Энциклопедия по машиностроению XXL. Температура плавления меди и латуни


Температура плавления медь — studvesna73.ru

Происхождение и нахождение меди в природе

Свое название химический элемент получил от названия острова Кипр (Cuprum), там его научились добывать еще в 3 тысячелетии до н.э. В периодической системе химических элементов у меди 29 атомный номер, она расположена в 11 группе 4-го периода. Элемент является пластичным переходным металлом, имеющим золотисто-розовый цвет.

По распространению в земной коре элемент занимает среди других элементов 23 место и чаще всего встречается в виде сульфидных руд. Самыми распространенными видами являются медный колчедан и медный блеск. На сегодняшний день есть несколько способов получения меди из руды. но любая из технологий требует поэтапного подхода, чтобы достичь конечного результата.

В самом начале развития цивилизации люди научились получать и использовать медь, а также ее сплавы. Уже в то далекое время они добывали не сульфидную, а малахитовую руду.В таком виде она не нуждалась в предварительном обжиге. Смесь руды с углями помещали в глиняный сосуд, которые опускали в небольшую яму, после чего смесь поджигали, угарный газ помогал восстановиться малахиту до состояния свободной меди.

В природе медь встречается не только в руде, но и в самородном виде, самые богатые месторождения находятся на территории Чили. Сульфиды меди часто образуются в среднетемпературных геотермальных жилах. Часто медные месторождения могут быть в виде осадочных пород — сланцы и медяные песчаники, которые встречаются в Читинской области и Казахстане.

Физически свойства

Пластичный металл на открытом воздухе быстро покрывается оксидной пленкой. она и придает элементу характерный желтовато-красный оттенок, в просвете пленки могут иметь зеленовато-голубой цвет. Медь относится к тем немногим элементам, которые имеют заметную для глаза цветовую окраску. Она обладает высоким уровнем тепло- и электропроводности — это второе место после серебра.

  • Плотность — 8,94*10 3 кг/м 3
  • Удельная теплоемкость при Т=20 о С — 390 Дж/кг*К
  • Электрическое удельное сопротивление в температурном режиме от 20-100 о С — 1,78*10 -8 Ом/м
  • Температура кипения — 2595 о С
  • Удельная электропроводность при Т=20 о С — 55,5-58 МСм/м.

Температура плавления меди

Процесс плавления происходит, когда металл из твердого состояния переходит в жидкое и у каждого элемента есть своя температура плавления. Многое зависит от наличия примесей в составе металла, обычно медь плавится при температуре 1083 о С. Когда к ней добавляют олово, то температура плавления снижается и составляет 930-1140 о С, температура плавления здесь будет зависеть от содержания в сплаве олова. В сплаве меди с цинком температура плавления становится еще ниже — 900-1050 о С.

В процессе нагрева любого металла происходит разрушение кристаллической решетки. По мере нагревания температура плавления становится выше, но затем она остается постоянной, после того как достигла определенного температурного предела. В такой момент и происходит процесс плавления металла, он полностью расплавляется и после этого температура снова начинает повышаться.

Когда начинает происходить охлаждение металла, то температура начинает снижаться и в какой-то момент она остается на прежнем уровне до момента полного затвердения металла. Затем металл затвердевает полностью и температура снова снижается. Это можно увидеть на фазовой диаграмме, где отображен весь температурный процесс с начала момента плавления и до затвердения металла.

Разогретая медь при нагревании начинает переходить в состояние кипения при температуре 2560 о С. Процесс кипения металла очень напоминает процесс кипения жидких веществ, когда начинает выделяться газ и на поверхности появляются пузырьки. В моменты кипения металла при максимально высоких температурах начинает выделяться углерод, который образуется в результате окисления.

Плавление меди в домашних условиях

Низкая температура плавления позволила людям в древности расплавлять металл прямо на костре и затем использовать готовый металл в быту, чтобы сделать оружие, украшения, посуду, орудия труда. Для плавления меди в домашних условиях понадобятся следующие предметы:

  • Тигель и специальные щипцы для него.
  • Древесный уголь.
  • Муфельная печь.
  • Горн.
  • Бытовой пылесос.
  • Форма для плавления.
  • Стальной крюк.

Весь процесс происходит поэтапно, для начала металл нужно положить в тигель, после чего разместить в муфельную печь. Установить нужную температуру и наблюдать за процессом через стеклянное окошко. В процессе плавления в емкости с металлом появится окисная пленка. ее необходимо убрать, открыв окошко и стальным крюком отодвинуть в сторону.

Если нет муфельной печи, то медь можно расплавить с помощью автогена. плавление будет происходить при нормальном доступе воздуха. Используя паяльную лампу можно расплавить желтую медь (латунь) и легкоплавкие виды бронзы. Следить за тем, чтобы пламя охватило весь тигель.

Если в домашних условиях нет ничего из перечисленных средств, тогда можно воспользоваться горном. установив его на слой древесного угля. Чтобы усилить температуру можно использовать бытовой пылесос, включив режим выдувания, но только если шланг имеет металлический наконечник. Хорошо, если наконечник будет иметь зауженный конец, чтобы струя воздуха была более тонкой.

В современных промышленных условиях медь в чистом виде не применятся. ее состав содержит в себе много различных примесей — железа, никеля, мышьяка и сурьмы, а также других элементов. Качество готового изделия определяется наличием процентного содержания примесей в сплаве, но не более 1%. Важными показателями являются тепло- и электропроводность металла. Медь широко используется во многих отраслях промышленности благодаря своей пластичности, гибкости и низкой температуре плавления.

December 27, 2012

Историки предполагают, что первобытные люди находили медь в виде самородков, порой достигающих значительных размеров. Свое название на латинском языке медь (Cuprum) получила от острова Кипр, где ее добывали древние греки. Благодаря тому, что температура плавления меди не слишком высока и составляет 1083 °С, самородки или руду, содержащую медь, можно было плавить на костре. Это обеспечивало получение меди и позволяло использовать ее для изготовления оружия и предметов быта.

Несмотря на то, что медь широко применялась людьми еще с древних времен, по распространению в земной коре она занимает 23 место среди других элементов. Чаще всего она в природе встречается в виде соединений, входящих в состав сульфидных руд. Наиболее распространенные из них – медный блеск и медный колчедан. Существует несколько технологий получения меди из руды, причем по каждой из них процесс происходит в несколько этапов.

Как уже отмечалось, невысокая температура плавления меди позволяла успешно ее обрабатывать еще на самом начальном этапе развития цивилизации. И надо отдать должное древним металлургам, ими были найдены варианты получения и использования не только чистой меди, но и ее сплавов. Плавление – это переход металла из твердого состояния в жидкое. Для этого использовали нагрев, и низкая температура плавления меди позволяла успешно проводить подобную операцию.

Затем в жидкую медь добавляли олово или производили его восстановление из касситерита (руды, содержащей олово) на поверхности меди. В итоге получали бронзу, по прочности превосходящую Cuprum и применяемую для изготовления оружия. Однако сейчас хотелось бы остановиться более подробно на операции плавления, позволяющей получить достаточно чистый материал из руды.

Температура плавления у каждого металла своя и зависит от наличия примесей в составе исходного материала. Так, медь, температура плавления которой составляет 1083 °С, после добавления олова образует бронзу, которая плавится при температуре &30-11409deg;С в зависимости от содержания олова. Латунь же, сплав меди и цинка, имеет температуру плавления &00-10509deg;С.

В процессе нагрева металла происходит разрушение кристаллической решетки. Первоначально, по мере нагрева, температура возрастает, а затем, начиная с некоторого значения, остается постоянной, хотя нагрев и продолжается. В этот момент и происходит плавление. Так продолжается в течение всего времени, пока весь металл не расплавится, и только потом температура начнет повышаться. Это справедливо для всех металлов, температура плавления меди также не изменяется.

При охлаждении картина обратная: сначала температура снижается до начала затвердевания металла, потом держится постоянной и после полного отвердения металла начинает опять понижаться. Такое поведение металла, если его изобразить на графике, называется фазовой диаграммой, показывающей, в каком состоянии находится вещество при конкретной температуре. Для ученых фазовая диаграмма является одним из инструментов в изучении поведения металлов при плавлении.

Если продолжить нагрев расплавленного металла, то при некоторой температуре начинается процесс, похожий на кипение. Так, температура кипения меди составляет 2560 °С. Это название процесс получил за внешнее сходство с кипением жидкости, когда из нее начинают выделяться пузырьки газа. То же самое происходит и с металлом, например, при достаточно высокой температуре из жидкого железа начинает выходить углерод, образующийся в ходе его окисления.

В статье рассмотрен процесс плавления металлов, описано понятие температуры плавления, ее поведение в процессе проведения плавки. Объясняется, какое влияние низкая температура плавления меди оказала на развитие цивилизации и металлургии.

Температура плавления медь

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

Температура плавления медь

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Температура плавления медь

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Температура плавления медь

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Температура плавления медь

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Температура плавления медь

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

Что такое медь

Понятие и особенности

Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.

Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.

Медь имеет ряд отличительных особенностей перед остальными металлами:

  1. Пластичность. Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
  2. Устойчивость к коррозии. Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
  3. Реакция на повышение температуры. Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.

Благодаря таким особенностям можно отличить данный материал от латуни. олова. бронзы и других металлов.

Видео ниже расскажет вам про полезные свойства меди:

Плюсы и минусы

Преимуществами данного металла являются:

  • Высокий показатель теплопроводности;
  • Устойчивость к влиянию коррозии;
  • Достаточно высокая прочность;
  • Высокая пластичность, которая сохраняется до температуры -269 градусов;
  • Хорошая электропроводность;
  • Возможность легирования с различными добавочными компонентами.

Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.

Свойства и характеристики

Температура плавления медь

Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.

Физические свойства метала:

  • Температура плавления меди составляет 1084°C;
  • Температура кипения меди составляет 2560°C;
  • Плотность 8890 кг/м³;
  • Электрическая проводимость 58 МОм/м;
  • Теплопроводность 390 м*К.
  • Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
  • Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
  • Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
  • Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.

При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.

Структура и состав

Медь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, цинк. олово. никель и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.

Структурный тип меди может включать в себя также кристаллы серебра, никеля. кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.

О том, где брать медь, смотрите в этом видеоролике:

Производство материалов

В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.

Большую часть (до 90%) первичного металла меди получают благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.

Области применения

Температура плавления медьМедь активно используется в следующих областях:

  • Электротехническая промышленность. которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
  • Изготовление филигранных изделий. Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
  • Переплавка катодной меди в проволоку. Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.

Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.

Видео ниже расскажет о том, как медь может изменить свои свойства:

StroyRes.NET — это интернет журнал о строительных материалах. У нас Вы найдете их описание и физико-химические свойства. Мы рассказываем о сферах применения с практическими уроками, а также затрагиваем вопросы производства, доставки и хранения материалов.

Температура плавления медь

Температура плавления медь

Температура плавления медь

Температура плавления медь

Температура плавления медь

Температура плавления медь

Температура плавления медь Медь является по-своему уникальным металлом. Она характеризуется высоким показателем пластичности, что в совокупности с механической прочностью делает ее идеальным вариантом для изготовления труб различного назначения. Благодаря невысокой температуре плавления ее обработку можно осуществлять даже в домашних условиях.

В чистом виде медь практически не используется. Чаще всего применяют ее сплавы, с добавлением в состав различных металлов. Это делают для уменьшения стоимости изделия и с целью улучшить его определенные характеристики. Но в качестве полезной информации нужно знать, что температура плавления чистой меди составляет +1085°С .

Наиболее распространенным сплавом является латунь – смесь меди и цинка. Процентное соотношение этих компонентов может составлять 50/50. Латунь плавится при температуре 850°С. Однако этот показатель может изменяться в зависимости от % содержания каждого металла.

Добавление олова в расплавленную медь стало первым шагом для появления бронзы. В техническом плане этот сплав практически не представляет интереса. Чаще всего из него изготавливают предметы украшения интерьера. Бронза обычно плавится при 930°С.

studvesna73.ru

Медь температура плавления - Энциклопедия по машиностроению XXL

После расплавления олово (температура плавления 232 °С) втягивается капиллярными силами в микропоры между частицами более тугоплавкой меди (температура плавления 1083°С), растекается по поверхности этих частиц и обволакивает их тонкой пленкой. В дальнейшем с повышением температуры усиливается диффузионное проникновение олова в медь, приводящее к образованию новых фаз и в конечном итоге - к образованию однородного а-твердого раствора (при содержании олова в шихте до 14 %). По другим данным, такое представление не очень отвечает действительности, так как образующаяся жидкая фаза должна немедленно обволакиваться тонким, но быстро растущим слоем твердой л-фазы (60,9 % Sn, 39,1 % Си), возникающей в результате растворения меди в олове, которая препятствует растеканию олова. Позтому сколько-нибудь длительное существование жидкой фазы при температурах выше 232 °С невозможно, так как л-фаза вскоре исчезает (еще до температуры ее плавления) и сменяется более тугоплавкими фазами е (38,4 % Sn 61,6 % Си) и 5 (31,8% Sn 68,2% Си). Последняя же разрушается с образованием а-твердого раствора при 580 -640 С, т.е. опять-таки ниже температуры плавления зтой фазы. Эти температурные границы образования и разрушения новых фаз носят условный характер, так как существенно зависят от продолжительности выдержки заготовок при заданной температуре.  [c.47] Твердые припои имеют температуру плавления 850—900° С и представляют собой сплавы меди с цинком твердость и прочность паяного ими шва — повышенные. Серебряные припои состоят из серебра и меди температура плавления их 740—830° С они имеют ще большую прочность. Пайка ими медных проводов почти не меняет их электропроводность. И здесь прочность спая обеспечивается образованием твердого раствора между припоем и соединяемым металлом.  [c.462]

Медь — температура плавления 1083 °С, плотность 8940 кг/м обладает гранецентрированной кубической решеткой имеет высокие тепло- и электропроводность, а также пластичность коррозионно-устойчива в ряде агрессивных сред [9].  [c.131]

В конце семидесятых годов прошлого века Беккерель создал высокотемпературную термоэлектрическую батарею из сернистой меди (температура плавления более 1000° С) в паре с мельхиором, дававшую большую ТЭДС.  [c.9]

К числу таких припоев относятся сплавы следующих марок СМ-2 (88% алюминия и 12% кремния) 34А (66% алюминия, 6% кремния и 28% меди) и 35А (72% алюминия, 7% кремния и 21% меди). Температура плавления припоев для паяния алюминиевых сплавов 578-—525° С.  [c.246]

При введении в цинк серебра или меди температура плавления цинковых сплавов вследствие образования перитектики повышается. В настоящее время изучены и применяются в качестве припоев некоторые цинковые сплавы с алюминием, кадмием, медью, серебром, оловом, свинцом, температура расплавления которых находится в интервале 340—480° С.  [c.200]

Медно-цинковый припой содержит от 36 до 54% меди. Температура плавления этих припоев не ниже 600—700°, они плавятся в горне, в пламени паяльной лампы и бензиновой горелки.  [c.79]

Алюминий — металл, широко применяю-ш,ийся в промышленности. Удельный вес алюминия 2,72 г/сжз (почти в три раза меньше удельного веса железа и меди). Температура плавления 658°. Алюминий на воздухе покрывается тонкой пленкой окиси, которая предохраняет его от дальнейшего окисления. Алюминий подвергают как холодной, так и горячей прокатке. Температурный интервал горячей прокатки алюминия 350—480°. В отдельных случаях, при калибровке валков, имеющей свободное уширение в первых пропусках, прокатку профилей из алюминия можно производить в валках, предназначенных для прокатки стали. При проектировании специальной калибровки для прокатки алюминия следует учитывать, что уширение алюминия при 400—500° значительно больше, чем уширение железа при 1100— 1150°. Только при 850—1000° уширение железа приближается к уширению алюминия при пониженных температурах (100—200°).  [c.10]

Вычислим, пользуясь формулой А. А, Бочвара, температуру рекристаллизации железа. Температура плавления железа равна 1539°. Для того чтобы вычислить абсолютную температуру, нужно прибавить к этой температуре 273° получим 1812° умножив полученное число на 0,4, как это требуется по формуле А. А. Бочвара, получим 725 вычтем 273, чтобы получить результат не по абсолютной шкале температур, а по обычной шкале Цельсия в результате получим (с округлением) 450°. Предлагаем читателю самому вычислить по формуле А. А. Бочвара температуру рекристаллизации меди. Температура плавления меди равна 1083°.  [c.57]

В качестве припоя может быть использована электролитическая медь (температура плавления 1080° С) или медно-никелевый припой (температура плавления 1220° С) следующего состава 70% меди, 30% никеля. Существуют и другие припои, составы которых приведены в книгах по инструментальному делу.  [c.33]

Резцы с механическим креплением пластинок режущего сплава. Пайка пластинки быстрорежущей стали и твердых сплавов производится чаще всего красной медью. Температура плавления меди около 1000°. Нагрев же под закалку быстрорежущей стали происходит после напайки, при 1280—1300°. Нужно, таким образом, большое искусство, чтобы пластинка быстрорежущей стали при закалке не отпаялась. В силу этого иногда закалку ведут при сниженных температурах, что совершенно нежелательно, так как при этом снижаются режущие качества стали (уменьшается твердость быстрорежущей стали).  [c.262]

Худшими характеристиками обладают никель и медь так для меди температура плавления 1083 °С, оксида меди — 1230 °С, теп-  [c.399]

Промышленная медь содержит около 99% чистой меди. Температура плавления меди 1183° С. В связи с повышенной склонностью к окислению медь сваривать трудно. Теплопроводность меди в 6 раз превышает теплопроводность стали, поэтому значительная часть тепла расходуется на соседние участки металла, прилегающие к шву. Мощность пламени при сварке меди должна быть больше, чем для сварки других металлов.  [c.68]

Напайку производят с помощью порошка меди или тонкой медной пластинки (фольги), укладываемых между державкой и пластинкой. Такой резец помещают (одним концом) в печь, нагретую до 1150—1200°, для расплавления меди (температура плавления 1084°), затем вынимают из печи, пластину -слегка прижимают к державке (для плотного сцепления) и замедленно охлаждают (в ящике с песком или мелким углем), после чего затачивают.  [c.369]

Однако температура плавления не дает точного указания на предельную рабочую температуру. Для одних сплавов эта температура составляет 0,7—0,8 от абсолютной температуры плавления, для других она меньше 0,5. Так, сплавы меди оказываются не более жаропрочными, чем сплавы алюминия, не-  [c.456]

Твердые припои имеют температуру плавления в интервале 800—900°С и являются сплавами меди и цинка (латуни) и меди, цинка и серебра (так называемые серебряные припои). Последние применяют при пайке электроприборов, когда электропроводность спая не должна уменьшаться по сравнению с электропроводностью основного металла.  [c.624]

Технически чистая медь имеет плотность 8940 кг/м , температуру плавления 1083 С, обладает высокой пластичностью, коррозионной стойкостью, малым удельным электросопротивлением (7-10 Ом м), высокой теплопроводностью [385 Вт/(м К) 1, и поэтому ее широко используют для изготовления электропроводов, деталей электрических машин и приборов, в химическом машиностроении. Медь по чистоте подразделяют на марки МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си), М4 (99 % Си).  [c.18]

При пайке паяльниками основной металл нагревают и припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника, который перед пайкой или в процессе ее подогревают. Для низкотемпературной пайки применяют паяльники с периодическим нагревом, с непрерывным нагревом и ультразвуковые. Рабочую часть паяльника выполняют из красной меди. Паяльник с периодическим нагревом в процессе работы периодически подогревают от постороннего источника теплоты. Паяльники с постоянным нагревом делают электрическими. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов легкоплавкими припоями с температурой плавления ниже 300—350 °С.  [c.241]

Обычными примесями в техническом никеле являются кобальт, железо, кремний, медь. Эти примеси не оказывают вредного влияния, так как образуют с никелем твердые растворы. При содержании углерода свыше 0,4% но границам зерен выделяется графит, что вызывает снижение прочности металла. Сера является вредной примесью, образующей с никелем сульфид N 382, который дает с никелем эвтектику с температурой плавления 625°С. Кислород, присутствующий в металле в виде NiO, при малом его содержании не сказывается на свойствах металла.  [c.256]

Медь — химический элемент 1 группы Периодической системы элементов, порядковый номер 29, атомная масса 63,54. Медь — металл красного, в изломе розового цвета. Температура плавления 1083 " С. Кристаллическая г. ц. к. решетка с периодом а = 0,36074 нм. Плотность меди 8,94 г/см Медь обладает наибольшей (после серебра) электропроводностью и теплопроводностью Удельное электросопротивление меди составляет 0,0178 мкОм-м. В зависимости от чистоты медь поставляют следующих марок МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си) и М4 (99,0 % uV Присутствующие в меди примеси оказывают большое влияние на ее свойства.  [c.342]

Семейство d-металлов образует с азотом многочисленные соединения d-металлы, не имеющие на подуровне d парных электронов, дают очень устойчивые соединения с высокой температурой плавления и большой твердостью. Такие металлы, как железо, кобальт, никель, образуют малоустойчивые нитриды, разлагающиеся при высоких температурах, но обладающие также повышенной твердостью в кристаллическом состоянии. Относительная устойчивость нитридов d-металлов приведена на рис. 9.29. Медь не образует нитридов, и сварку меди можно проводить в атмосфере азота высокой степени чистоты.  [c.344]

Различают легкоплавкие и тугоплавкие припои. К легкоплавким припоям с температурой плавления до 300 С относятся оловянно-свинцовистые сплавы. Для понижения температуры плавления в эти сплавы вводят висмут и кадмий, а для увеличения прочности добавляют сурьму. Тугоплавкие припои содержат в своем составе медь, цинк, серебро н имеют температуру плавления выше 500" С.  [c.371]

Применение индукционного нагрева обычно экономически оправдано при пайке среднеплавкими припоями (медь, латунь, ферромарганец, медно-серебряные сплавы) с температурой плавления 400—1200 °С.  [c.219]

Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 С и 326 °С).  [c.113]

Медь широко применяется в качестве конструкционного материала для изготовления различного рода сосудов, трубопроводов, химической аппаратуры, электрораспределительных устройств и другой аппаратуры. Медь обладает высокой тепло- и электропроводнофью, химической стойкостью и сохраняет свои механические свойства в условиях низких температур, когда почти все стали становятся хрупкими. Медь имеет температуру плавления 1083°С (1356 К), временное сопротивление в отожженном состоянии 200 МПа и плотность 8,9 г/см . Большое распространение в народном хозяйстве нашли сплавы меди — латунь и бронза. Латунь — это сплав меди с цинком. Ее применению способствует меньшая стоимость и плотность цинка по сравнению с медью. Температура плавления (800—900°С) зависит от состава — чем больше цинка, тем ниже точка плавления. Бронза представляет собой сплав меди с оло-вом, алюминием, бериллием и свинцом. Температура плавления 720—1000 °С. Чем больше в бронзе олова, тем ниже температура ее плавления.  [c.17]

Сварка алюминия. Алюминий находит все большее применение в приборостроении. В ряде случаев он успешно заменяет медь и ее сплавы. Алюминий почти в три раза легче стали. Он обладает высокой электротеплопроводностью (около 62% электропроводности меди). Температура плавления алюминия 657° С, температура же плавления окисных пленок, покрывающих алюминий, составляет 2050° С, В нагретом состоянии алюминий хрупок. Стыковая сварка алюминия осуществляется на контактных машинах переменного тока методом сопротивления. Однако возможна сварка алюминия также методом оплавления.  [c.11]

С материалом соединяемых деталей. Важуум-ный припой, который при пайке металлических деталей в водородной печи (в отличие от быстрой пайки паяльником или высокой частотой, см. ниже) подвергается длительному нагреванию и вследствие этого долго находится в жидком состоянии, IB контакте со спаиваемыми деталями не должен образовывать с основным металлом оплавов со значительно более низкой температурой плавления, чем температура пайки. В противном случае образующийся сплав при длительном нагревании в печи будет вытекать из места спая, оставляя iB детали поры и отверстия. Говорят, обычно, что такой припой выплавляется . Если, например, паять чистую медь чистым серебром в водородной печи примерно при 980° С, в месте контакта твердой меди с жидким серебром образуется переходный слой сплава, в котором происходит непрерывное раствярение меди -в чистом серебре. Как видно из диаграммы состояния систе.мы Ag u, приведенной яа рис. 9-3-33, с увеличением содержания меди температура плавления переходных сплавов (температура как солидуса, так и ликвидуса) очень быстро снижается и растворенная медь с образующимся сплавом вытекает из места спая. Однако условия изменяются, если применять не чистое серебро, а его сплав с медью, соответствующий по своему составу эвтектике Е (примерно 72% серебра), положение которой мож-  [c.536]

Нихром — сплав никеля и хрома. Удельное сопротивление при температуре +20 С равно 1,10 оммм /м, т. е. гораздо выше, чем у манганина и константана. Нихром имеет высокую максимальную рабочую температуру, равную 1000° С. Нихром менее стабилен по температуре, чем манганин или константан его температурный коэффициент равен 0,00011, что примерно в 40 раз меньше, чем у меди. Температура плавления нихрома 1550° С.  [c.284]

При сварке латуней возможно испарение цинка (температура кипения 907° С, т. е. ниже температуры плавления меди). Образующийся окисел цинка ядовит, поэтому при сварке требуется хорошая вентиляция. Испарение цинка может привести к пористости металла шва. Это осложнение удается преодолеть нредва-  [c.344]

ЧЕРНЫЕ МЕТАЛЛЫ имеют темно-серый цвет, большую плотность (кроме щелочноземельных), высокую температуру плавления, относительно высокую твердость и во многих слу чаях обладают полиморфизмом (о последнем см. гл. II, п. 6) Наиболее типичным металлом этой группы является железо ЦВЕТНЫЕ МЕТАЛЛЫ чаще всего имеют характерную ок раску красную желтую, белую. Обладают большой пластич Fio Tbro, малой твердостью, относительно низкой температурой II, лл ленпя, для ннх характерно отсутствие полиморфизма. Наиболее типичным металлом этой группы является медь.  [c.15]

Твердые припои имеют высокую температуру плавления пайка этими припоями затруднительна, но спай обладает высокими механическими свойствами. Например, опай сплавов на основе меди имеет свойства не хуже, чем основной металл.  [c.623]

Цветные металлы и силаны также подвержены 1 азовой 1(орро-зии при повышенных температурах. В особенности быстро окисляются при высоких температурах цинк, кадмий и свипен,. Вследствие низкой температуры плавления. эти металлы нашути ограниченное применение при температурах выше 1.50 "С. Большое практическое значение имеет жаростойкость таких коиструкцион-тдх металлов, как алюминий, медь н сплавы. этих металлов, л также никель и сплавы па его основе, титан и его сплавы.  [c.140]

Алюминий — элемент 111 группы Периодической системы элементов, порядковый номер 13, атомная масса 26,98 (см. табл. 1). Температура плавления 660 °С. Алюмииик имеет кристаллическую г. ц, к. решетку с периодом а 0,40412 нм. Наиболее важной особенностью алюминия является низкая плотность 2,7 г/см , против 7,8 г/см для железа и 8,9 г/см" для меди. Алюминий обладает высокой электро-  [c.320]

Мягкая основа сплава а-твердый раствор сурьмы в олове (рис. 176), а твердые кристаллы — Р-фаза эта фаза представляет собой твердый раствор на основе химического соединения SnSb. Сурьма и олово различаются по плотности, поэтому сплавы этих металлов способны к значительной ликвации. Для предупреждения этого дефекта в баббиты вводят медь. Она образует с сурьмой химическое соединение ugSn. Это соединение имеет более высокую температуру плавления и кристаллизуется первым, образуя разветвленные дендриты, которые препятствуют ликвации кубических кристаллов р (SnSb). Кроме того, кристаллы  [c.356]

Пайкой называют процесс соединения металлических или метал-лизованных деталей с помощью дополнительного металла или сплава, называемого припоем, путем нагрева мест соединения до температуры плавления припоя. Соединение происходит вследствие растворения и диффузии припоя и материала деталей. В качестве припоев применяют некоторые цветные металлы (серебро, медь) или сплавы цветных металлов. Припои делят на мягкие (температура плавления t° 400- 500° С), а пайку соответственно — на мягкую и твердую.  [c.395]

Из-за больших искажений кристаллической решетки вокруг межузельного атома его энергия активации процесса миграции м меньше, чем для вакансии. Для меди энергия миграции вакансий составляет 1 0,5 эВ, для межузельного атома 0,16+0,10 эВ, т. е. межузельные атомы подвижнее, чем вакансии. Так как концентрация вакансий несоизмеримо выше концентрации дислоцированных атомов, то в процессах самодиффузии, т. е. диффузии атомов основного вещества, доминирующую роль играет вакансиопный механизм. Находящийся рядом с вакансией атом обладает повышенной энергией и может занять ее место. Время существования вакансии в одном узле кристаллической решетки зависит от температуры. Для кадмия при комнатной температуре это время составляет около суток, ближе к температуре плавления 4-10- с, т. е. частота диффузионных скачков вакансий 0,25- Ю с- .  [c.29]

Рис, 2.2. Зависк.мость удельного сопротивления. меди от температуры скачок при температуре плавления 1083° С  [c.13]

Медь относится к группе цветных металлов, наиболее широко приме-пясмь[Х в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева - 29, атомный вес А = 63,57. Медь имеет гранецентри-рованную кубическую решетку (ГПК) с периодом а - 3,507 А . Удельный вес меди у = 8,94 г/см", температура плавления - 1083 С. Чистая медь обладает  [c.112]

Баббиты - это мягкие антифрикционные сплавы на оловянной, свинцовой, алюминиевой и цинковой основах, в которых равномерно распределены твердые кристаллы (кристаллы - фазы SnSb или кристаллы сурьмы, иглы меди). Баббиты отличаются низкой твердостью (13-23 НВ), невысокой температурой плавления (340-500°С, алюминиевые бронзы - 630-750°С), отлично прирабатываются и имеют низкий коэффициент трения со сталью, хорошо удерживают фаничную масляную пленку. Мягкая и пластичная основа баббита при трении в подшипнике изнашивается бь[стрее, чем вкрапленные в нее твердые кристаллы других фаз, в результате шейка вала при вращении скользит по этим твердым кристаллам. При этом уменьшается площадь фактического касания трущихся поверхностей, что, в свою очередь, снижает коэффициент трения и облегчает поступление смазки в зону трения. Благодаря хорошей прирабатываемости баббитов все неточности поверхностей трения вследствие механической обработки или установки деталей при сборке в процессе обкатки подшипников быстро устраняются. В табл. 1.6 приведены основные свойства и структура баббитов.  [c.22]

mash-xxl.info

Латунь температура плавления - Энциклопедия по машиностроению XXL

Твердые припои имеют температуру плавления в интервале 800—900°С и являются сплавами меди и цинка (латуни) и меди, цинка и серебра (так называемые серебряные припои). Последние применяют при пайке электроприборов, когда электропроводность спая не должна уменьшаться по сравнению с электропроводностью основного металла.  [c.624]

Специфическая особенность при сварке латуней заключается в том, что в процессе сварки цинк, содержащийся в латуни, значительно испаряется и сгорает, так как температура испарения цинка (Т сп=906°С) близка к температуре плавления латуни (Т =90Б°С). Поэтому снижается содержание цинка в металле шва и ухудшаются механические свойства соединения. Кроме того, пары цинка ядовиты. Для уменьшения выгорания цинка целесообразны сварка на пониженной мощности, применение присадочного металла, содержащего кремний (кремний создает на поверхности расплавлен-  [c.137]

Применение индукционного нагрева обычно экономически оправдано при пайке среднеплавкими припоями (медь, латунь, ферромарганец, медно-серебряные сплавы) с температурой плавления 400—1200 °С.  [c.219]

Добавка лития к литой латуни Л68 с примесью свинца существенно улучшила пластичность при температуре горячей прокатки (табл. 76) вследствие образования соединений лития со свинцом с температурой плавления —ТОО С п изменения характера распределения свинца в латуни.  [c.179]

Литий уменьшает вредное влияние на латунь висмута, образующего с литием соединение с температурой плавления 1145 С. Добавка 0,05 %  [c.179]

Для специфических условий нагружения это явление принято обозначать другими терминами, например, коррозионное растрескивание стали в щелочных средах называют каустической или щелочной хрупкостью, разрушение латуней во влажной атмосфере— сезонным растрескиванием аналогичны коррозионному растрескиванию хрупкие разрушения металлов, происходящие вследствие проникновения по границам зерен легкоплавких примесей. Диффузия легкоплавкого металла вдоль границ зерен сплава, находящегося под действием напряжения и температуры, близкой к температуре плавления диффундирующего металла, приводит также к снижению прочности и пластичности основного металла. Этот вид порчи материала иногда называют легированием под напряжением. Развивающееся во времени в металлах разрушение при наводороживании, называемое водородным растрескиванием, в некоторой степени можно отнести к категории коррозионных разрушений, хотя чаще его классифицируют как замедленное разрушение. Во всяком случае, когда в процессе коррозионного воздействия освобождаются атомы водорода и материал чувствителен к водородному охрупчиванию, разрушение значительно ускоряется.  [c.70]

Однако на практике эти условия не всегда соблюдаются. Так, при пайке латунных деталей серебряными припоями ПСр.25, ПСр.45 и пер.70 с температурами плавления 720—780° до последнего времени в качестве флюса использовалась бура, плавящаяся при 741°. Отсутствие разницы в температурах плавления флюса и припоев в этом случае приводило к тому, что металл покрывался толстым слоем окисной пленки, затрудняющей пайку и снижающей ее качество.  [c.273]

Латунь дельта — Температура плавления 6 — 193  [c.129]

Для стальных деталей припоем обычно служит чистая электролитическая медь (марки М1 и М2). Она весьма жидкотекуча в восстановительной атмосфере, даёт прочное, чистое соединение, не требует флюса, за исключением некоторых плохо смачиваемых сортов стали. Применение флюсов вообще удорожает процесс пайки и требует последующей очистки. Флюсы требуются при содержании в стали более 1—2о/о хрома, марганца, кремния, ванадия и алюминия, образующих окисные плёнки, не восстанавливаемые газовой атмосферой и ухудшающие смачивание. Никель, наоборот, усиливает смачивание и является желательным элементом в сталях для пайки. Иногда в качестве припоя используется латунь, которая обычно требует применения флюса для уменьшения окисления цинка и растворения образовавшейся окиси. В процессе пайки латунь может повышать температуру плавления вследствие испарения части цинка. С флюсом латунь растекается почти так же хорошо, как и чистая медь. Для меди и медных сплавов, не-  [c.448]

Температуры плавления и разливки латуней  [c.193]

Общий нагрев деталей в печах и горнах применяют только при твердой пайке латунью или медью. Подготовленные и собранные детали с припоем и флюсом около шва загружают в печь, нагретую на 50—80° выше температуры плавления припоя.  [c.208]

Латунь является сплавом меди с цинком. Содержание цинка в латуни доходит до 50%. Температура плавления латуни колеблется от 800 до 950° С и зависит от количества цинка. Латунь широко применяется в технике в виде листового и сортового металла, а также литья.  [c.15]

Твердые припои бывают медно-цинковые и серебряные. Такие припои применяют для пайки медных, бронзовых, латунных и стальных деталей, когда соединение требует большой прочности. Температура плавления твердых припоев от 600 до 900° С. Предметы, подлежащие пайке, должны быть плотно стянуты проволокой.  [c.36]

Газовую сварку чугуна цветными сплавами без подогрева детали в сочетании с дуговой сваркой широко применяют в ремонтном производстве для сварки трещин на обрабатываемых поверхностях корпусных деталей. Присадочным материалом для газовой сварки является латунь, которая более соответствует требованиям сварки по сравнению с другими цветными сплавами на медной основе. Температура плавления латуни ниже температуры плавления чугуна (880—950 °С), поэтому ее можно применить для сварки, не доводя чугун до плавления и не вызывая в нем особенных структурных изменений и внутренних напряжений.  [c.111]

При сварке латуней возможно испарение цинка, температура кипения которого составляет 907 °С, т. е. ниже температуры плавления меди. Образующийся оксид цинка ядовит, поэтому при сварке требуется хорошая вентиляция. Испарение цинка может привести к пористости металла шва. Введение Мп и Si в шов уменьшает испарение Zn.  [c.264]

Пайка нержавеющих сталей и жаропрочных сплавов латунью и другими припоями с температурой плавления  [c.345]

При сварке некоторых сплавов цветных металлов возможно испарение отдельных легкоплавких компонентов. Так, температура плавления цинка 419 °С, олова 232 °С, а температура плавления латуней и бронз  [c.437]

Стали кадмиевыми припоями паяли только после меднения. Активирование кадмиевых припоев цинком, имеюш,им высокое химическое сродство с железом, позволило применить их для пайки сталей и одновременно повысить их прочность. Припой такого типа, содержащий 60—85% d 15—50% Zn и 0,4—5% Ni с температурой плавления 290—270° С, пригоден для пайки не только меди, цинка и латуни, но и сталей, в том числе и коррозионно-стойкой. Предел прочности стыковых соединений из медного листа толщ,иной 2 мм, паяных таким припоем, равен 23,3 кгс/мм, между тем предел прочности соединений из того же металла, паянных оловянно-свинцовым припоем, 5,5 кгс/мм. Этот припой не содержит серебра и применяется для пайки изделий в электротехнической промышленности и теплообменников. Введение никеля в припой дополнительно активирует и упрочняет его, так как никель образует с железом непрерывный ряд твердых растворов, а с кадмием — фазу типа у-латуни.  [c.96]

Более высокую температуру плавления, чем у припоев на основе системы Си—Р, имеют припои на основе сплавов системы Си—Zn (латуни).  [c.123]

Прочность литых латуней, состоящих из а-фазы, непрерывно увеличивается с повышением содержания цинка (табл. 34). Наиболее прочна латунь с содержанием —42% Zn. Латунные припои, содержащие 60% Си, имеют температуру плавления 900° С. Введение в них добавок олова, кадмия или увеличение содержания цинка позволяет снизить их температуру плавления максимум на 50° С.  [c.124]

Наличие в сплавах системы Си—Мп твердого раствора с минимальной температурой плавления 870° С (при 35% Мп) позволяет разрабатывать припои с температурами пайки не выше, чем у латунных припоев. Однако сплавы с марганцем склонны к ликвации. Из-за большой упругости пара марганец заметно испаряется. По А. Салли для двойных сплавов Си—Мп, особенно содержащ,их более 20% Мп, вследствие полиморфизма марганца и метастабильности характерны невысокие пластичность и технологичность. Так, например, припой Си—36% Мп с 0,15— 0,20% Li малопластичен и может быть применен только в виде литых колец. Среди сплавов системы Си—Мп известен только один припой, применяемый для пайки коррозионно-стойких сталей он содержит 15% MHj температура его плавления 950° С температура пайки 970° С.  [c.128]

Припои на основе Ag и Си. Серебряные припои содержат медь, цинк, кадмий известны прппои, содержащие также золото. Температурный интервал пайки этих припоев 600—1000° С. Содержание серебра колеблется 6т 25 до 70%. В качестве примера моллегирующие элементы, образующие низкотемпературные эвтектики меди с фосфором при 707° С, с серебром при 779° С. Для снижения температуры плавления к припою добавляют олово и цинк. Медно-фосфористый припой МФ1 с содержанием 10% фосфора имеет. Т л = 714 850° С. Для пайки латуни применяют медно-цинковые припои с содержанием 50—60% Си. Их температура плавления составляет 850—940° С. В качестве флюсов для указанных припоев применяют, в основном смеси плавленой буры ЫагВ40, и борной кислоты. Бура плавится при 743° С для активирования в состав вводят фториды.  [c.283]

А. С. Лавров не только открыл явления юна 1Ьной ликвации, но и объяснил их происхождение и основные закономерности. В чем же причины ликвации Прежде всего в химической неоднородности любых металлических сплавов, будь то сталь, латунь или бронза. В отличие от чистых металлов сплавы застывают и кристаллизуются не при одной определенной температуре, а в некотором интервале температур. Когда жидкая сталь налита в изложницу, в первую очередь затвердевают ее наиболее lyroJiflauioie составляющие, прежде всего железо, температура плавления которого 1530°. Поэтому ранее остывшие слои металла, расположенные у внешней поверхности слитка, содержат больше железа и меньше других химических элементов — углерода, фосфора, серы и т. д. по сравнению с внутренними частями слитка, затвердевающими позже. Наружные слои стального слитка обладают вследствие этого более высокими механическими свойствами.  [c.66]

Литий — серебристо-белый очень мягкий металл, легко окисляющийся на воздухе. По ГОСТ 8774—75 устанавливаются три марки лития ЛЭ-1 (содержание чистого лития не менее 99,5%), Л9-2(98,8%) и ЛЭ-3 (98,0%). Применяется в машиностроении для дегазации и раскисления стали, чугуна, бронз и латуни, в баббитах — вместо олова для повышения температуры плавления и апти-фрикгцгонных свойств. Повышает качество алюминиевых, магниевых, медных, свинцовых и других сплавов, улучшает их антикоррозионные и литейные свойства и т. д., образует твердые припои для пайки без флюсов. Поставляетс.ч в виде чушек массой до 2,5 кг и хранится в плотно закрытых (запаянных) банках из белой жести (по 12—20 чушек — до 50 кг), залитых смесью трансформаторного масла (50%) и парафина (50%) с надписью Осторожно, от воды загорается .  [c.170]

В отдельных случаях для пайки лопаток можно использовать также припой на медно-цинковой основе типа латуней марок ЛОК-62-0,6-0,4 и ЛОК-59-1-03. Эти припои имеют более высокую температуру плавления (905—938°) и поэтому их применение целесообразно лишь при пайке лопаток из аустенитных сталей. Пайка ими лопаток из хромистой стали неиз-  [c.152]

Цинк в 4H T0iM виде применяют в основном для оцин-кования стали, в электрических батареях и элементах. В большом количестве применяют цинк в сплаве с медью и другими металлами для получения латуни, припоев и т. п. Температура плавления цинка равна 419° С,  [c.14]

Мягкие припои изготовляют в основном из сплава олова и свинца или олова, свинца и висмута. Такие припои нримедяют для пайки цинка, латуни, жести, меди и других металлов, когда от соединения не требуется большой прочности. Температура плавления мягких припоев от 180 до 300° С в зависимости от состава. Чем больше в припое свинца, тем выше температура плавления припоя. Пайка мягкими припоями производится при помощи паяльника, изготовленного из красной меди.  [c.36]

Для пайки латуней, богатых медью, используют серебряные припои ПСр 72, ПСр 40, ПСр 45, ПСр 25, ПСр 12, а также латуни с низкой температурой плавления (припои типа ПМЦ 36 ПМК 48 ПМЦ 54) и медно-фосфори-стые.  [c.252]

При сварке латуней поры могут возникать вследствие испарения цинка (7кип = 907 °С ниже температуры плавления меди). Образующийся при испарении оксид цинка ядовит. Испарение цинка уменьшается при использовании предварительного подогрева и высоких скоростей сварки, при легировании металла шва кремнием.  [c.457]

Для исправления дефектов на чугунных изделиях при ремонте иногда целесообразно, в целях снижения термических напряжений. применять вместо сварки чугунным присадочным прутком пайкосварку латунными припоями. Этот процесс идет при более низкой рабочей температуре с нагревом основного металла (чугуна) до температуры плавления латуни (850—900°С), т. е. без расплавления чугуна. Затем кромки разделки или раковину посыпают флюсом и залуживают участками латунным прутковым припоем. Пайкосварка выполняется правым способом (рис. 5.2) снизу вверх с расположением свариваемых кромок в наклонном положении (для того, чтобы расплавленная латунь не стекала на нелуженую поверхность).  [c.105]

Чистая медь имеет розовато-красный цвет, плотность ее 8,93 г/см , температура плавления 1083 °С. В отожженном состоянии а = 250 МПа, 5 = 45-60 %, твердость 60 НВ. Кристаллизуется в кубической гранецент-рированной решетке и полиморфных превращений не имеет. Благодаря высокой электропроводности около половины всей произведенной меди используют в элек-тро- и радиотехнической промышленности для изготовления проводников, монтажных и обмоточных проводов, токопроводящих деталей приборов, аппаратов, в электровакуумной технике. Как конструкционный материал медь не используется из-за высокой стоимости и низких механических свойств. Маркируется буквой М и цифрами, зависящими от содержания примесей. Медь марок МОО (0,01 % примесей), МО (0,05 % ) и Ml (0,1 %) используется для изготовления проводников электрического тока, медь М2 (0,3 % ) — для производства высококачественных сплавов меди, М3 (0,5 % ) — для сплавов обыкновенного качества. Широкое использование в промышленности имеют сплавы меди с другими элементами — латуни и бронзы.  [c.198]

Латунь Плот- ность. г/см Температура плавления, °С Теплопровод- ность, (кал/см С-°С) Коэффициент линейного расшн )ения Р. Ом-мм /м Е, кгс/мм Gg, кгс/мм  [c.427]

Широкое применение в качестве припоев получили высокотемпературные припои — сплавы на основе серебра, алюминия, меди и др., обладающие, как правило, температурой плавления выше 450—500° С (723—773° К). Наибольшее применение находят медно-цинковые припои ПМЦ 36, ПМЦ 48, ПМЦ 54 (ГОСТ 1534—42). Они имеют предел прочности = 21—35 кПмм (206,0—343,2 Мн/м ), относительное удлинение до 26% и рекомендуются для пайки изделий из меди, томпака, латуни, бронзы. Серебряные припои имеют температуру плавления 740—830° С (413—1103° К). Согласно ГОСТу 8190—56 марки припоев разделяются в зависимости от содержания в сплавах серебра, которое изменяется в пределах от 10 (ПСр 10) до 72% (ПСр 72). Остальными составляющими являются цинк, медь и в небольшом количестве свинец. Эти припои применяются для пайки тонких деталей, для соединений медных проводов и в случаях, когда медь спая не должна резко уменьшать электропроводность соединений встык. Эти припои применяются для пайки тонкой луженой стальной проволоки в кабельном производстве и т. д.  [c.113]

Зибель и Помп пересмотрели проблему Людвика. Исследования Людвика (Ludwik [1909, 1]) из-за низкой температуры плавления олова предназначались для твердых тел со сходственной температурой Т/Т =0,59 при Т, равном комнатной температуре. Для свинца и цинка, которые он полагал также вязкопластическими, значения сходственной температуры при том же условии были Т Тт = = 0,50 и Т/Т =0,43 соответственно. С другой стороны, для стали, меди и латуни, для которых по его утверждению вязкими эффектами. можно было пренебречь, Т/Т =0,17 0,22 и 0,25 соответственно. Таким образом, на выводы Людвика повлияло то, что он выбрал частное значение Т, т. е. комнатную температуру, для всех своих сравнений.  [c.189]

Соединения, паяные припоями системы Ag—Си—Zn— d, теплостойки примерно до 4 Ю С, а припои системы Ag—Си—Zn — до температуры 500 С в связи с упрочнением твердого раствора на основе серебра. При пайке сталей двухфазные припои на основе Ag—Си имеют важное преимуш,ество по сравнению с при-пояйи на основе а-латуней они не проникают по границам зерен. Это связано с более низкой температурой плавления первой системы припоев, когда диффузионные процессы протекают с меньшей скоростью.  [c.110]

Исходя из этих соображений С. В. Лашко, О. П. Бондарчук, Г. Н. УполоБникова и др. предложили припой ПМФСб-0,15 с пониженным содержанием фосфора, легированный кремнием или кремнием и серебром. Пределы содержания легирующих элементов в припое 5—8% Р 0,10—1,5% Si Си— остальное. Припой такого состава рекомендован для пайки изделий из меди и латуни, работающих без воздействия значительных ударных нагрузок, температура плавления припоя 725° С температура пайки 750—780° С. Для изделий с повышенной ударной вязкостью паяных соединений предложен вариант припоя состава 5—6% Р 3% Ag 0,15% Si Си—остальное температура пайки 750—780° С. Данные по сопротивлению срезу соединений из латуни Л62, паянных припоями ПМФС6-0, 5 и др., приведены в табл. 32.  [c.122]

Широкое распространение латунных припоев для пайки медных сплавов и сталей объясняется их относительно низкой температурой плавления, узким интервалом кристаллизации, большой растворимостью цинка в меди и недефицитностью. Температура пайки сталей латунными припоями 850—950° С. Температура ликвидуса латуни непрерывно снижается с увеличением содержания цинка,  [c.123]

Основной недостаток латунных припоев заключается в частичном испарении цинка при пайке вследствие высокого давления его пара. Чистый цинк кипит при температуре 906° С. В латунях температура испарения цинка повышается и равна 1000° С при 50% Си, 1200° С при 75% Си и 1400° С при 85% Си. Из латуней цинк испаряется в виде белой окиси цинка ZnO, имеющей температуру плавления 1975 С. Температура испарения цинка из латунных припоев отличается от их температуры плавления всего лишь на —100° С. Перегрев латунных припоев при пайке поэтому весьма нежелателен, так как ухудшаются свойства паяных соединений (появляется пористость). Окись цинка, вдыхае-  [c.125]

Эвтектика Си—Р содержит 8,4% Р. Добавка фосфора резко снижает температуру плавления медных припоев. Припои систем Си—Р, Си—Р—Zn, Си—Р—Sb обеспечивают сравнительна низкую прочность паяных соединений меди и плохо удерживаются в зазорах более 0,3 мм. Введение в припои Си—Р кремния, бора, алюминия, никеля обеспечивает их пригодность для пайки меди при зазорах 0,3—0,6 мм, повышает прочность и пластичность паяных соединений при сохранении температуры пайки в пределах 750—780° С. Это позволяет применять такие припои взамен серебряных типа ПСр45 при пайке латуней. Такие припои имеют 134  [c.134]

mash-xxl.info