Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494. Tl494 схема пусковое устройство
TL494 ШИМ — КОНТРОЛЛЕР — DataSheet
1 Характеристики
- Готовый ШИМ — контроллер
- Незадействованные выводы для 200 мА приемника или источника тока
- Выбор однотактного или двухтактного режима работы
- Внутренняя схема запрещает двойной импульс на выходе
- Изменяемое время задержки обеспечивает контроль всего спектра
- Внутренний регулятор обеспечивает 5 В стабильного напряжения с допуском 5%
- Схема архитектуры позволяет легко синхронизироваться
2 Применение
- Настольные ПК
- Микроволновые печи
Источники питания: AC/DC; изолированный; с коррекцией коэффициента мощности; >90 Вт
- Серверы БП
- Солнечные микро-преобразователи
- Стиральные машины классов : Low-End и High-End
- Электровелосипеды
- Источники питания: AC/DC; изолированный; без коррекции коэффициента мощности; <90 Вт
- Датчики дыма
- Солнечные преобразователи
3 Описание
TL 494 включает в себя все функции необходимые для построения схемы управления широтно-импульсной модуляцией (ШИМ) на одном кристалле. Предназначен в основном для управления питанием, это устройство дает гибкость для конкретного применения в адаптации в схемах управления блоков питания. TL 494 содержит два усилителя ошибки, внутренний регулируемый генератор, (DTC) управляемый компаратор временной задержки, импульсно управляемый переключатель, источник опорного напряжения 5В ± 5%, контроль выходной цепи.
Усилители ошибки выдают синфазное напряжение в диапазоне -0.3 В to Vcc — 2 В. Компаратор времени задержки имеет фиксированное смещение, что дает 5% временную задержку. Внутренний генератор можно обойти путем отключения вывода RT и подключения пилообразного напряжения к CT, что применяется для общих цепей в синхронизации источников питания.
Независимые выходные формирователи на транзисторах дают возможность подключать нагрузку по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. TL494 может работать в однотактном и двухтактном режиме. Архитектура устройства не дает возможности подачи двойного импульса в двухтактном режиме.
TL494C может работать в диапазоне температур от 0°C до 70°C. TL494I работает в диапазоне температур от –40°C до 85°C.
Серийный номер | Корпус(кол-во выводов) | Размеры |
TL 494 | SOIC (16) | 9.90 мм × 3.91 мм |
PDIP (16) | 19.30 мм × 6.35 мм | |
SOP (16) | 10.30 мм × 5.30 мм | |
TSSOP (16) | 5.00 мм × 4.40 мм |
4 Расположение и назначение выводов
Цоколевка TL494Вывод | Тип | Описание | |
Название | Номер | ||
1IN+ | 1 | I | Неинвертирующий вход усилителя ошибки 1 |
1IN- | 2 | I | Инвертирующий вход усилителя ошибки 1 |
2IN+ | 16 | I | Неинвертирующий вход усилителя ошибки 2 |
2IN- | 15 | I | Инвертирующий вход усилителя ошибки 2 |
C1 | 8 | O | Коллектор Биполярного Плоскостного Транзистора (БПТ) 1 |
C2 | 11 | O | Коллектор БПТ 2 |
CT | 5 | — | Вывод для подключения конденсатора для установки частоты генератора |
DTC | 4 | I | Вход компаратора задержки времени |
E1 | 9 | O | Эмиттер БПТ 1 |
E2 | 10 | O | Эмиттер БПТ 2 |
FEEDBACK | 3 | I | Вывод для обратной связи |
GND | 7 | — | Общий |
OUTPUT CTRL | 13 | I | Выбор режима работы |
REF | 14 | O | Опорное напряжение 5В |
RT | 6 | — | Вывод для подключения резистора для установки частоты генератора |
VCC | 12 | — | Напряжение питания (+) |
5 Спецификация
5.1 Абсолютные максимальные значения
Мин. | Макс. | Ед. Изм. | ||
VCC Напряжение питания | 41 | В | ||
VI Напряжение на входе усилителя | VCC + 0.3 | В | ||
VO Напряжение на коллекторе | 41 | В | ||
IO Ток коллектора | 250 | мА | ||
Температура припоя 1,6 мм в течении 10 сек. | 260 | °C | ||
Tstg Температура хранения | –65 | 150 | °C |
5.2 Значения электростатического заряда
Макс. | Ед. изм. | ||
V(ESD) Электростатический заряд | Модель человеческого тела (HBM), посредством ANSI/ESDA/JEDEC JS-001, все выводы | 500 | В |
Модель заряда на устройстве (CDM), посредством JEDEC спецификации JESD22-C101, все выводы | 200 | В |
5.3 Рекомендуемые рабочие значения
Мин. | Макс. | Ед. Изм. | |
VCC Напряжение питания | 7 | 40 | В |
VI Напряжение на входе усилителя | -0,3 | VCC – 2 | В |
VO Напряжение на коллекторе | 40 | В | |
Ток коллектора (каждого транзистора) | 200 | мА | |
Ток обратной связи | 0,3 | мА | |
fOSC Частота генератора | 1 | 300 | мА |
CT Емкость конденсатора генератора | 0,47 | 10000 | кГц |
RT Сопротивление резистора генератора | 1,8 | 500 | кОм |
TA Рабочая температура на открытом воздухе | 0 | 70 | °C |
-40 | 85 | °C |
5.4 Тепловые характеристики
В рабочем диапазоне температур на открытом воздухе
Параметр | TL494 | Ед. изм. | ||||
D | DB | N | NS | PW | ||
RθJA Полное тепловое сопротивление для корпуса | 73 | 82 | 67 | 64 | 108 | °C/Вт |
5.5 Электрические характеристики
В рабочем диапазоне температур на открытом воздухе, VCC = 15 В, f = 10 кГц
Параметр | Условия испытаний(1) | Ед. изм | |||
Мин. | Тип.(2) | Макс. | |||
Выходное напряжение (REF) | IO = 1 мА | 4.75 | 5 | 5.25 | В |
Регулировка входа | VCC от 7 В до 40 V | 2 | 25 | мВ | |
Регулировка выхода | IO от 1 мА to 10 мА | 1 | 15 | мВ | |
Изменение выходного напряжения при температуре | ΔTA от MIN до MAX | 2 | 10 | мВ/В | |
Выходной ток короткого замыкания(3) | REF = 0 V | 25 | мА |
(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.
(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
(3) Продолжительность короткого замыкания не должна превышать одну секунду.
5.6 Электрические характеристики генератора
CT = 0,01 мкФ, RT = 12 кОм
Условия испытаний(1) | TL494C, TL494I | Ед. изм. | |||
Мин. | Тип.(2) | Макс. | |||
Частота | 10 | кГц | |||
Стандартное отклонение частоты(3) | Все значения VCC, CT, RT, и TA постоянны | 100 | Гц/кГц | ||
Изменение частоты от напряжения | VCC от 7 В до 40 В, TA = 25°C | 1 | Гц/кГц | ||
Изменение частоты от температуры(4) | ΔTA — от MIN до MAX | 10 | Гц/кГц |
(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.
(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
(3) Стандартное отклонение является мерой статистического распределения относительно среднего рассчитанного по формуле:
5.7 Электрические характеристики усилителя ошибки
Параметр | Условия испытаний | TL494C, TL494I | Ед. изм. | ||
Мин. | Тип.(1) | Макс. | |||
Входное напряжение смещения | VO (FEEDBACK) = 2.5 В | 2 | 10 | мВ | |
Входной ток смещения | VO (FEEDBACK) = 2.5 В | 25 | 250 | нА | |
Входной ток смещения | VO (FEEDBACK) = 2.5 В | 0.2 | 1 | мкА | |
Диапазон входного напряжения | VCC от 7 В до 40 В | -0.3 до VCC – 2 | В | ||
Коэффициент усиления разомкнутой цепи | ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм | 70 | 95 | dB | |
Полоса пропускания | ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм | 800 | кГц | ||
Коэффициент подавления синфазных сигналов | ΔVO = 40 В, TA = 25°C | 65 | 80 | dB | |
Выходной ток приемника(FEEDBACK) | VID = –15 мВ до –5 В, V (FEEDBACK) = 0.7 В | 0.3 | 0.7 | мА | |
Выходной ток источника(FEEDBACK) | VID = 15 мВ до 5 В, V (FEEDBACK) = 3.5 В | -2 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.8 Выходные электрические характеристики
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. | |
Ток коллектора в закрытом состоянии | VCE = 40 В, VCC = 40 В | 2 | 100 | мкА | ||
Ток эмиттера в закрытом состоянии | VCC = VC = 40 В, VE = 0 | -100 | мкА | |||
Напряжение насыщения коллектор — эмиттер | Общий эмиттер | VE = 0, IC = 200 мА | 1.1 | 1.3 | В | |
Эмиттерный повторитель | VO(C1 или C2) = 15 В, IE = –200 мА | 1.5 | 2.5 | |||
Выходной контроль входного тока | VI = Vref | 3.5 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.9 Электрические характеристики управления временем задержки
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. |
Входной ток смещения (DEAD-TIME CTRL) | VI от 0 до 5.25 В | -2 | -10 | мкА | |
Максимальная скважность импульсов на каждом выходе | VI (DEAD-TIME CTRL) = 0, CT = 0.01 мкФ, RT = 12 кОм | 45% | — | ||
Входное пороговое напряжение (DEAD-TIME CTRL) | Нулевой коэффициент заполнения | 3 | 3.3 | В | |
Максимальная скважность | 0 |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.10 Электрические характеристики ШИМ — компаратора
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. |
Входное пороговое напряжение (FEEDBACK) | Нулевая скважность | 4 | 4.5 | В | |
Входной ток приемника (FEEDBACK) | V (FEEDBACK) = 0.7 В | 0.3 | 0.7 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.11 Общие электрические характеристики устройства
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. | |
Ток потребляемый в режиме ожидания | RT = Vref, Все остальные входы и выходы отключены | VCC = 15 В | 6 | 9 | мА | |
VCC = 40 В | 10 | 15 | ||||
Средний потребляемый ток | VI (DEAD-TIME CTRL) = 2 В, | 7.5 | мА |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.12 Коммутационные характеристики
TA = 25°C
Параметр | Условия испытаний | Мин. | Тип.(1) | Макс. | Ед. изм. |
Время нарастания | Схема с общим эмиттером | 100 | 200 | нс | |
Время спада | 25 | 100 | нс | ||
Время нарастания | Схема эмиттерного повторителя | 100 | 200 | нс | |
Время спада | 40 | 100 | нс |
(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.
5.13 Типовые характеристики
Рис. 1 Частота колебаний генератора и ее отклонение от сопротивления резистора генератора | Рис. 2 Усиление напряжения от частоты |
Рис. 3 Усилитель ошибки — передаточные характеристики | Рис. 4 Усилитель ошибки — график Боде |
6 Измеряемые параметры
Рис. 5 Проверка работы цепи и осциллограммы
Рис. 6 Характеристики усилителя
Прим. А: CL включает датчик и управляющую емкость
Рис. 7 Схема включения с общим эмиттером
Прим. А: CL включает датчик и управляющую емкость
Рис. 8 Схема включения эмиттерного повторителя
Применение
Рис. 9 Схема включения для коммутации и управления- VI = 32 В
- VO = 5 В
- IO = 10 A
- fOSC = 20-кГц частота коммутации
- VR = 20-мВ размах напряжения (VRIPPLE)
- ΔIL = 1.5-A изменение тока индуктора
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
rudatasheet.ru
Tool Electric: TL494 описание на русском
Основные характеристики микросхемы TL494:
Напряжение питания…………………………………………………………….41ВВходное напряжение усилителя………………………………………...(Vcc+0.3)ВВыходное напряжение коллектора…………………………………………...…41ВВыходной ток коллектора………………………………………………….…250мАОбщая мощность рассеивания в непрерывном режиме……………………….1ВтРабочий диапазон температур окружающей среды:-c суффиксом L………………………………………………………………-25..85С-с суффиксом С………………………………………………………………..0..70СДиапазон температур хранения ………………………………………..-65…+150С
Микросхема TL494 представляет из себя ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установке частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле: Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами. Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3). Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразно напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение. Увеличит длительность мертвого времени на выходе, можно подавая на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого входом регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В. Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и обьеденины функцией ИЛИ не неинвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2. Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота равна половине частоты генератора. Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Это желательно, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора. Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до 70С. Так же можете посмотреть схемы на TL494.www.tool-electric.ru
ШИМ – контроллер. TL494
Полный набор функций ШИМ-управленияВыходной втекающий или вытекающий ток каждого выхода …..200мАВозможна работа в двухтактном или однотактном режимеВстроенная схема подавления сдвоенных импульсовШирокий диапазон регулировки Выходное опорное напряжение……5В +-05% Просто организуемая синхронизация
Особенности:
- Полный набор функций ШИМ-управления
- Выходной втекающий или вытекающий ток каждого выхода …..200мА
- Возможна работа в двухтактном или однотактном режиме
- Встроенная схема подавления сдвоенных импульсов
- Широкий диапазон регулировки
- Выходное опорное напряжение…………………………………….5В +-05%
- Просто организуемая синхронизация
Общее описание:
1114ЕУ3/4 – TL494
Специально созданные для построения ИБП, микросхемы TL493/4/5 обеспечивают разработчику расширенные возможности при конструировании схем управления ИБП. Приборы TL493/4/5 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.
Допускается синхронизация вcтроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИБП.
Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме.
Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур -–5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С.
Структурная схема:
Цоколевка корпуса:
Предельные значения параметров:
Напряжение питания…………………………………………………………….41В
Входное напряжение усилителя………………………………………...(Vcc+0.3)В
Выходное напряжение коллектора…………………………………………...…41В
Выходной ток коллектора………………………………………………….…250мА
Общая мощность рассеивания в непрерывном режиме……………………….1Вт
Рабочий диапазон температур окружающей среды:
-c суффиксом L………………………………………………………………-25..85С
-с суффиксом С………………………………………………………………..0..70С
Диапазон температур хранения ………………………………………..-65…+150С
Функциональное описание:
Микросхема TL494 представляет из себя ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле:
Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами (см. временную диаграмму ). Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).
Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.
Увеличит длительность мертвого времени на выходе, можно подавая на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого входом регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В. Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и объеденины функцией ИЛИ на неинвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2. Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота равна половине частоты генератора. Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Это желательно, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.
Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до 70С.
СПРАВОЧНИК.Издательство Додэка.1997
shemu.ru
Зарядное устройство с микросхемой TL494 и нормализатором напряжения шунта - Зарядные устройства (для авто) - Источники питания
Ниже описан вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на бОльшую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта. В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 ... 0,1 Ом и мощностью 1 ... 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 ... 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 ... 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 ... 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 ... 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.
Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.
Требования к элементной базе описаны на предыдущих страницах. Правильно собранная схема начинает работать сразу и, практически, не требует наладки. Описанная конструкция, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.
cxema.my1.ru
Зарядное устройство с микросхемой TL494 - Зарядные устройства (для авто) - Источники питания
Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA491, К1114УЕ4). Устройство обеспечивает регулировку тока заряда в пределах 1 ... 6 А (10А max) и выходного напряжения 2 ... 20 В.
Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 - VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 ... 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. Требования к его изготовлению описаны в предыдущей схеме. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 ... 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 ... 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации - необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера. При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке.
В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10А и напряжение 50В, в крайнем случае можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 ... 100 кОм. Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.
Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке ниже.
В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2. Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.
cxema.my1.ru
Зарядное устройство для автомобильного аккумулятора на TL494 - Самоделкин - сделай сам своими руками
Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 - VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 ... 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 ... 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 ... 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается.
Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации - необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера. При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке.
В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10А и напряжение 50В, в крайнем случае можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 ... 100 кОм. Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор.
Монтажная схема подключения печатной платы приведена на рисунке ниже.
В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2. Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.
Источник: http://shemotehnik.ru
Самоделкин - Сделай сам, своими руками.
samodelkyn.3dn.ru
Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494
www.cavr.ru