Особенности производства ветрогенератора с вертикальной осью вращения. Ветрогенераторы с вертикальной осью вращения 1квт своими руками


виды ветряков, обслуживание, выбор лопастей и генератора, мощные модели и парусники

уже прочитали: 212

Возрастание потребностей населения в электроэнергии вынуждает изыскивать дополнительные возможности. Действующие электростанции обеспечивают потребителей только в пределах доступности, жители отдаленных и труднодоступных регионов зачастую лишены возможности подключения к сетевым ресурсам.

Решением проблемы становятся местные генераторы, действующие на бензине или дизельном топливе. Они требуют постоянных расходов, запаса топлива, запчастей. Альтернативой становятся , имеющие массу преимуществ перед традиционными источниками энергии.

Законность установки ветрогенератора

мощностью до 1 кВт приравниваются к бытовым электроустановкам, поэтому каких-либо разрешений или документов на право использования не требуется. Однако, возможны сложности другого порядка. Например, установка, создающая шум, способна доставлять неприятные ощущения для соседей.

Возможны различные местные нормативы на использование , о которых следует узнать заранее, чтобы не оказаться в неприятной ситуации. Например, существуют ограничения по высоте (до 15 м) или иные требования.

Какой нужен генератор?

 — основное устройство комплекса, непосредственно вырабатывающее электроток. Его мощность определяет параметры всей установки. Выбор генератора производится путем подсчета мощности всех потребителей в доме или на участке. Суммарная мощность увеличивается на 15-20 %, а иногда и больше. Это необходимо на случай возникновения непредвиденных обстоятельств, появления в доме новых устройств.

Выбор по ветру

Ветер — источник энергии. Он достается бесплатно, но не всегда имеется в наличии. Прежде, чем приобретать или строить ветряк, следует подробно ознакомиться с метеорологической ситуацией в регионе. Важно выяснить направления, преобладающие скорости ветра, частоту и силу шквальных порывов, ураганных проявлений. Эти знания позволят определиться с типом ветряка, условиями работы оборудования и потребностями в защите.

Мнение эксперта

Эксперт Energo.House Фомин О. А.

Горный инженер, строитель.

Россия имеет преимущественно слабые и средние ветра в большинстве регионов, но для отдаленных или труднодоступных районов нередки более мощные атмосферные проявления, требующие от пользователя обладания полной информацией по силе и направлению потоков.

О безопасности

Вопрос безопасности использования ветрогенератора непрост. Лопасти ветряка при высоких скоростях и больших размерах способны причинить серьезные травмы, вплоть до летального исхода. Кроме того, высокие мачты опасны при возникновении сильного ветра, поскольку могут опрокинуться на жилые дома, людей, оказавшихся поблизости, причинить вред имуществу или постройкам.

При этом, большинство противников ветроэнергетики находят проблемы не там, где они есть. Существует масса утверждений о вреде устройств:

  • наличие шума
  • вибрация
  • мерцающая тень, способствующая нервно-психическим расстройствам
  • магнитный фон
  • помехи радио- и телевизионным приемникам
  • непереносимость установок животными, опасность для птиц

Большинство из этих утверждений — следствие надуманных противниками автономных источников питания аргументов. Они имеют место, но величина проблем настолько не соответствует действительности, что эти проблемы попросту не заслуживают времени на обсуждение. Если ветрогенераторы и представляют опасность, то лишь для представителей ресурсоснабжающих компаний, не желающих терять клиентов.

Тем не менее, мощные промышленные установки, использующиеся в составе крупных электростанций, способны создавать неудобства для жителей, что доказано в американском суде. Ветряки продуцировали инфразвук, вызывавший расстройства здоровья у индейцев, живших в резервации на расстоянии 200 км. Однако, учитывая размеры и мощность частного ветряка, говорить о вреде от него незачем.

Вертикалки

Ветряки с вертикальной осью вращения являются наиболее подходящей для самостоятельного изготовления группой устройств. Они имеют простую, понятную конструкцию. Не нуждаются в большом количестве узлов вращения, нетребовательны к направлению ветра. Возможности этой группы породили большое количество вариантов конструкции, некоторые из которых следует рассмотреть подробнее.

ВС

Ветрогенератор Савониуса — одна из наиболее старых разработок, увидевших свет в 20-х годах прошлого столетия. Устройство состоит из двух лопастей достаточно большой площади, изогнутых в продольном направлении. В поперечном сечении они напоминают латинскую букву S. При этом, они слегка сдвинуты друг к другу, несколько перекрывая рабочие стороны.

При воздействии потока ветра одна из лопастей получает усилие на рабочую часть, а вторая — на обратную сторону. Форма лопасти способствует рассечению потока, часть которого уходит в сторону, а другая часть соскальзывает на рабочую поверхность второй лопасти, увеличивая вращающий момент.

Мнение эксперта

Эксперт Energo.House Фомин О. А.

Горный инженер, строитель.

На основе конструкции Савониуса разработано множество моделей ветряков с увеличенным количеством лопастей, большей эффективностью и чувствительностью к слабым ветрам.

Дарье

Конструкция Дарье была предложена почти одновременно с ротором Савониуса. Ее основа — лопасти, имеющие форму крыла самолета и расположенные вертикально по касательной к окружности вращения. Требуется нечетное число лопастей, иначе возникнет чрезмерно высокое уравновешивающее усилие. Подъемная сила лопастей способствует возникновению высокой скорости вращения, превышающей этот показатель в 3-4 раза по сравнению с ротором Савониуса.

Математического описания работы устройства до сих пор не имеется, но разработки, выполненные на основе конструкции, существуют и постоянно пополняются. Существует большое количество моделей частных ветрогенераторов с мощностью, достаточной для обеспечения небольшого дома.

Ортогонал

Ортогональные конструкции являются наиболее эффективными из всех базовых моделей вертикальных ветряков. Они обладают высокими скоростями, чувствительностью, производительностью. Конструкция состоит из нескольких лопастей (обычно три и больше), расположенных на некотором расстоянии от оси параллельно ей. Рассмотренный выше ротор Дарье — один из представителей ортогональных устройств. К недостаткам можно отнести высокие нагрузки на узел вращения, способствующие быстрому выходу из строя движущихся деталей.

Геликоид

Геликоидные конструкции созданы на основе базовой модели ортогонального типа, но со значительными изменениями геометрии лопастей. Они изогнуты по окружности вращения, получив форму, приближенную к спиральной. В результате достигается значительная стабилизация вращения, снижается износ движущихся элементов, конструкция в целом приобретает долговечность, прочность и надежность.

Более плавный режим вращения обеспечивает равномерную выработку электрического тока, что позволяет использовать устройства для прямого питания некоторых потребителей (осветительных устройств, насосов и т.д.). Для самостоятельного изготовления конструкция представляет достаточно трудную задачу из-за сложной геометрической формы лопастей.

Бочка-загребушка

Это — «народное» название многолопастного карусельного (вертикального) ветрогенератора. Устройство имеет хороший баланс, эффективно захватывает поток ветра, низкий уровень шума. Для желающих попробовать силы в изготовлении ветряк своими руками этот вариант конструкции рекомендуется как один из базовых типов конструкции. Лопасти делаются из листовой оцинкованной стали, разрезанных вдоль бочек или иного подручного материала.

Каркас — сваривается из металлического профиля — уголка, трубы и т.п. Особенность устройства в его неуязвимости для сильных порывов ветра — вокруг крыльчатки при усилении потока образуется вихревой кокон, препятствующий проникновению ветра внутрь крыльчатки. Поток просто обтекает устройство, как трубу.

Ветрогенератор Ленца

Особенность конструкции Ленца состоит в использовании вместо подшипников сильных неодимовых магнитов. Они удерживают узел вращения в «подвешенном» состоянии, что обеспечивает легкость вращения. Отсутствие трения способствует высокой долговечности оборудования. Показатели весьма впечатляющие — старт вращения происходит при скорости ветра от 0,17 м/с, а на номинальную производительность ветряк выходит уже при 3,4 м/с.

Ротор Бирюкова

Изобретение Бирюкова появилось в 60-х годах прошлого века. Особенностью конструкции является устройство ротора, имеющего два «этажа» с разным строение лопастей. КПД ветряка, заявленный изобретателем, составляет 46 %, что для подобных устройств вертикального типа весьма привлекательно.

Ротор стартует как обычное устройство Савониуса, но при наборе скорости образуется воздушная подушка из завихрений, изменяющая профиль крыльчатки на более выгодный при данном режиме вращения. Усиление ветра способствует образованию вихревого кокона, который заставляет поток обтекать его словно монолитную преграду.

Лопастники

Ветряки с горизонтальной осью вращения имеют большую эффективность, так как энергия потока ветра используется только на рабочих поверхностях, не контактируя с обратными сторонами лопастей. При этом, критически важно наличие устройства, автоматически устанавливающего для ветряка направление по ветру. Обычный вариант — свободно вращающийся вокруг вертикальной оси ветряк и хвостовой стабилизатор как у самолета.

Лопасти

Лопасти горизонтального ветряка являются основным элементом крыльчатки, принимающим поток и преобразующим его во вращательное движение. Эффективность работы обусловлена конструкцией и размерами.

Аэродинамика лопастей зависит от угла наклона, конфигурации, площади соприкосновения с потоком. Чем выше площадь контакта, тем большую энергию принимает поверхность, что имеет положительные и отрицательные стороны. Возрастание получаемой энергии способствует повышению фронтального давления на ветряк, способствующего разрушению конструкции.

Генератор

Генератор — устройство, преобразующее энергию вращения в электрический ток. Наряду с ротором, генератор для ветряка является основным узлом, который обслуживается всеми остальными элементами установки. Используются готовые конструкции, входящие в состав комплекта поставки или приобретенные отдельно, а также самодельные образцы, зачастую работающие лучше заводских.

Аварийный флюгер

Так среди специалистов принято называть устройство увода крыльчатки от чрезмерно сильного ветрового потока. Вращение, имеющее скорость, превышающую расчетную, создает ток большей силы и напряжения, чем это рассчитано и не нужен для оборудования.

Для исключения таких ситуаций существуют устройства торможения, одно из которых работает на принципе авторегулирования. Перпендикулярно направлению оси устанавливается специальная лопатка, жестко соединенная с ротором.

Хвостовой стабилизатор крепится к ротору через шарнир с пружиной. Когда ветер достигает слишком высокой скорости, усилие на тормозной лопатке превышает силу пружины, ротор отворачивается от ветра и прекращает вращаться со слишком высокой скоростью.

Токосъемник

Устройство подвода или, в нашем случае, съема электроэнергии — коллектор — достаточно капризный узел, требующий регулярного ухода, смазки, замены щеток и т.д. Процедура не самая простая, так как ветряк расположен на мачте, до аппаратуры надо еще добраться, что непросто. Необходимо иметь достаточно надежный и безопасный механизм опускания мачты, иначе аппаратура долго не продержится.

Лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Идея совмещать солнечные батареи с ветрогенераторами возникла практически с первых дней появления этих конструкций. Привлекают абсолютно дармовая энергия ветра и солнца, которые нуждаются только в оборудовании для захвата и преобразования. Оба комплекса вполне могут работать в связке, дополняя друг друга.

Мнение эксперта

Эксперт Energo.House Фомин О. А.

Горный инженер, строитель.

Нет ветра — используются солнечные батареи, зашло солнце — энергию дает ветряк. Для дачного домика, загородного коттеджа подобные комплексы способны обеспечить если не полноценное, то весьма обильное дополнительное электропитание, помогающее сэкономить на электроэнергии немалые суммы.

Своими руками

Приобретение готового ветрогенератора не по карману большинству пользователей. Кроме того, стремление мастерить разные механизмы и приспособления неискоренимы в народе, а если появляется еще и насущная необходимость — решение вопроса однозначно. Рассмотрим, как сделать ветрогенератор своими руками.

Простейший ветрогенератор для освещения дачи

Самые простые конструкции используются для освещения участка или питания насоса, подающего воду. В процессе участвуют, как правило приборы потребления, не боящиеся скачков напряжения. Ветряк вращает генератор, напрямую подключенный к потребителям, без промежуточного комплекта, стабилизирующего напряжение.

Ветряк своими руками из автомобильного генератора

Генератор от автомобиля является оптимальным вариантом при создании самодельного ветряка. Он нуждается в минимальной реконструкции, в основном — перемотке катушки более тонким проводом с большим числом витков. Модификация минимальна, а полученный эффект позволяет использовать ветряк для обеспечения дома. Понадобится достаточно скоростной и мощный ротор, способный вращать устройства с большим сопротивлением.

Ветрогенератор из стиральной машины

Электродвигатель от стиральной машины часто используют для создания генератора. Оптимальным вариантом является установка на ротор сильных неодимовых магнитов, обеспечивающих возбуждение обмоток. Для этого необходимо просверлить в роторе углубления, диаметром равные размеру магнитов.

Затем они устанавливаются в гнезда с чередованием полярности и заливаются эпоксидкой. Готовый генератор устанавливается на вращающуюся вокруг вертикальной оси площадку, на вал насаживается крыльчатка с обтекателем. Сзади к площадке крепится хвостовой стабилизатор, обеспечивающий наведение устройства.

Мощные модели

Самостоятельное изготовление мощных моделей ветрогенераторов требует больших усилий и теоретической подготовки. Прежде всего, требуется создание мощного генератора, требующего расчетов, правильной сборки, использования качественных материалов. Кроме того, надо сделать ротор, действующий при слабых ветрах, но способный создавать достаточное усилие для генератора. Также потребуются соответствующие устройства обработки электротока, каркас, мачта и прочие элементы конструкции и электроники.

Ветрогенератор мощностью более 1 киловатта

Ветряки подобной мощности имеются в продаже. Покупка установки позволяет получить готовое устройство с заранее известными параметрами, изготовленное из соответствующих материалов. Цены на такое оборудование начинаются от 30000 руб, что доступно не каждому пользователю.

Кроме того, потребуется сопутствующая электроника, аккумуляторы и прочая аппаратура, что увеличит расходы примерно вдвое. Дороговизна установок является основной причиной распространения моделей ветряков, сделанных своими руками.

Вертикальный ветряк своими руками (5 квт)

Существует несколько вариантов изготовления устройство такой мощности:

  • роторная конструкция
  • цепочка парусных крыльчаток, установленных последовательно
  • использование аксиального генератора на неодимовых магнитах

Выбор наиболее удобного варианта зависит от степени подготовки и технической базы пользователя.  Рекомендуются вертикальные конструкции, независимые от направления ветра и не нуждающиеся в установке на высокие мачты.

Наиболее удачно отвечают требованиям карусельные многолопастные конструкции на основе ротора Савониуса. Существуют и промышленные установки такого класса, приобретение которых ускорит решение вопроса и позволит получить профессионально изготовленный комплекс с гарантированными параметрами.

Парусники

Парусные ветряки существуют с незапамятных времен. Они представляют собой устройства с большой площадью контакта лопастей и потока ветра, но с малой массой крыльчатки. Это дает существенное уменьшение инерции покоя, позволяющие стартовать при слабых ветрах.

Промышленные ветряки, качающие воду, известны уже более 100 лет. Они имели парусные лопасти с жестким заполнением, обладавшие низким КПД. Со временем были разработаны конструкции с мягким парусом, представляющие собой жесткую рамку с натянутой плотной тканью, одна сторона которой свободна и образует естественным образом специфический профиль. В результате получается крыльчатка с большой площадью, малым весом, простая в изготовлении и удобная в эксплуатации. Парусные конструкции успешно используются в разных условиях и обеспечивают энергией различные типы потребителей.

Самодельный генератор

Изготовление самодельного генератора — часто встречающаяся задача, возникающая при сборке ветряка. При создании используются разные методы:

  • использование готового генератора или магнето с внесением некоторых конструктивных изменений
  • создание генератора «с нуля» из подручных материалов

Оба варианта имеют свои плюсы и минусы, выбор делается на основе своих возможностей или предпочтений.

Мотор для ветряка своими руками

Создание генератора с нуля требует обладания определенными познаниями, навыками работы со слесарными инструментами и опыта изготовления электротехнических устройств. Процесс создания генератора состоит из двух этапов:

  • изготовление ротора. На пластину из фанеры или иного листового материала наклеиваются неодимовые магниты в одинаковом удалении от центра. Полярность магнитов чередуется
  • изготовление статора. Наматываются обмотки числом, кратным 3 (три фазы). Они располагаются на фанерной пластине подобно магнитам ротора и соединяются определенным образом, образуя равномерный сдвиг фазы. Готовый статор заливают эпоксидкой для защиты от влаги, пыли и т.д.
  • производится сборка устройства. На оси укрепляется ротор, ось устанавливается на статор, вся конструкция закрепляется и накрывается защитным кожухом.

Расчеты мощности генератора производятся заранее. Проверка работоспособности проходит обычно сразу после сборки, вращение обеспечивается при помощи подручного устройства (чаще всего, электродрель).

Обслуживание ветрогенератора

Ветряки — довольно надежные устройства, не требующие ежедневного ухода и обслуживания. Многие пользователи свидетельствуют, что их комплекты работают практически без вмешательства человека по 2-3 года. Тем не менее, вращающиеся части изнашиваются, требуют смазки, замены подшипников.

Лопасти крыльчатки выходят из строя и требуют замены. Эти действия выполняются по мере необходимости, владелец учитывает пробег деталей и меняет их по достижении определенного срока наработки. Для промышленных моделей существуют свои режимы обслуживания, указанные в паспорте комплекта.

energo.house

описание и принцип работы, отличия от моделей с горизонтальной осью вращения

В последнее время замечается стремительный рост популярности альтернативных источников энергии. Использование ветра относится к самым востребованным направлениям в энергетике, поэтому многие люди задумываются о покупке вертикального ветрогенератора для своего дома. Народные умельцы пытаются соорудить такую установку своими руками, что вполне реально.

Общая информация

Задача современного вертикального ветряка заключается в преобразовании силы ветра в электрическую энергию. Первые прототипы подобного изобретения появились очень давно, но в те времена люди не придавали им такого значения, как сейчас. Что касается современных установок, то они характеризуются массой преимуществ и обеспечивают стабильную подачу электроэнергии, которой вполне хватает для бытовых нужд. В некоторых европейских странах доля потребляемых энергоресурсов, вырабатываемых ветровыми станциями, составляет 25%. В их числе находится Дания.

Вертикальные ветрогенераторы по некоторым параметрам превосходят классические горизонтальные типы, что обусловлено специфической конструкцией и принципом работы. У них, в отличие от моделей с горизонтальной осью, практически нет узлов и механизмов, которые ориентируются на ветровой поток. Из-за этой особенности любые гидроскопические нагрузки существенно снижаются, а конструкция принимает произвольное положение независимо от направления ветрового потока. При этом такие ветряки обладают более простым исполнением, что позволяет соорудить их в домашних условиях.

Среди ключевых разновидностей установок с вертикальной осью вращения выделяют:

  • ортогональную конструкцию;
  • механизм Дарье;
  • механизм Савониуса;
  • ветряк с геликоидной конструкцией.

Основные преимущества

Главным преимуществом вертикального ветряка является его способность функционировать на низкой высоте, выдавая высокий уровень КПД. И хоть горизонтальный ветрогенератор более производительный, у вертикального во время обслуживания системы не приходится задействовать сложные механизмы или дорогостоящее оборудование, при этом конструкция обладает высокой надежностью и большим сроком службы.

За счет особого профиля лопастей и специфической формы ротора агрегат обеспечивает лучшие показатели производительности, которые не меняются в зависимости от движения ветра. Компактные модели бытового назначения оснащены тремя (или больше) вращающимися элементами, способными мгновенно зафиксировать порыв ветра и начать процесс его преобразования в электрическую энергию. Они работают при силе ветра от 1,5 м/с, что существенно повышает их эффективность и КПД.

Во время работы установка не издает шума или характерного для крупных ветряков звука, что считается бесспорным плюсом. Также она не выбрасывает вредные вещества в атмосферу, не нуждается в частом обслуживании и продолжает поставлять в помещение качественную энергию в течение большого промежутка времени. Если составить список достоинств вертикальных ветрогенераторов, то он будет состоять из таких пунктов:

  1. Максимальная экологичность.
  2. Способность работы без дополнительного топлива.
  3. Экономичность.
  4. Отсутствие сложного и частого обслуживания.
  5. Работа на основе неисчерпаемой энергии.

Если ветряк сконструирован правильно, то он сможет превратить частное помещение в автономный объект по добыче электричества, став дополнительным источником дохода. Однако кроме плюсов у таких агрегатов есть и минусы:

  1. Дороговизна. Заводские модели от иностранных брендов стоят довольно дорого, но ветрогенераторы с вертикальной осью вращения российского производства вполне доступные.
  2. Приличный уровень шумности. Такой минус присутствует у крупных промышленных ветряков, так как бытовые разработки практически бесшумные.
  3. Нестабильная мощность.

Последняя особенность ветряков считается наиболее существенной, но специалисты избавляются от нее с помощью установки нескольких батарей. Также важно отметить, что производительность ветряной станции может зависеть от погодных условий, которые зачастую бывают непредсказуемыми. Плюсов у подобного генератора энергии гораздо больше, чем минусов, поэтому вопрос его установки в частном доме становится все более актуальным.

Принцип работы и классификация

В основе работы вертикального ветряка применен принцип магнитной левитации. При вращении турбин происходит образование импульсной и подъемной силы, а также силы фактического торможения. За счет первых двух лопасти установки начинают двигаться, что вызывает активацию ротора и приводит к созданию магнитного поля. Система работает автономно и не требует участия владельца.

Несмотря на общий принцип работы, ветроулавливающие приборы могут отличаться своей конструкцией. И хоть это практически не сказывается на эффективности и производительности, но помогает найти оптимальный вариант для конкретных задач в конкретной местности.

Если говорить об ортогональных системах, то они построены на базе прочной оси вертикального вращения и нескольких лопастей, которые находятся на удалении от центровой основы. Система не требует монтажа дополнительных направляющих узлов и полноценно работает при любом ветре. Вертикальное расположение главного вала позволяет устанавливать привод на уровне земли, а это заметно упрощает дальнейшую эксплуатацию или ремонтные работы.

Единственным уязвимым местом в ортогональных генераторах являются опорные узлы. Они обладают не очень большим эксплуатационным сроком, что объясняется необходимостью работать под высокими нагрузками, которые оказывает ротор. Чтобы предотвратить быстрое повреждение системы, опорные детали нужно вовремя обслуживать, осуществляя замену вышедших из строя элементов новыми.

Среди минусов приборов этого типа выделяют внушительный вес лопастей, а также меньший показатель КПД по сравнению с горизонтально-осевыми приборами. Но для бытовых целей подобных ветрогенераторов вполне хватает. Со своими рабочими обязанностями они справляются в лучшем виде.

Модели с ротором Дарье и Савониуса

Устройства, в основе которых работает ротор Дарье, оборудованы вертикальной осью вращения и двумя-тремя плоскими лопастными системами, не имеющими характерного аэродинамического профиля и находящимися у основания и на верхушке. Принцип работы установки базируется на силе или направлении ветра. К преимуществам такого ветряка относятся:

  1. Максимальная скорость вращения.
  2. Возможность монтажа системы привода непосредственно на земле.
  3. Простота осмотра и обслуживания.

Модели с двумя лопастями вступают во взаимодействие с ветром только при его сильных порывах. Если ветровой поток недостаточно интенсивный или равномерно набегающий, они остаются неподвижными. Из недостатков ветряков с генератором Дарье выделяют уязвимость к динамическим нагрузкам и сравнительно низкий показатель КПД.

Что касается ветряных устройств, оснащенных ротором Савониуса, то они обладают полуцилиндрическими лопастями и обеспечивают высокий крутящий момент даже при недостаточно сильном ветре. Максимальная мощность ветрогенераторов этого типа достигает 5 кВт, поэтому их практически не применяют в качестве самостоятельной рабочей станции. Вместо этого приборы стали использоваться как инструмент для разгона роторных моделей Дарье. Из-за весомых недостатков массовое производство такого оборудования считается неоправданным.

Другие типы

Ветряки, оснащенные многолопастным ротором, представляют собой качественную модернизацию классических моделей ортогонального типа. В основе их работы лежит роторный комплекс из нескольких лопастей, размещенных в два ряда. Наружный ярус является статичным и выполняет роль направляющего механизма, захватывая поток ветра и сжимая его. За счет этой технологии фактическая скорость ветра существенно растет.

Второй ярус состоит из подвижных элементов, которые воспринимают воздухопоток от наружных лопастей под определенным углом. Такая конфигурация делает прибор высокопроизводительным и существенно повышает его КПД. Но стоят системы с многолопастным ротором недешево, поэтому среднестатистические потребители останавливаются на более простых и доступных решениях. Тем не менее эксперты в области энергетики заявляют, что эта установка демонстрирует наилучшую эффективность в своем классе и может работать даже при незначительном ветровом потоке.

Также на рынке широко распространены геликоидные ветряные установки, представляющие собой усовершенствованную версию ортогональных приборов. В этих приборах лопасти закручены по дуге, что обеспечивает эффективное улавливание ветрового потока и стабильное вращение. Применение передовой технологии вращения снижает динамическую нагрузку на основные рабочие элементы, что положительно сказывается на сроках службы установки.

Устройства с геликоидным ротором обладают максимальной надежностью и способны справляться с большими нагрузками. Но при работе они могут издавать шум и дополнительные звуковые волны.

К сожалению, такая разновидность ветряков не обрела широкой популярности из-за высокой стоимости. Объясняется это тем, что производство геликоидных приборов — очень трудоемкий и длительный процесс, который подразумевает использование сложной технологии.

Вертикально-осевые устройства

Что касается вертикально-осевых генераторов, то они отличаются от предыдущих типов расположением лопастной системы. В вертикальной конфигурации она напоминает собой авиационное крыло с параллельной вертикальному валу осью. По своим конструктивным особенностям изобретение слегка похоже на ротор Дарье, но у него есть масса преимуществ и уникальных особенностей.

Работает такой генератор намного быстрее, чем остальные модели, поэтому показатели его КПД заметно выше. За короткий промежуток времени установка выдает требуемый энергоресурс и восполняет нужды потребителей в энергопотреблении.

Также к плюсам системы можно отнести максимальную надежность и долговечность, способность справляться с внушительными нагрузками и относительную дешевизну. За счет таких характеристик вертикально-осевые генераторы пользуются большой популярностью и являются лидерами рынка.

Изготовление своими руками

Даже самые простые модели ветрогенераторов стоят довольно дорого, поэтому позволить себе покупку такого устройства может не каждый. Из-за этого народные умельцы и талантливые изобретатели стали изготовлять продуктивные механизмы своими руками.

Сделать ветрогенератор вертикально-осевого типа несложно. Для этого нужно найти подходящее комплектующее оборудование, составить чертежи и следовать инструкции. При минимальных порывах ветра такой ветряк начнет работать, радуя своих владельцев доступной и качественной электроэнергией. Для создания будущего генератора необходимо подготовить:

  • ротор — подвижный узел;
  • лопастную систему;
  • осевую мачту;
  • статор;
  • батареи;
  • инвертор;
  • контроллер.

При самостоятельном изготовлении лопастей рекомендуется задействовать легкий пластик, который обладает хорошей упругостью. Остальное сырье боится всевозможных воздействий и быстро деформируется, поэтому лучше останавливаться на пластиковых конструкциях.

Перед тем как приступить к производству, нужно учесть, что такой прибор недостаточно мощный и существенно уступает заводским образцам по производительности. Чтобы не разочароваться в самодельной конструкции, лучше заранее сделать ее в 2 раза мощнее, чем упоминается в инструкции.

Без сомнений, ветровой генератор — это одно из самых полезных изобретений нашего века. И необязательно быть олигархом, чтобы обзавестись такой системой, ведь при минимальных усилиях ее можно изготовить самостоятельно.

220v.guru

Вертикальный ветрогенератор своими руками

Ветрогенератор получился вполне надежный, с низкой стоимостью обслуживания, недорогой и простой в изготовлении. Представленный ниже список деталей соблюдать не обязательно, вы можете внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Мы постарались использовать недорогие и качественные детали.

Используемые материалы и оборудование:

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3' шпилька 1 TPI - кол-во витков резьбы на дюйм
1/2" гайка 16
1/2" шайба 16
1/2" гровер 16
1/2".-13tpi колпачковая гайка 16
1" шайба 4 Для того, чтобы выдержать зазор между роторами
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба 6
ABS пластик 3/8" (1.2x1.2м) 1
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт 48
1/4" шайба 48
1/4" гровер 48
1/4" гайка 48
2" x 5/8" уголки 24
1" уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка 12 (опционально)
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л
1/4" винт нерж. 3
1/4" шайба нерж. 3
1/4" гайка нерж. 3
1/4" кольцевой наконечник 3 Для эл. соединения
1/2"-13tpi x 3' шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка 6
Стеклоткань Если нужна
0.51мм эмал. провод 24AWG
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт 6
1-1/4" фланец трубы 1
1-1/4" оцинк. труба L-18" 1
Инструменты и оборудование:
1/2"-13tpi x 36' шпилька 2 Используется для поддомкрачивания
1/2" болт 8
Анемометр Если нужен
1" лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1
Паяльник и припой 1
Дрель 1
Ножовка 1
Керн 1
Маска 1
Защитные очки 1
Перчатки 1

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Изготовление турбины

1. Соединяющий элемент - предназначен для соединения ротора к лопастям ветрогенератора.2. Схема расположения лопастей - два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:
  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:
  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве "тестера полярности" можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора - электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки - это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление - намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособление для намотки катушек

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Схема соединения катушек статора

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:
  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:А. Конфигурация "звезда". Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.B. Конфигурация "треугольник". Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше - места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора - достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы "любят" когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).источник

shkola-v-blog.ru

Ветрогенератор с вертикальным ротором | АльтерСинтез

Самодельный ветрогенератор в сборе

Самодельный ветрогенератор в сборе

Группой умельцев была разработана конструкция ветрогенераторной установки с вертикально расположенной осью вращения. Ниже, представлено подробное руководство по изготовлению этой установки. Внимательно прочитав это руководство, вы сможете сделать подобный вертикальный ветрогенератор своими руками.

Конструкция ветрогенератора получилась достаточно надежной, с низкой стоимостью обслуживания, простой в изготовлении и не дорогой по комплектующим. Представленный ниже список деталей носит ознакомительный и ориентировочный характер. Соблюдать его не обязательно, можно внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Для изготовления этого ветрогенератора использовались недорогие и качественные детали.

Схема вертикального ветрогенератора

Схема вертикального ветрогенератора

НаименованиеКол-воПримечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла1Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб)1Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит26Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3’ шпилька1TPI – кол-во витков резьбы на дюйм
1/2" гайка16 
1/2" шайба16 
1/2" гровер16 
1/2".-13tpi колпачковая гайка16 
1" шайба4Для того, чтобы выдержать зазор между роторами
   
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба6 
ABS пластик 3/8" (1.2×1.2м)1 
Магниты для балансировкиЕсли нужныЕсли лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт48 
1/4" шайба48 
1/4" гровер48 
1/4" гайка48 
2" x 5/8" уголки24 
1" уголки12 (опционально)В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка12 (опционально) 
   
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем2 л 
1/4" винт нерж.3 
1/4" шайба нерж.3 
1/4" гайка нерж.3 
1/4" кольцевой наконечник3Для эл. соединения
1/2"-13tpi x 3’ шпилька нерж.1Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка6 
СтеклотканьЕсли нужна 
0.51мм эмал. провод 24AWG
   
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт6 
1-1/4" фланец трубы1 
1-1/4" оцинк. труба L-18"1 
   
Инструменты и оборудование:
1/2"-13tpi x 36’ шпилька2Используется для поддомкрачивания
1/2" болт8 
АнемометрЕсли нужен 
1" лист алюминия1Для изготовления проставок, если понадобятся
Зеленая краска1Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал.1Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр1 
Паяльник и припой1 
Дрель1 
Ножовка1 
Керн1 
Маска1 
Защитные очки1 
Перчатки1 

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Описание изготовления турбины ветрогенератора

Турбина ветрогенератора

Турбина ветрогенератора

  1. Соединяющий элемент – предназначен для соединения ротора к лопастям ветрогенератора.
  2. Схема расположения лопастей – два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.
Крепление лопастей уголками

Крепление лопастей уголками

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Общий вид расположения уголков, крепящих лопасти

Общий вид расположения уголков, крепящих лопасти

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Описание изготовления ротора ветрогенератора

Разметка роторов с помощью бумажных шаблонов

Разметка роторов с помощью бумажных шаблонов

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве “тестера полярности” можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Крепление магнитов на основании ротора

    Крепление магнитов на основании ротора

  5. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  6. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  7. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  8. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  9. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Описание изготовления статора ветрогенератора

Изготовление статора – это очень трудоемкая часть процесса изготовления ветрогенератора. Можно, конечно попробовать купить готовый статор (его еще надо найти у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Катушка статора

Катушка статора

Статор ветрогенератора – электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:

  • 320 витков, 0.51 мм (24AWG) = 100В * 120 об/мин.
  • 160 витков, 0.0508 мм (16AWG) = 48В * 140 об/мин.
  • 60 витков, 0.0571 мм (15AWG) = 24В * 120 об/мин.

Вручную наматывать катушки – это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки рекомендуется изготовить простое приспособление – намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособление для намотки катушек

Приспособление сделано из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей

Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Крупный вид приспособления для намотки катушек

Крупный вид приспособления для намотки катушек

Вы можете придумать свою конструкцию намоточного станка, или возможно у вас уже имеется готовый.

После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Подробный вид приспособления для намотки катушек

Подробный вид приспособления для намотки катушек

Схема соединения катушек статора

Внимание!

Категорически запрещается подключать домашние бытовые потребители напрямую к ветрогенератору во избежании выхода их из строя! Также соблюдайте меры безопасности при обращении с электричеством!

Схема соединения катушек статора

Схема соединения катушек статора

Последовательность действий соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
  • А. Конфигурация “звезда”. Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
  • B. Конфигурация “треугольник”. Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
  • C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  1. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  2. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  3. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Изготовление статора

Изготовление статора

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше – места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Вокруг катушек помещается стеклоткань

Вокруг катушек помещается стеклоткань

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор, залитый эпоксидкой с кронштейном

Статор, залитый эпоксидкой с кронштейном

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Изготовление кронштейна статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

Крепление оси

Крепление оси

Эскиз (чертеж) кронштейна

Эскиз (чертеж) кронштейна

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

Шпилька с гайками и втулкой

Шпилька с гайками и втулкой

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Окончательная сборка генератора

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

Сборочный чертеж генератора

Сборочный чертеж генератора

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).

На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Ротор и статор

Ротор и статор

Процесс сборки:

  1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место.
  2. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
  3. Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
  4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
  5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
  6. Установите хаб (ступицу) и прикрутите его.
Этапы сборки генератора

Этапы сборки генератора

Генератор готов!

Генератор будущего ветрогенератора в сборе

Генератор будущего ветрогенератора в сборе

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так, ка на рисунке выше.

Установка и крепление клемм

Установка и крепление клемм

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Установка клемм

Установка клемм

Колпачковые гайки и шайбы служат для крепления соединительной платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

Мостовой выпрямитель

Мостовой выпрямитель

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Рекомендации по выбору места установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора – достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы “любят” когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.

Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов

— cxem.net —---

Комментарии:

---

Что такое газ БраунаХронология водородных топливных элементов

www.altsyn.com

Ветрогенератор с вертикальной осью вращения

Ветрогенератор с вертикальной осью вращенияВетрогенератор с вертикальной осью вращения – новое направление в производстве электроэнергии.Отличные эксплуатационные характеристики присущи механизмам этого типа. Ветрогенератор с вертикальной осью вращения отличается от аналогов горизонтального исполнения отсутствием ориентирования на поток массы воздуха. Это способствует значительному снижению всех гидроскопических нагрузок.

Модели превосходного качества роторного типа отлично зарекомендовали себя в процессе использования. В конструкции предусмотрено наличие быстровозводимых мачт. Вращение возникает за счет силы действующего сопротивления и подъемного усилия установленных лопастей. В перечень по типам наиболее востребованных механизмов входит несколько видов ветрогенераторов.

ОртогональныеОртогональные

Несколько лопастей монтируются на отдалении от центральной оси и располагаются к ней параллельно. По своим параметрам функциональности и эффективности работы эти генераторы считаются лучшими. К относительным минусам относятся большие трудозатраты в процессе функционирования и шум в работе. Большие динамические нагрузки снижают ресурс долговечности применяемых опорных деталей.

Модели с ротором ДарьеГенераторы с ротором Дарье

Из плюсов отметим отличные показатели рентабельности, скорость и большую номинальную мощность. Из недостатков выделяется недостаточная эффективность. Если набегающий поток поступает в стабильном режиме, исключается самозапуск.

Генераторы с ротором СавониусаГенераторы с ротором Савониуса

Эта модель популярна для поддержания функциональности электростанций бытового назначения. В упрощенном варианте можно говорить о ветроколесе с вращающимися вокруг общей для всех элементов оси специальными полуцилиндрами.

Главная особенность – непрерывное вращение ветроколеса в одном направлении, что становится гарантией независимости от направления ветра. К недостаткам относится невысокий уровень обработки воздушной массы.

Образцы на многолопастном ротореОбразцы на многолопастном роторе

По показателям функциональности такие модели считаются лучшими. Высокий коэффициент производительности – следствие применения дополнительных рядов лопастей. Сжатие воздушного потока осуществляется методом отбора воздуха одним из этих рядов с передачей другому ряду.Увеличение параметров положительно сказывается на номинальной мощности и КПД всего агрегата.

Механизмы геликоидного типаМеханизмы геликоидного типа

Испытываемое давление на агрегат снижает более спокойное вращение. За счет этого возрастает долговечность конструкции. Сложная конструкция увеличивает цену подобных механизмов.

Основные плюсы и минусы механизмов с вертикальной осью

Главные достоинства образцов с таким видом вращения:

  • нет потребности в дополнительном оборудовании, необходимом для адаптации навстречу воздушному потоку;
  • снижение затрат на изготовление и ремонтные работы из-за небольшого количества подвижных узлов и деталей;
  • низкая конструкция удобна для работы и не нуждается в дополнительных подъемных механизмах, применяемых в процессе профилактических мероприятий;
  • важный нюанс – параметры передвижения воздуха не влияют на эффективность генератора.

Имеются и некоторые минусы в конструкции роторов этого типа:

  • Большие габариты рабочих лопастей.
  • В сравнении с аналогами, вращающимися в другом направлении, КПД ниже в несколько раз.

Что необходимо учитывать при выборе

Очень важно иметь достоверную информацию об интенсивности ветра в вашей местности. Целесообразность эксплуатации такого ротора будет стремиться к нулю в том случае, если сила ветра в данном регионе недостаточная.

А вот при часто меняющемся направлении потока воздушной массы агрегаты рассматриваемого типа будут весьма уместны.

Ветрогенераторы с вертикальной осью вращения своими руками

Первый этап проведения подобной работы – изготовление турбины. Рассмотрим последовательность:

  1. Расчерчиваются контуры нижней и противоположной к ней опор. Из пластика тщательно изготавливаются две окружности с одинаковым диаметром. Для верхней опоры используется окружность с отверстием в центре в 30 см.
  2. Предстоящую установку хаба поможет выполнить следующее действие – делаем на опоре, расположенной внизу, четыре одинаковых отверстия. Пригодится обыкновенная автомобильная ступица.
  3. Эскизом места установки лопастей будет разметка на нижней опоре участков крепления заготовленных уголков требуемых габаритов. Здесь будет осуществляться монтажное соединение опоры и лопастей.
  4. Сложенные в стопку и связанные лопасти обрезается до нужного размера.
  5. Сверловка отверстий в лопастях позволит затем крепить их на уголках.
  6. Финальный процесс – соединение лопастей и опоры.
Изготовление ротора

Два основания расположим в соответствии с проделанными отверстиями и выполняем, как можно тщательнее, боковую разметку. Для дальнейшего процесса сборки конструкции потребуются два картонных шаблона, наклеиваем их на основания магнитов, которые маркируются при помощи изоленты.

На нижнюю часть магнита наносится слой эпоксидной смолы с отвердителем. Затем магниты располагаем у края ротора и приклеиваем их к основанию. На втором роторе следует выдержать полярность, противоположную первой.

Статор

Три группы, каждая из тех катушек с проводом 24 AWG на 320 витков, составляют основу данного агрегата. Особенности изготовления требуют выполнения определенных требований:

  • станок для намотки значительно облегчить работу;
  • с помощью обычных весов проверяется идентичность готовых катушек, с последующим измерением сопротивления;
  • размещаем катушки на бумаге в обрамлении стеклоткани и проделываем монтажные отверстия для обустройства кронштейна;
  • в отверстия вкручиваются болты.

На заключительном этапе проделываем четыре отверстия в плите ротора, располагающегося сверху, и выставляем этот узел на шпильках. Производим выравнивание и опускаем, как можно аккуратнее, генератор. Крепим хаб и раскручиваем ветряк собранного генератора, измеряем его параметры.

Преобразование переменного тока в постоянный, происходящее в данном случае, с успехом используется не только для электроснабжения различных объектов. Доступно также питание систем освещения, подзарядка аккумуляторов, нагрев резервуаров с проточной водой.

Производители многих стран выпускают изделия, занимающие с каждым годом все большую нишу в общем объеме производства энергии.На стоимость в основном влияет мощность механизма, конструктивные особенности и ценовая политика фирмы-изготовителя.

Желание обеспечить автономность производства  электричества и не истощать запасы природных ресурсов вполне реально воплотить при наличии новых механизмов. А возможность сконструировать их самому доставит настоящее удовольствие всем, кто любит творчество и обладает достаточными навыками.

jelektro.ru

Вертикально-осевой ветрогенератор своими руками - EnergoRus.com

Сегодня вертикальный ветрогенератор  с вертикальной осью вращения прекрасная альтернатива традиционным источникам энергии, наряду с солнечными батареями и биотопливом. Хотя некоторые уже разочаровались в ветровой энергетике, но все-таки разработки ведутся и многие передовые государства активно строят не только отдельные ветряки, но и целые ветровые электростанции.

Человечество накопило немалый опыт по использованию энергии ветра. Электроэнергию при помощи ветрогенераторов стали производить в 90-х годах позапрошлого века. Долгое время ротор размещался горизонтально, и это было единственным вариантом его расположения. Но в настоящее время все большее распространение получают ветряки с вертикальной осью вращения.

Предистория

Вертикально осевой ветрогенератор

Конструкции вертикальных ветряков достаточно компактны, не излучают вредных волн, а также, практически, бесшумны. Вырабатывать энергию вертикальные ветряки могут даже при небольшой скорости ветра, а если они расположены у дороги, то дополнительную мощность будет создавать поток воздуха от проезжающего транспорта.

Вертикальный осевой ветрогенератор способен прослужить около 20 лет. С целью увеличения номинальной выходной мощности, в процессе эксплуатации имеется возможность установить дополнительные модули.

Если Вы решите купить вертикальный ветрогенератор, то Вы можете не задумываться о том, на каком расстоянии от своего дома его необходимо установить, т.к. уровень шумовой нагрузки установки не превышает 20 ДБ, к тому же, ветрогенератор не излучает магнитные волны. Отметим, что ветряк во время своей работы не причиняет вреда окружающей среде.

Удобен вертикальный ветрогенератор также тем, что не поддается влиянию окружающей среды. Разработчики позаботились о возможных перепадах температур или сильных порывах ветра, поэтому генератор установки расположен под алюминиевым саркофагом. Что, в дополнение, защищает ветряк от молний.

Преимущества вертикальных ветряков

В чем же преимущества данной схемы? Подобный ветрогенератор полностью независим от розы ветров и обладает более высоким коэффициентом эффективного использования воздушных потоков. Конструкция таких ветряков более проста, а его балансировка требует меньше усилий. Поэтому если вы хотите сэкономить и изготовить ветрогенератор самостоятельно, то вертикальная схема будет наилучшим решением.

  • Вертикальный ветрогенератор признан одним из наиболее эффективных нетрадиционных источников энергии по уровню КПД. Конструкция данного устройства такова, что позволяет ветрогенератору работать даже при малой скорости ветра. К тому же, вертикальный ветрогенератор способен вращаться вне зависимости от направления ветра.
  • Неудобство горизонтальных ветряков в их огромных размерах, а также в том, что их нельзя использовать во время шквальных ветров и вообще непогоды. А разгон они могут набрать только когда ветер достаточно сильный. По сравнению с горизонтальными, ветрогенератор с вертикальной осью всех этих недостатков не имеет.
  • Еще одно из преимуществ вертикального ветрогенератора заключается в том, что он не нуждается в дополнительном обслуживании. Это связано с тем, что конструкция вертикального ветрогенератора не подразумевает наличия щеток, подшипников, редукторов.

Этапы изготовления вертикального ветрогенератора

Наверное, Вы помните, что уже давненько, в журналах типа «Наука и Техника» рассказывалось о том, как собрать вертикальный ветрогенератор своими руками. Сейчас же, в интернете просто уйма различных вариантов и технологий, но принцип работы все равно остается тем же – лопасти вращаются под воздействием ветра, затем энергия генерируется и преобразовывается в электрическую. Самодельный ветрогенератор сможет сэкономить вам много денег в будущем и и служить многие годы.

  1. Схема лопостей вертикального ветряка

    Прежде чем приступить к работе, необходимо выполнить ряд предварительных мероприятий. Прежде всего, необходимо определиться с местом расположения вашего ветряка. При этом нужно учитывать два фактора: ветрогенераторы производят довольно много шума и их надо размещать в местах с наибольшей скоростью ветра. Затем необходимо рассчитать нужную вам номинальную мощность. Не стоит забывать, что ветрогенератор не питает непосредственно вашу электросеть, а лишь подзаряжает аккумуляторы, которые и выполняют эту функцию. Наконец, вам понадобиться схема ветрогенератора – ее можно сделать самостоятельно или воспользоваться помощью всемирной паутины.

  2. В зависимости от массы вашего ветряка мачту для него можно устанавливать двумя способами. Наиболее надежным (и трудоемким) является вариант с предварительной заливкой фундамента мачты цементом. Более простым способом служит закапывание мачты в землю на глубину в 50 см и укрепление всей этой конструкции посредством растяжек.

  1. Конструкция вращающейся части вертикально-осевого ветрогенератора может быть самой разной. Необходимо наличие, по крайней мере, двух лопастей (это позволяет сбалансировать их), но их может быть гораздо больше. Выбор материала, из которого изготавливаются лопасти, также достаточно широк. Это может быть фанера, прочная пластмасса, разрезанная на четыре части металлическая бочка, стальные трубы и т.д. Если лопасти выполнены из стали, то не стоит забывать об их антикоррозийной обработке, ведь ветряк подвергается интенсивному воздействию погодных факторов. Лопасти прикрепляются к нижнему и верхнему дискам. К нижнему диску крепится и фланец, служащий для установки вращающейся части на ротор.

  1. Статор вертикального ветряка

    Статор вертикального ветряка

    Важной частью самодельного вертикального ветрогенератора является генератор, это единственная часть ветряка, которую сложно сделать своими руками. Хотя можно попытаться, но невысокая стоимость готовых генераторов делает такую работу не самым лучшим вложением вашего труда и времени. При покупке генератора необходимо обращать внимание на максимально допустимое количество тока. Если оно будет недостаточным, то для предотвращения перегорания генератора при высокой скорости ветра нужно будет устанавливать анемометр и тормозную систему.

Возможно ли применение энергии ветра для отопления?

В странах Запада нередким зрелищем является ветрогенератор для отопления дома. Поэтому многие россияне задаются вопросом: а возможно ли подобное применение энергии ветра в нашей стране? Ведь счета за отопление вызывают не больше положительных эмоций, чем квитанции на оплату электроэнергии. В принципе такое использование ветрогенератора возможно. Другое дело, что климат на большей части территории нашей страны куда более суров, чем в Европе. А вот сильные ветры, которые необходимы для выработки достаточного количества энергии для обогрева жилища, дуют далеко не везде. Поэтому если вы проживаете в средней полосе России или в местности со сходным климатом, то ветряк для отопления дома лучше все-таки не применять.

Таким образом, можно смело судить о том, что вертикальный ветрогенератор является, в принципе, неплохим вариантом. Установка способна окупить себя в скором времени, попутного обслуживания она не требует, к тому же, если Вы увлекаетесь «самоделками» и имеете достаточно навыков, то ветрогенераторы самодельные вертикальные, обойдутся Вам еще дешевле.

Как утверждают исследователи, альтернативная энергия наше будущее, поэтому задумайтесь о покупке или создании подобного ветряка. Успехов Вам в Ваших начинаниях!

Дата публикации: 24 октября 2012



Оставить комментарий

Вы должны быть Войти, чтобы оставлять комментарии.

energorus.com