либо другими источниками тепла. Изменение объема газа при испарении.

Теплота сгорания и относительная плотность компонент сухого природного газа (н.у.) (ГОСТ 22667-82). Таблица 4. Области внедрения разных марок сжиженных газов в разных регионах (ГОСТ Р 52087-2003). Для всех погодных районов, кроме прохладного и очень прохладного: летний период — с 1 апреля по 1 октября, зимний период — с 1 октября по 1 апреля. Для прохладных районов: летний период — с 1 июня по 1 октября, зимний периол — с 1 октября по 1 июня. 4.

Основными компонентами сжиженного углеводородного газа являются пропан С 3 Н 8 и бутан С 4 Н 10 . Приемущественно промышленное создание сжиженного газа осуществляется из последующих источников: попутные нефтяные газы, конденсатные фракции природного газа, газы процессов стабилизации нефти и конденсата, нефтезаводские газы, получаемые с установок переработки нефти. Таблица 1.

Температура пропана

Для централизованного снабжения населенных пт и производственных объектов обширно используют природные газы. Если нет природных газов либо газовоздушных консистенций, то используют сжиженные углеводородные газы. К сжиженным углеводородным газам относятся такие углеводороды, которые в обычных критериях находятся в газообразном состоянии, а при маленьком повышении давления перебегают в жидкое состояние.

К сжиженным углеводородным газам относят такие, которые при обычных физических критериях находятся в газообразном состоянии, а при относительно маленьком повышении давления (без понижения температуры) перебегают в жидкое. Это &shy,позволяет перевозить и хранить сжиженные углеводороды как воды, а газообразные регулировать и спаливать как природные газы. На веб-сайте компании Техносоюз покрасочные камеры представлены в широком ассортименте, а так же различное оборудование для автосервиса. Зимой предписывается использовать сжиженный газ марки ПА (пропан авто), содержащий 85&plusmn,10% пропана, летом&thinsp,- ПБА (пропан-бутан авто), содержащий 50&plusmn,10% пропана, бутан и менее 6% непредельных углеводородов. ГОСТ 20448-90 имеет более широкие допуски на содержание компонент, в том числе вредных исходя из убеждений воздейст&shy,вия на газовую аппаратуру (к примеру, серу и ее соединения, непредельные углеводороды и т.д.). По этим техническим условиям газовое горючее поступает 2-ух марок: смесь пропан-бутановая зимняя (СПБТЗ) и смесь пропан-бутановая летняя (СПБТЛ). Марка газа ПБА допускается к применению во всех погодных районах при температуре окружающего воздуха не ниже -20&deg,С.

Сжиженный газ, применяемый коммунально-бытовыми потребителями, по ГОСТ 20448-90 не должен содержать сероводорода более 5 г на 100 м 3 газа, а его запах должен ощущаться при содержании в воздухе 0,5 %. Концентрация кислорода в газообразном горючем не должна превосходить 1 %. При использовании для газоснабжения консистенции сжиженного газа с воздухом концентрация газа в консистенции составляет более двойного верхнего предела воспламеняемости. Величина расхода газа на нужды потребителей полностью находится в зависимости от его теплоты сгорания (теплотворной возможности), и чем она меньше, тем больше расходуется газа. Физико-химические характеристики составляющих сжиженного газа и бензина. количество воздуха, м3. 2. Главные свойства горючих газов. Природные газы. Горючие природные газы — итог биохимического и теплового разложения органических остатков. Почаще месторождения природного газа сосредоточены в пористых осадочных породах (пески, песчаники, галечники), подстеленных либо покрытых плотными (к примеру, глинистыми), породами.

Большая часть искусственных газов имеет резкий запах, что упрощает найти утечки газа из трубопроводов и арматуры. Природный газ совершенно не имеет аромата. До подачи в сеть его одорируют (соединяют со особыми субстанциями), т.е. присваивают ему резкий противный запах, который должен ощущаться при концентрации в воздухе, равной 1 %. Запах ядовитых газов должен ощущаться при концентрации, допускаемой санитарными нормами. Исключительно в более отдаленных от месторождений районах себестоимость газа выше себестоимости мазута. Применение газа в быту и индустрии в сопоставлении с жестким топливом в 4 — 5 раз эффективнее.

Газ сгорает без образования дыма, в каком много товаров неполного сгорания твердого и водянистого горючего, потому подмена газом других видов горючего содействует чистке воздушного бассейна населенных пт. Газы как горючее с фуррором используют для изготовления еды, в системах жаркого водоснабжения для обогрева воды, в системах отопления построек, в технологических процессах промышленных компаний. Испаряемость пропана выше, чем бутана, потому и давление при отрицательных температурах у него выше. Опыт долголетней практичес&shy,кой эксплуатации указывает: при низких температурах окружающего воздуха эффективнее использовать СУГ с завышенным содержанием пропана, потому что при всем этом обеспечивается надежное испарение газа, а как следует, и размеренная подача продукта, при больших положительных температурах окружающего воздуха эффективнее использовать СУГ с пониженным содержанием пропана, по другому в резервуаре и трубопроводах будет создаваться существенное лишнее давление, что может негативно воздействовать на плотность газовой системы.

Марка ПА употребляется в зимний период в тех погодных районах, где температура воздуха опускается ниже -20&deg,С (рекомендуемый интервал — -25. -20&deg,С). В вешний период времени для полной выработки припасов сжиженного газа марки ПА допускается его применение при температуре до 10&deg,С. Сжиженные газы хранят в баллонах и железных резервуарах. Температура воспламенения сжиженных пропана и бутана составляет соответственно 510 и 490&deg, С. Сжиженные газы в сопоставлении с природными владеют в 2 — 3 раза большей теплотой сгорания и скоростью воспламенения.

По припасам природного газа наша страна занимает 1-ое место в мире. Добыча природного газа в стране безпрерывно вырастает, что разъясняется его высочайшими экономическими показателями, в особенности благодаря его низкой себестоимости. Если сопоставить природный газ с другими видами горючего, то его себестоимость втрое ниже себестоимости торфа и мазута, в 15 — 20 раз ниже себестоимости угля подземной выработки. При массовой доле меркаптановой серы наименее обозначенных значений либо интенсивности аромата наименее 3 баллов сжиженные газы должны быть одорированы в установленном порядке. При температурах -20&deg,С и -30&deg,С давление насыщенных паров сжиженных газов определяют исключительно в зимний период. При применении сжиженных газов марок ПТ и ПБТ в качестве горючего для авто транспорта массовая толика суммы непредельных углеводородов не должка превосходить 6%, а давление насыщенных паров должно быть более 0,07 МПа для марок ПТ и ПБТ при температурах -30&deg,С и -20&deg,С соответственно. 3.

Основными компонентами этих газов, кроме пропана и бутана, являются пропилен и бутилен. Наличие в сжиженном газе в значимых количествах этилена неприемлимо, потому что ведет к увеличению упругости насыщенных паров. Характеристики сжиженных газов для бытовых целей регламентирует ГОСТ Р 52087-2003 «Газы углеводородные сжиженные топливные» (табл. 3.3 и 3.4). Таблица 3.

Таблица 1. Зависимость влагосодержания насыщенного газа от температуры. Если газ транспортируют на огромные расстояния, то его за ранее осушают. При испарении 1 л сжиженного газа появляется около 250 л газообразного. Таким макаром, даже малозначительная утечка СУГ может быть очень небезопасной, потому что объем газа при испарении возрастает в 250 раз. Плотность газовой фазы в 1,5-2,0&thinsp,раза больше плотности воздуха. Этим разъясняется тот факт, что при утечках газ с трудом рассеивается в воздухе, в особенности в закрытом помещении.

etalongaz.ru

Температура горения

В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tx — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха а = 1,0 и при температуре газа и воздуха, равной 0°C:

tx = Qh /(IVcv) (8.11)

где QH — низшая теплота сгорания газа, кДж/м3; IVcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м3 газа (м3/м3), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tx (кДж/(м3*°С).

В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (=2000°С), при а = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.3 находится их средняя теплоемкость и затем по формуле (8.11) считается жаропроизводительность газа. Если в результате подсчета она окажется ниже или выше принятой, то задается другая температура и расчет повторяется. Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.5. При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25-30°С.

Калориметрическая температура горения tK — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tx тем, что температура газа и воздуха, а также коэффициент избытка воздуха а принимаются по их действительным значениям. Определить tK можно по формуле:

tк = (Qн + qфиз)/(ΣVcp) (8.12)

где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м3.

Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик.

Таблица 8.3. Средняя объемная теплоемкость газов, кДж/(м3•°С)

Температура, °С

CO2

N2

O2 CO Ch5 h3

h3O (водяные пары)

воздух

сухой

влажный на 1 м3 сухого газа

0

1,5981

1,2970

1,3087

1,3062

1,5708

1,2852

1,4990

1,2991

1,3230

100

1,7186

1,2991

1,3209

1,3062

1,6590

1,2978

1,5103

1,3045

1,3285

200

1,8018

1,3045

1,3398

1,3146

1,7724

1,3020

1,5267

1,3142

1,3360

300

1,8770

1,3112

1,3608

1,3230

1,8984

1,3062

1,5473

1,3217

1,3465

400

1,9858

1,3213

1,3822

1,3356

2,0286

1,3104

1,5704

1,3335

1,3587

500

2,0030

1,3327

1,4024

1,3482

2,1504

1,3104

1,5943

1,3469

1,3787

600

2,0559

1,3453

1,4217

1,3650

2,2764

1,3146

1,6195

1,3612

1,3873

700

2,1034

1,3587

1,3549

1,3776

2,3898

1,3188

1,6464

1,3755

1,4020

800

2,1462

1,3717

1,4549

1,3944

2,5032

1,3230

1,6737

1,3889

1,4158

900

2,1857

1,3857

1,4692

1,4070

2,6040

1,3314

1,7010

1,4020

1,4293

1000

2,2210

1,3965

1,4822

1,4196

2,7048

1,3356

1,7283

1,4141

1,4419

1100

2,2525

1,4087

1,4902

1,4322

2,7930

1,3398

1,7556

1,4263

1,4545

1200

2,2819

1,4196

1,5063

1,4448

2,8812

1,3482

1,7825

1,4372

1,4658

1300

2,3079

1,4305

1,5154

1,4532

-

1,3566

1,8085

1,4482

tgs.su

Физико-химические свойства пропан-бутановой смеси. Пропан. Бутан. Пропан-бутан vs бензин.

ПОЛЕЗНЫЕ ССЫЛКИ:

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Свойства рабочих сред / / Газ природный - натуральный газ. Биогаз - канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан.  / / Физико-химические свойства пропан-бутановой смеси. Пропан. Бутан. Пропан-бутан vs бензин.

Физико-химические свойства пропан-бутановой смеси. Пропан. Бутан. Пропан-бутан vs бензин.

Углеводороды, входящие в состав попутного нефтяного газа, при нормальных условиях находятся в газообразном состоянии, но при увеличении внешнего давления меняют свое агрегатное состояние и превращаются в жидкость. Это свойство позволяет добиться высокой энергетической плотности и хранить сжиженный углеводородный газ (СУГ) в сравнительно простых по конструкции резервуарах. В отличие от попутного нефтяного газа, углеводороды, входящие в состав природного газа, при нормальных условиях находятся в газообразном состоянии и не меняют своего агрегатного состояния даже при значительном изменении давления. Поэтому хранение сжатого (компримированного) природного газа (КПГ) сопряжено со значительными сложностями — так, резервуар должен выдерживать значительное давление до 200 атмосфер.

Интенсивно продвигаются технологии получения и использования сжиженного природного газа (СПГ), который можно хранить в специальных изотермических сосудах при температуре ниже -160°С и давлении около 40 бар. Во многом преимущества высокой энергетической плотности СПГ теряются из-за сложности криогенного оборудования, значительно более дорогого и требующего постоянного контроля высококвалифицированного персонала.

Производство СУГ Основными компонентами сжиженного углеводородного газа являются пропан С3Н8 и бутан С4Н10. Главным образом промышленное производство сжиженного газа осуществляется из следующих источников:

  • попутные нефтяные газы; 
  • конденсатные фракции природного газа; 
  • газы процессов стабилизации нефти и конденсата; 
  • нефтезаводские газы, получаемые с установок переработки нефти.
Таблица 1. Физико-химические показатели сжиженного углеводородного газа (ПА  и ПБА)  по ГОСТ 27578-87
Показатель Марка ГСН
ПА ПБА
Массовая доля компонентов, %:
метан и этан Не нормируется
пропан 90±10 50±10
углеводороды С4 и выше Не нормируется
непредельные углеводороды, (не более) 6 6
Объем жидкого остатка при +40°С, % Отсутствует
Давление насыщенных паров, МПа:
при +45°С, не более 1,6
при -20°С, не менее 0,07
при -35°С, не менее 0,07
Массовая доля серы и сернистых соединений, %, не более 0,01 0,01
В том числе сероводорода, %, не более 0,003 0,003
Содержание свободной воды и щелочи Отсутствует

Компонентный состав сжиженного газа регламентируется техническими нормами ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта. Технические условия» и ГОСТ 20448-90 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия». Первый стандарт описывает состав сжиженного газа, используемом в автомобильном транспорте. На сайте компании Техносоюз покрасочные камеры представлены в широком ассортименте, а так же различное оборудование для автосервиса. Зимой предписывается применять сжиженный газ марки ПА (пропан автомобильный), содержащий 85±10% пропана, летом— ПБА (пропан-бутан автомобильный), содержащий 50±10% пропана, бутан и не более 6% непредельных углеводородов. ГОСТ 20448-90 имеет более широкие допуски на содержание компонентов, в том числе вредных с точки зрения воздейст­вия на газовую аппаратуру (например, серу и ее соединения, непредельные углеводороды и т.д.). По этим техническим условиям газовое топливо поступает двух марок: смесь пропан-бутановая зимняя (СПБТЗ) и смесь пропан-бутановая летняя (СПБТЛ).

Марка газа ПБА допускается к применению во всех климатических районах при температуре окружающего воздуха не ниже -20°С. Марка ПА используется в зимний период в тех климатических районах, где температура воздуха опускается ниже -20°С (рекомендуемый интервал — -25...-20°С). В весенний период времени для полной выработки запасов сжиженного газа марки ПА допускается его применение при температуре до 10°С.

Давление в баллоне В закрытом резервуаре СУГ образует двухфазную систему. Давление в баллоне зависит от давления насыщенных паров (давления паров в замкнутом объеме в присутствии жидкой фазы) и характеризует испаряемость сжиженного газа, которая, в свою очередь, зависит от температуры жидкой фазы и процентного соотношения пропана и бутана в ней. Испаряемость пропана выше, чем бутана, поэтому и давление при отрицательных температурах у него выше.

Опыт многолетней практической эксплуатации показывает:

  • при низких температурах окружающего воздуха эффективнее использовать СУГ с повышенным содержанием пропана, так как при этом обеспечивается надежное испарение газа, а следовательно, и стабильная подача продукта;
  • при высоких положительных температурах окружающего воздуха эффективнее использовать СУГ с пониженным содержанием пропана, иначе в резервуаре и трубопроводах будет создаваться значительное избыточное давление, что может отрицательно повлиять на герметичность газовой системы.

Кроме пропана и бутана, в состав СУГ входит незначительное количество метана, этана и других углеводородов, которые могут изменять свойства смеси. Так, этан обладает повышенным, по сравнению с пропаном, давлением насыщенных паров, что может оказать отрицательное влияние при положительных температурах.

Изменение объема жидкой фазы при нагревании Пропан-бутановая смесь обладает большим коэффициентом объемного расширения жидкой фазы, который для пропана составляет 0,003, а для бутана — 0,002 на 1°С повышения температуры газа. Для сравнения: коэффициент объемного расширения пропана в 15 раз, а бутана — в 10 раз, больше, чем у воды. Техническими нормативами и регламентами устанавливается, что cтепень заполнения резервуаров и баллонов зависит от марки газа и разности его температур во время заполнения и при последующем хранении. Для резервуаров, разность температур которых не превышает 40° С, степень заполнения принимается равной 85%, при большей разности температур степень заполнения должна снижаться. Баллоны заполняются по массе в соответствии с указаниями «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением». Максимальная допустимая температура нагрева баллона не должна превышать 45°С, при этом упругость паров бутана достигает 0,385 МПа, а пропана — 1,4–1,5 МПа. Баллоны должны предохраняться от нагрева солнечными лучами или другими источниками тепла.

Изменение объема газа при испарении При испарении 1 л сжиженного газа образуется около 250 л газообразного. Таким образом, даже незначительная утечка СУГ может быть очень опасной, так как объем газа при испарении увеличивается в 250 раз. Плотность газовой фазы в 1,5–2,0?раза больше плотности воздуха. Этим объясняется тот факт, что при утечках газ с трудом рассеивается в воздухе, особенно в закрытом помещении. Пары его могут накапливаться в естественных и искусственных углублениях, образуя взрывоопасную смесь.

Таблица 2. Физико-химические свойства составляющих сжиженного газа пропана, бутана и бензина.
Показатель Пропан Бутан (нормальный) Бензин
Молекулярная масса 44,10 58,12 114,20
Плотность жидкой фазы при нормальных условиях, кг/м3 510 580 720
Плотность газовой фазы, кг/м3:
при нормальных условиях 2,019 2,703
при температуре 15°С 1,900 2,550
Удельная теплота испарения, кДж/кг 484,5 395,0 397,5
Теплота сгорания низшая:
в жидком состоянии, МДж/л 65,6 26,4 62,7
в газообразном состоянии, МДж/кг 45,9 45,4 48,7
в газообразном состоянии, МДж/м3 85,6 111,6 213,2
Октановое число 120 93 72-98
Пределы воспламеняемости в смеси с воздухом при нормальных условиях, % 2,1–9,5 1,5–8,5 1,0–6,0
Температура самовоспламенения, °С 466 405 255–370
Теоретически необходимое для сгорания 1 м3 газа количество воздуха, м3 23,80 30,94 14,70
Коэффициент объемного расширения жидкой фракции, % на 1°С 0,003 0,002
Температура кипения при давлении 1 бар, °С -42,1 -0,5 +98...104 (50%-я точка)
↓Поиск на сайте TehTab.ru - Введите свой запрос в форму

tehtab.ru

Пропан, горение - Справочник химика 21

    Пятый способ. Аналогично третьему и четвертому способам можно определить, что при сжигании 11,2 л пропан-бутановой смеси образуются 42,56 л диоксида углерода. Из уравнений реакций горения пропана и бутана видно, что при сжигании [c.88]

    Сожгли 4 л газовой смеси, содержащей пропан. Продукты горения пропустили через раствор гидроксида кальция, в результате чего образовалось 16 г карбоната и 25,9 г гидрокарбоната кальция. Определите объемную долю пропана в газовой смеси. [c.236]

    Горючим может служить любой газ с высокой температурой горения наиболее часто используются ацетилен, пропан, бутан, водород, природный или каменноугольный газ. Сжигая эти газы в воздухе или кислороде, получают пламя с температурой от 1700 до 3200 °С. Более высокие температуры достигаются при сжигании циана. Чем выше температура пламени, тем больше число возбужденных элементов. Кроме того, повышение температуры приводит к повышению чувствительности анализа. Вид используемого пламени в некоторой степени зависит от устройства горелки. [c.85]

    В работе [18] рассмотрено два способа нагрева кокса сжигание части нагреваемого кокса сжигание подаваемых извне водорода н углеводородных газов (метан, этан, пропан, бутан). В процессе обессеривания кокса при 1500°С, как нами ранее показано, будет происходить полное восстановление активных составляющих (Н2О, СО2) продуктов сгорания топлива по реакциям (2) и (3). На основе этих реакций, а также их тепловых эффектов рассчитаны удельная энтальпия продуктов сгорания, удельный теоретический угар кокса от вторичных реакций, удельная теплота сгорания и калориметрическая температура горения ( иап) рассматриваемых топлив. [c.234]

    По молекулярной массе и концентрационным пределам воспламенения пары стабилизированных нефтей имеют вполне устойчивые характеристики, занимая промежуточное положение между пропаном и бутаном. При выполнении расчетов, в которых необходимо знать стехиометрическую концентрацию нефтяных паров в воздухе по уравнению реакции горения, нефтяные пары можно приравнять к пропану, химическую формулу которого использовать для расчета характеристик стехиометрической горючей смеси. [c.19]

    Газообразные пропан и бутан, бензины и керосины-все это алканы, ценность которых определяется их способностью к горению. [c.287]

    Сжигание-процесс горения исходных горючих материалов для получения новых продуктов или освобождения хим. энергии. В П. сжигают сероводород, серу, фосфор, ацетилен, уголь, мазут, пропан, бутан, прир. газ и др. [c.505]

    Решение. Природный газ содержит четыре горючих компонента метан СН4, этан СаН , пропан СзН и бутан С4Н9. Записываем уравнения реакций горения газов  [c.159]

    Проведенные исследования в области пожаро- и взрывоопасности изотермических хранилищ показали, что низкие температуры жидкой фазы оказывают как бы тормозящее действие на процесс горения. Опытами было установлено, что интенсивность горения воспламененных пропан-бутановых газов составляет не более 25% интенсивности горения бензина при нормальной температуре. [c.44]

    Только при переходе от метана и этана к пропану имеет место заметное обогащение смеси на НКП, с постоянным значением а = 1,6 для группы от пропана до пентана и а = 1,5 — от гексана до октана. Причины этих различий Опред и Гад для пламен с весьма близкими скоростями горения и термическими свойствами смеси не получили рационального объяснения. [c.227]

    Воздействие электрического поля на пламя изучают с целью осуществления направленного химического синтеза. В работе [51] измеряли выход ацетилена, этилена и окиси азота при наложении на пропан-воздушное пламя с добавкой щелочных металлов высоковольтного низкочастотного разряда. Было обнаружено [52], что даже электрическое поле малой напряженности, когда не возникает разряд, может влиять на кинетику горения, изменяя концентрационные градиенты, либо, как полагают авторы, способствуя образованию новых активных частиц при электрон-молекулярных столкновениях. [c.52]

    Продуктами разложения органических соединений в диффузионных пламенах и пламенах гомогенных смесей являются водород и простейшие углеводороды. Общим простейшим углеводородом при разложении исследованных органических (соединений является метан. В пламенах кислородсодержащих соединений кроме этого образуются простейшие кислородсодержащие соединения типа СН2О, а в пламенах азотсодержащих соединений, вероятно, образуется азот, В процессе разложения некоторых соединений образуется этан, максимальное содержание которого составляет доли %. В качестве продукта разложения высокомолекулярных предельных углеводородов (парафина) обнаружен в незначительном количестве пропан. Наличие бутана в пламенах исследованных соединений не установлено. Продуктом разложения некоторых органических соединений является этилен. При горении высокомолекулярных предельных углеводородов (парафина) образуются кроме этилена другие непредельные соединения пропилен и в небольших количествах бутилен и бутадиен (дивинил). Характер распределения концентраций ацетилена в пламенах позволяет предположить, что он не является первичным продуктом разложения исходных соединений неароматического строения. [c.112]

    В коптящем предварительно смешанном пламени в зависимости от материала, из которого изготовлена холодная поверхность для сбора углерода, образуются два типа осадков. Авторы [64], изучая обогащенное плоское пламя смеси пропан — воздух, нашли, что на решетках из нержавеющей стали (200 меш), помещенных на различных расстояниях над сине-зеленой зоной, образуются сферические и нитевидные частицы углерода (рис. 155). Нити являются пустотелыми с непроницаемыми (в электронном микроскопе) гранулами на концах, они очень похожи на углерод, образующийся при разложении окиси углерода на металлических катализаторах [65]. Если сталь покрыть слоем слюды, нитевидная структура сохраняется, так что можно было бы предположить, что нити образуются в газовой фазе еще до соприкосновения с экраном, Однако при использовании других методов выделения углерода из такого пламени успеха, видимо, не будет. Так, при горении смеси этилен — воздух образования нитевидного углерода не обнаружено [64]. [c.284]

    Состав. СНГ прежде всего используют как котельно-печное газовое топливо. Состав основной их массы определяет характеристики горения. Если жидкие СНГ должны испаряться в естественных условиях (баллонный газ), необходимо, чтобы они характеризовались максимальным содержанием углеводородов типа С5, С4 нли их состав существенно изменялся по мере опорожнения баллона. Однако в промышленных условиях жидкие СНГ всегда испаряются за счет внешнего источника тепла, поэтому их состав остается постоянным (состав жидкости не меняется). В этом случае нет необходимости оговаривать точный состав СНГ по соотношению С3/С4. Чтобы свести остатки к минимуму, в СНГ следует лимитировать содержание пентанов и гексанов для пропанов — [c.78]

    Изучалось горение смеси пропан-бутана с воздухом ири температуре слоя 1100°С. В качестве твердого теплоносителя использовалась окись магния размером частиц 0,8—1,25 мм. Материал твердого теплоносителя выбирался с учетом его применения в промышленных печах для нагрева металла в псевдоожиженном слое. [c.166]

    Линии I —газы горения II — воздух III — пропан и водяной пар IV — пропан V— [c.51]

    Экспериментальная установка и методика экспериментов. Эксперименты проводились при горении пропана у плоской перфорированной стенки в полуоткрытом потоке воздуха и в пористой цилиндрической трубе.В обоих случаях воздух подавался из баллонов высокого давления пропан — из техпяческих 40-литровых баллонов. Состав газа по сечениям пограничного слоя определяли отбором газовых проб охлаждаемыми водой насадками. Концентрация СО определялась на приборе ВТИ, а концентрация СО, Нз, [c.31]

    В связи, с тем, что скорость диффузионного горения определяется скоростью смешения горючего и окислителя, был исследован процесс проникания окружающего воздуха в резервуар при низком уровне взлива горящей жидкости. Модель резервуара с охлаждаемыми стенками имела Диаметр 360 мм. Поток паров имитировали горючим газом (пропаном или метаном), пропускаемым через слой гравия, равный 400 мм. В опытах измеряли концентрацию горючего газа, кислорода окиси и двуокиси углерода, [c.117]

    При необходимости растянуть горение, чтобы предотвратить появление слишком высоких температур и спекание материала в застойных зонах между колпачками, перемешивание газа с воздухом организуют в струе на выходе из горелочного устройства. Такое устройство, примененное на печи для обжига известняка Карагандинского металлургического комбината [7] производительностью 1000 т/сутки, в которой сжигается пропан-бутановая смесь, приведено на рис. 4.3. Аналогичные горелки на печах Руставского 7] (производительность 150 т/сутки) и Макеевского [7 (300 т/сутки) заводов, отапливаемых природным газом с незапы-ленным холодным воздухом, отличаются лишь деталями. В первой обжигается известняк крупностью 12—25 мм, в двух других — 3—10 мм, [c.198]

    В настоящее время экспериментально установлено протекание процессов термического разложения и превращения исходных продуктов в пламенах гомогенных смесей. Еще Боне и Тауненд (1927 г.) удалось выделить углеводороды, отличные от тех, из которых состояло топливо, а в работе [6] удалось выделить ацетилен при горении богатой метановой смеси. В работе [7] экспериментально установлено, что в пламени богатой пропан-воздушной смеси на расстоянии 2-ь2,5 мм по нормали от фронта пламени начинается разложение исходного го1рючего. Продуктами разложения являются предельные и непредельные углеводороды, которые по мере приближения к фронту пламени претерпевают термические превращения. Процессы разложения и превращения в условиях пламени гомогенных смесей протекают при более быстром нарастании температур и за более короткое время, чем в условиях диффузионного пламени. Однако характер протекания процессов разложения и превращения аналогичен характеру протекания подобных процессов в диффузионных пламенах. На раостоянии 0,7Ч--Ь1,0 мм по нормали до фронта пламени все углеводородные составляющие исчезают, то есть происходит практически полное их разложение. [c.150]

    Газы горения смешивают с нагретым пропаном таким образом, что получаемая температура пиролиза Та колеблется от 1100 до 1500° К [c.50]

    Вильямс и Боллинджер [25] осуществили эксперимент с целью проверить теорию Дамкелера и Щелкина. В этом эксперименте определяли связь между скоростью горения в бунзеновском пламени и турбулентностью течения смеси в трубке. Диаметр трубки й изменялся в интервале от Д дюйма до /8 дюйма (от 0,63 до 2,85 см), а число Рейнольдса Ке — от 3000 до 35000. В качестве горючего использовали ацетилен, этилен, пропан и другие газы и исследовали соотношения компонентов, при которых скорость горения в отсутствие пульсаций максимальна. Для определения скорости горения был выбран метод, разработанный первоначально для бунзеновских пламен в отсутствие пульсаций, т. е. метод У/А (где V — объемный расход газа, А — площадь поверхности пламени). Однако на сей раз в качестве поверхности пламени была использована условная поверхность, являющаяся равноудаленной от внешней и внутренней поверхностей, фиксируемых на фотографиях пламени с длительной экспозицией. [c.154]

    Прямым контактом между газами горения с температурой 2300° К и нагретым пропаном можно достигнуть превращения в ацетилен до 20 — 45 %, если время реакции составляет доли секунды и если газы реакции резко охладить до температуры ниже 550° С. Продукты пиролиза представляют смесь водорода, этилена, ацетилена, метана, окиси углерода, а также гомологов углеводородов пропилена, метилацетилена, диацетилена, винилацетилена [c.50]

    Непосредственные наблюдения рассмотренных кинетических зон горения весьма затруднены, так как расстояние от этих зон до поверхности заряда (по расчету) может составлять 10" — + 10" см. Лишь при горении сравнительно крупных (несколько миллиметров) шариков Nh5 IO4 в пропане [232] на фотоснимке хорошо заметны две зоны горения, из которых одна, ненос-редственно примыкающая к поверхности шарика, видимо, соответствует горению NHg H IO4. [c.111]

    Опубликована работа [181 ] по получению ацетилена и этилена путем пиролиза углеводородного сырья в реакторе производительностью по сырью 250—350 кг/ч. Конструкция реактора исключает проскок пламени в горелке, обеспечивает эффективное смешение метана и кислорода, интенсивное горение смеси и высокую те-плонапряженность единицы объема топочной камеры. В качестве сырья использовалась пропан-бутановая фракция. Авторы этой работы подробно изучили факторы, влияющие на соотношение выходов ацетилена и этилена. Они установили, что скорость превращения ниро- лизуемого сырья зависит от температуры в зоне реакции, регулируемой разбавлением метано-кислородной смеси водяным паром или изменением соотношения горячего теплоносителя и сырья. С увеличением соотношения этилена- и ацетилена уменьшается относительный расход сырья и кислорода (на сумму С2Н4 и С2Н2). [c.156]

    Сжиженные газы часто используют жак резервное топливо, когда нехватает прирэ-дного газа. Наибольшим спросом для этих целей пользуется пропан. Чтобы приблизить этот газ по теплотворности и по количеству воздуха, необходимого для горения, к природному газу, пропан прелварительно смешивают с небольшим количеством воздуха. [c.31]

    ДЛЯ случая пропан-воз-душной смеси с максимальной скоростью горения. Даггер [9] для опре-делеиня скорости горения использовал метод измерения площади внешнего контура пламени по фотографиям пламени на простой бунзеновской горелке, Результаты измерения представлены в виде формулы 5 = 0 + t" , где t — начальная температура в С, а 6 и с — константы. Опыты Брезе [10] были выполнены по методу измерения угла наклона пламени на бунзеновской горелке, Полученные результаты соответствуют линейной зависимости скорости горения от начальной температуры, В опытах Джонстона [11] скорость горения определялась ио методу измерения угла наклона конуса пламени на сопловой горелке. Результат измерения экстраполировался к (uD)- = О для получения истинного значения скорости горения (ы — скорость течения D — диаметр сопла). Таким образом, исключается погрешность, возникающая из-за влияния пограничного слоя и охлаждения на срезе сопла. Результаты измерений Джонстона описываются следующей зависимостью S = а ехр [m t — о)], где акт — константы, причем а имеет смысл скорости горения при начальной температуре [c.140]

    В работе [22] при горении на воздухе исследован состав газообразных продуктов термического разложения парафина (того же образца, который использован при исследовании диффузионного пламени). Разложение парафина проводилось в кварцевой пробирке в среде азота при времени пребывания в изотермической зоне 0,1—0,3 с. Установлено, что при термическом разложении парафина при г =700 и 800 °С образуются те же продукты, что и в диффузионном пла1мени, причем по уменьшению содержания они располагаются (при =700°С) почти в таком же порядке этилен, пропилен, водород, метан, этан (4,92%), бутилен (4,3%), бутадиен (3,72%) и пропан (1,06%). Незначительные различия в порядке расположения компонентов по уменьшению их содержания могут быть объяснены влиянием стенок кварцевой пробирки. Это сходство составов продуктов горения и термического разложения можно объяснить цепным механизмом, наблюдаемым в обоих случаях. [c.115]

    В настоящей работе приводится расчет диффузионного горения вертикальной осесимметричной струи топлива с учетом однородности смешения. В расчете используются диффузионная модель струи [1, 21, позволяющая учесть слолшый характер смешения, п экспериментальные данные по однородности смешения в неизотермических струях [.3, 4]. Расчет выполнен для различных топлив, включая водород, пропан, окись углерода, городской газ и др.. и сопоставлен с экспериментальными данными С. 1. Г орипа п [c.18]

    Рнс. 7.2. Зависимость скорости горения пропан-воздушной смеси от начальноЯ температуры (смесь с максимальной скоростью горения давление I кгс/см ) (Джонстон, Кай-перс). [c.140]

    Мы изучали второй тип нроцесса, т. е. пиролиз + горение углеводородов. Объектами изучения были пропан, этан и их смеси. В качестве окисляющих агентов взяты технический кислород и воздух. В основном исследовался некаталитический вариант, хотя в неболыаой степени был затронут и каталитический процесс. [c.103]

    В отличие от водородных нламен, а также пламен lij—СО—Oj— концентрация атомов водорода в углеводородных пламенах лишь нелгного превышает их равновесную концентрацию, как об этом можно судить по данным Рейда и Уилера [1401], полученным для пламен пропан — воздух различного состава. Другим отличием углеводородных пламен от пламени водорода является уменьшение этой разницы с обогаш,ение. г смеси горючим, что, возможно, следует приписать взаимодействию атомов водорода с молекулой пропана или с молекулами промежуточных веществ, присутствующих в зоне горения. Концентрация атомов водорода быстро уменьшается с удалением от фронта нламени (в зоне сгоревших газов), что объясняется их рекомбинацией, т. е. процессом И -j- И -f + М = На + М [1218]. [c.476]

    Полиарилаты горят, но не поддерживают горения. Полиарилаты, содержащие в макромолекуле до 13% хлора и фосфора, обладают повышенной огнестойкостью. Полиарилатам свойственна высокая устойчивость к действию ионизирующего излучения. Радиационный выход газообразных продуктов радиолиза этих полимеров, полученных поликонденсацией хлорангидрида изофталевой кислоты с 4,4 -дигид-роксидифенил-2,2-пропаном и гидрохиноном, составляет -0,02 молекулы/100 эВ, что значительно ниже выхода газов при облучении полиэтилентерефталата и поликарбоната. Молекулярная структура полиарилатов существенно не изменяется при дозах облучения -10 эВ/см [15]. [c.162]

    Процесс гиперсорбции может проводиться для разделения исходного газа на два и три компонента (рис. 102) [10]. Наиболее простым случаем является разделение газовой смеси на два компонента. При этом из исходного газа выделяется комЦо-нент, обладающий наибольшей адсорбционной способностью. Примером может служить процесс выделения чистого ацетилена из продуктов неполного горения метана в кислороде и пропан-бутановой фракции из природного газа. В табл. 81 приводятся ]результаты разделения этих смесей на опытно-промышленной установке, работающей при давлении 1,5 ат, скорости движения угля 210 кг ч и расходе газа 30—40 нм 1ч. [c.260]

    В работах [23, 24] показано, что существенное влияние на распространение пламени в околопредельных смесях оказывает естественная конвекция, сопровождающая горение и обусловливаемая разностью температур продуктов сгорания и свежей смеси. Причем конвекция оказывает гасящее действие, что иллюстрируется данными В. Н. Кривулина и др. [24]. Из этих данных, в частности, следует, что даже такие хорошо известные горючие газы, как пропан и метан, могут при определенных условиях стать негорючими. Этот вывод свидетельствует о новых возможностях пожарной профилактики в технологических процессах. [c.38]

chem21.info

Температура - газовое пламя - Большая Энциклопедия Нефти и Газа, статья, страница 1

Температура - газовое пламя

Cтраница 1

Температура газового пламени ( С) неодинакова в различных его частях и достигает наибольшего значения на оси пламени вблизи конца ядра.  [1]

Температура газового пламени без доступа воздуха 550 - 600 С, при нормальном поступлении воздуха температура пламени достигает 850 С, в специальных горелках ( Теклу и Меккера) температура пламени достигает 900 С. Бензиновая горелка дает температуру 1100 - 1150 С. Горелка с кислородным дутьем поднимает температуру до 1200 С.  [3]

Температура газового пламени ( С) неодинакова в различных его частях и достигает наибольшего значения на оси пламени вблизи конца ядра.  [4]

Ацетилено-кислородная сварка малоэффективна, так как температура газового пламени сравнительно низкая и состав необходимых флюсов сложен. Мощность горелки должна быть 100 л / ч на 1 мм толщины свариваемого металла. Пламя должно быть нейтральным. Для уменьшения внутренних напряжений, возникающих особенно в деталях сложной конфигурации, рекомендуется их нагревать до температуры 300 С, а затем медленно охлаждать.  [5]

При горении горючих газов с использованием воздуха температура газового пламени низкая ( не выше 2000 С), так как много теплоты расходуется на нагрев азота, содержащегося в воздухе. В качестве горючих газов используют ацетилен, водород, метан, пропан, пропанобута-новую смесь, бензин, осветительный керосин.  [6]

С) значительно выше по сравнению с температурой любого другого газового пламени.  [7]

Перед заливом в него металла миксер разогревается введенной в него горелкой, причем температура газового пламени может быть принята tn 720 С.  [8]

Для процессов газопламенной обработки могут быть применены различные горючие газы и пары жидких горючих, при сгорании которых в смеси с техническим кислородом температура газового пламени превышает 2273 К. По химическому составу они, за исключением водорода, представляют собой или углеводородные соединения, или смеси различных углеводородов.  [9]

Газовая сварка применяется при ремонте тонкостенных деталей из стали или цветного металла, а также ответственных деталей из чугуна. Температура газового пламени находится в пределах 2700 - 3100 С.  [10]

Для получения покрытий на деталях и узлах оборудования, различных емкостях24 - 25 и других изделиях необходимо их нагреть до температуры, превышающей температуру плавления полимера. При температуре газового пламени ( 650 - 700 С и выше) порошкообразный полимер вследствие значительной скорости его прохождения через зону пламени ( 20 - 30 м / сек) сгорает только частично.  [11]

При газовой сварке теплота выделяется от сгорания газа в струе кислорода. В качестве горючих газов применяют обычно ацетилен, пламя которого в струе кислорода достигает температуры 3200 С, или смесь природных газов ( пропан-бутан) с температурой горения до 2050 С. По сравнению с электродуговой сваркой температура газового пламени значительно ниже, что уменьшает производительность газовой сварки. При ремонте автомобилей газовое пламя применяют для сварки кузовов, кабин и оперения, а также для сварки чугуна и алюминия, пайки твердыми припоями, резки металла и местного нагрева.  [12]

Образование молекулярного водорода особенно интенсивно происходит на поверхности металлов, оказывающих каталитическое действие на эту реакцию. Таким образом, если ввести в пламя атомного водорода металлическую пластинку, то ее поверхность быстро расплавится и образуется сварочная ванна. По измерениям и теоретическим расчетам температура атомново-дородного пламени составляет около 3700 С, что значительно выше температуры любого другого газового пламени; например, максимальная температура ацетилено-кислородного пламени составляет 3200 С.  [14]

Для спектральных линий с малым квантовым числом К получена температура 1360 К, а для линий с более высоким значением К-4150 К. Однако эти температуры не характеризуют температуру газового пламени, так как изменение наклона кривой целиком зависит от самопоглощения.  [15]

Страницы:      1    2

www.ngpedia.ru