Принцип работы дизельных электростанций. Устройство электростанции


Как устроена атомная электростанция: muph

Многие ли из вас видели атомную электростанцию хотя бы издалека? С учетом того, что в России действующих АЭС всего десять и охраняются они будь здоров, думаю, ответ в большинстве случаев отрицательный. Впрочем, в ЖЖ народ, как известно, бывалый. Окей, а многие ли тогда видели АЭС изнутри? Ну, например, щупали собственной рукой корпус ядерного реактора? Никто. Я угадал?

Ну что же, сегодня у всех подписчиков этого фотоблога есть возможность увидеть все эти высокие технологии максимально близко. Понимаю, в живую это интереснее в разы, но давайте начинать с малого. В будущем, возможно, я смогу несколько человек взять с собой, а пока изучаем матчасть!

02. Итак, мы в сорока пяти километрах от Воронежа неподалёку от строительной площадки 4 очереди Нововоронежской АЭС. Неподалёку от действующей АЭС (первый энергоблок был запущен ещё в шестидесятых годах прошлого века) ведётся сооружение двух современных энергоблоков общей мощностью 2400 МВт. Строительство ведётся по новому проекту "АЭС-2006", который предусматривает использование реакторов ВВЭР-1200. Но о самих реакторах чуть позже.

03. Именно тот факт, что строительство еще не завершено, и дает нам редкий шанс увидеть всё своими глазами. Даже реакторный зал, которой в будущем будет герметично закрыт и открываться для обслуживания только один раз в год.

04. Как видно на предыдущем фото, купол наружной защитной оболочки седьмого энергоблока еще на стадии бетонирования, а вот здание реактора энергоблока №6 выглядит уже интереснее (смотрим фото ниже). В общей сложности на бетонирование этого купола потребовалось более 2000 кубометров бетона. Диаметр купола в основании составляет 44 м, толщина – 1,2 м. Обратите внимание на зеленые трубы и объемный металлический цилиндр (вес – 180 т, диаметр – около 25 м, высота – 13 м) – это элементы системы пассивного отвода тепла (СПОТ). На российской АЭС они монтируются впервые. В случае полного обесточивания всех систем АЭС (как это случилось на "Фукусиме"), СПОТ способна обеспечить длительный отвод тепла от активной зоны реактора.

05. Безусловно самым масштабным элементом АЭС являются башенные градирни. Кроме того, это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая уносится ветром.

06. Высота оболочки башенной градирни энергоблока №6 – 171 метр. Это около 60 этажей. Сейчас это сооружение является самым высоким среди аналогичных, когда либо возводимых в России. Её предшественники не превышали 150 м высоты (на Калининской АЭС). На возведение конструкции ушло более 10 тысяч кубометров бетона.

07. В основании градирни (диаметр составляет 134 м) расположена так называемыя чаша бассейна. Его верхняя часть "вымощена" оросительными блоками. Ороситель – это основной конструктивный элемент градирни такого типа, предназначенный для того, чтобы раздробить стекающий по нему поток воды и обеспечить ему длительное время и максимальную площадь контакта с охлаждающим воздухом. По сути своей, это решётчатые модули из современных полимерных материалов.

08. Естественно, мне захотелось сделать эпичный кадр верх, но уже смонтированный ороситель помешал мне это сделать. Поэтому перемещаемся в градирню энергоблока №7. Увы, ночью был морозец и с поездкой на лифте на самый верх мы обломались. Он замёрз.

09. Ладно, может еще довёдется как-нибудь прокатиться на такую верхотуру, а пока кадр монтируемой системы орошения.

10. Подумал тут... А может нас просто не пустили на верх из соображений безопасности?

11. Вся территория стройплощадки пестрит предупреждающими, запрещающими и просто агитационными плакатами и табличками.

12. Ладно. Телепортируемся в здание центрального щита управления (ЦЩУ).Ну, естественно, в наше время всё управление ведётся с помощью компьютеров.

13. Огромная комната, залитая светом, буквально напичкана стройными рядами шкафов с автоматическими системами релейной защиты.

14. Релейная защита осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и/или ненормальных режимов. При возникновении повреждений система защиты должна выявить конкретный повреждённый участок и отключить его, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания или замыкания на землю).

15. Вдоль каждой стены расставлены огнетушители. Автоматические, конечно.

16. Далее перемещаемся в здание комплектного распределительного устройства на 220 кВ (КРУЭ-220). Одно из самых фотогеничных мест на всей АЭС, на мой взгляд. Есть еще КРУЭ-500, но его нам не показали. КРУЭ-220 входит в состав общестанционного электротехнического оборудования и предназначено для приема мощности с внешних линий электропередачи и распределения его на площадке строящейся станции. То есть пока энергоблоки строятся, с помощью КРУЭ-220 электроэнергией обеспечиваются непосредственно строящиеся объекты.

17. В проекте "АЭС-2006", по которому сооружаются шестой и седьмой энергоблоки, в схеме выдачи мощности на распределительных подстанциях впервые применены комплектные распредустройства 220/500кВ закрытого типа с элегазовой изоляцией. По сравнению с открытыми распредустройствами, которые до сих пор применялись в атомной энергетике, площадь закрытого - в несколько раз меньше. Для понимания масштаба здания, рекомендую вернуться к титульному фото.

18. Естественно, после ввода новых энергоблоков в эксплуатацию оборудование КРУЭ-220 будет задействовано для передачи в Единую энергосистему электроэнергии, произведенной на Нововоронежской АЭС. Обратите внимание на ящики возле опор ЛЭП. Большинство электрооборудования, применяемого в строительстве, произведено компанией Siemens.

19. Но не только. Вот, к примеру, автотрансформатор Hyundai.Вес этого агрегата 350 тонн, а предназначен он для преобразования электроэнергии с 500 кВ до 220 кВ.

20. Есть (что приятно) и наши решения. Вот, например, повышающий транформатор производства ОАО "Электрозавод". Созданный в 1928 году первый отечественный трансформаторный завод сыграл колоссальную роль в индустриализации страны и в развитии отечественной энергетики. Оборудование с маркой "Электрозавод" работает более чем в 60 странах мира.

21. На всякий случай, поясню немного по трансформаторам. В общем, схема выдачи мощности (после завершения строительства и запуска в эсплуатацию, естественно) предусматривает производство электроэнергии напряжением двух классов – 220 кВ и 500 кВ. При этом, турбина (о ней позже), вырабатывает всего 24 кВ, которые по токопроводу поступают на блочный трансформатор, где и повышаются уже до 500 кВ. После чего часть энергомощности через КРУЭ-500 передается в Единую энергосистему. Другая часть – на автотрансформаторы (те самые "хюндаи"), где понижается с 500 кВ до 220 кВ и через КРУЭ-220 (смотрим выше) также поступает в энергосистему. Дык вот в качестве упомянутого блочного трансформатора используется три однофазных повышающих "электрозаводских" трансформатора (мощность каждого – 533 МВт, вес – 340 тонн).

22. Если понятно, переходим к паротурбинной установке энергоблока №6. Вы уж простите, повествование моё идёт как бы от конца к началу (если исходить из процесса производства электроэнергии), но примерно в такой последовательности мы и гуляли по стройплощадке. Так что прошу пардона.

23. Итак, турбина и генератор спрятаны под кожухом. Поэтому поясняю. Собственно, турбина – это агрегат, в котором тепловая энергия пара (температурой около 300 градусов и давлением 6,8 МПа) преобразуется в механическую энергию вращения ротора, и уже на генераторе – в нужную нам электрическую энергию. Вес машины в собранном состоянии – более 2600 тонн, длина – 52 метра, состоит она из более чем 500 комплектующих. Для транспортировки данного оборудования на строительную площадку было задействовано порядка 200 грузовых машин. Данная турбина К-1200–7-3000 была изготовлена на Ленинградском металлическом заводе и это первая в России быстроходная (3000 оборотов в минуту) турбина мощностью 1200 МВт. Данная инновационная разработка создана специально для атомных энергоблоков нового поколения, которые сооружаются по проекту "АЭС-2006". На фото общий вид турбинного цеха. Или машзала, если хотите. Турбину олдскульные атомщики называют машиной.

24. Этажом ниже расположены конденсаторы турбины. Конденсаторная группа относится к основному технологическому оборудованию машинного зала и, как все уже догадались, предназначена для превращения в жидкость отработанного в турбине пара. Образовавшийся конденсат после необходимой регенерации вновь возвращается в парогенератор. Вес оборудования конденсационной установки, куда входят 4 конденсатора и система трубопроводов, составляет более 2000 тонн. Внутри конденсаторов располагается порядка 80 тысяч титановых трубок, которые образуют теплопередающую поверхность общей площадью 100 тысяч квадратных метров.

25. Разобрались? Вот вам здание машзала практически в разрезе и идем дальше. На самом верху мостовой кран.

26. Перемещаемся в блочный пульт управления энергоблоком №6.Предназначение, думаю, понятно без пояснений. Выражаясь фигурально, это мозг атомной электростанции.

27. Элементы БПУ.

28. Ну и наконец-то, мы отправляемся посмотреть помещения реакторного отделения! Собственно, это место, где расположен ядерный реактор, первый контур и их вспомогательное оборудование. Естественно, в обозримом будущем оно станет герметичным и недоступным.

29. И самым естественным образом, при попадании внутрь, первым делом задираешь голову и поражаешься размерам купола гермооболочки. Ну и полярным краном заодно. Мостовой кран кругового действия (полярный кран) грузоподъемностью 360 тонн предназначен для монтажа крупногабаритного и тяжеловесного оборудования гермозоны (корпуса реактора, парогенераторов, компенсатора давления и др.). После ввода атомной станции в эксплуатацию кран будет испольоваться при проведении ремонтных работ и транспортировке ядерного топлива.

30. Далее, конечно, я устремляюсь к реактору и зачарованно наблюдаю его верхнюю часть, еще не подозревая, что ситуация обстоит аналогичная с айсбергами. Так вот ты какой, северный олень. Выражаясь фигурально, это сердце атомной электростанции.

31. Фланец корпуса реактора. Позже на него убудет установлен верхний блок с приводами СУЗ (система управления и защиты реактора), обеспечивающий уплотнение главного разъема.

32. Неподалёку наблюдаем бассейн выдержки. Его внутренняя поверхность представляет собой сварную конструкцию из листовой нержавеющей стали. Он предназначен для временного хранения отработавшего ядерного топлива, выгружаемого из реактора. После снижения остаточного тепловыделения использованное топливо вывозится из бассейна выдержки на предприятие атомной отрасли, занимающейся переработкой и регенерацией топлива (хранением, захоронением или переработкой).

33. А это вдоль стеночки стоят гидроёмкости системы пассивного залива активной зоны. Они относятся к пассивным системам безопасности, то есть функционирует без привлечения персонала и использования внешних источников энергоснабжения. Упрощая, это гигантские бочки, заполненные водным раствором борной кислоты. В случае возникновения чрезвычайной ситуации, когда давление в первом контуре падает ниже определенного уровня, происходит подача жидкости в реактор и охлаждение активной зоны. Таким образом ядерная реакция гасится большим количеством борсодержащей воды, поглощающей нейтроны. Стоит отметить, что в проекте "АЭС-2006", по которому сооружается четвертая очередь Нововоронежской АЭС, впервые предусмотрена дополнительная, вторая, ступень защиты – гидроемкости пассивного залива активной зоны (8 из 12 емкостей), каждая - объемом 120 кубометров.

34. При проведении будущих планово-предупредительных ремонтов и замены ядерного топлива попасть внутрь реакторного отделения можно будет через транспортный шлюз. Он представляет собой 14-ти метровую цилиндрическую камеру диаметром свыше 9 метров, герметично запираемую с двух сторон полотнами ворот, которые открываются поочередно. Общий вес шлюза составляет порядка 230 тонн.

35. С наружней стороны шлюза открывается обзорный вид на всю стройплощадку в целом и энергоблок №7 в частности.

36. Ну, а мы глотнув свежего воздуха, спускаемся ниже, чтобы увидеть, собственно, цилиндрический корпус реактора. Но покуда нам попадаются только технологические трубопроводы. Большая зелёная труба - это один из контуров, так что мы уже совсем близко.

37. А вот и он. Водо-водяной корпусной энергетический ядерный реактор с водой под давлением модели ВВЭР-1200. Не буду углубляться в дебри деления ядра и цепной ядерной реакции (поди уже и так читаете по диагонали), добавлю только, что внутри реактора расположено множество тепловыделяющих элементов (т.н. твэлы) в виде набора герметичных трубок из специальных сплавов диаметром 9,1–13,5 мм и длиной несколько метров, заполненных таблетками ядерного топлива, а так же управляющие стержни, которые дистанционно с пульта управления можно перемещать по всей высоте активной зоны. Эти стержни изготавливаются из веществ, поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Таким способом регулируется мощность реактора. Теперь понятно для чего в верхней части реактора столько отверстий?

38. Да, чуть не забыл про главный циркуляционный насос (ГЦН). Он тоже относится к основному технологическому оборудованию здания реактора и предназначен для создания циркуляции теплоносителя в первом контуре. В течение часа агрегат перекачивает более 25 тысяч кубометров воды. Также ГЦН обеспечивает охлаждение активной зоны во всех режимах работы реакторной установки. В состав установки входит четыре ГЦН.

39. Ну и для закрепления пройденного материала, смотрим на самую простую схему работы АЭС. Всё же просто, разве нет? В особо запущенных случаях перечитываем пост еще раз, хе-хе))

40. Вот в целом как-то так. Но для тех, кому тема близка, подкину еще несколько карточек с людьми. Согласитесь, в репортаже их не так и много, а между тем, с 2006 года здесь потрудились многие тысячи специалистов различного профиля.

41. Кто-то внизу...

42. А кто-то вверху... Хоть вы их и не видите, но они есть.

43. А это один из самых заслуженных строителей Нововоронежской АЭС – гусеничный самоходный кран DEMAG. Именно он поднимал и устанавливал эти многотонные элементы реакторного и машинного залов (грузоподъемность – 1250 тонн). Дядька-монтажник и грузовик для понимания масштаба, а во весь рост (115 метров) смотрите красавца на фото 03 и 04.

И в качестве заключения. С марта этого года, по неведомым мне причинам, действующую Нововоронежскую АЭС и строящуюся Нововоронежскую АЭС-2 объединили. То, что мы с вами посетили и то, что привыкли называть НВАЭС-2, теперь называется четвертой очередью НВАЭС, а строящиеся энергоблоки из первого и второго превратились, соответственно, в шестой и седьмой. Инфа 110%. Желающие могут сразу же отправиться переписывать статьи в википедии, а я благодарю сотрудников отдела по связям со строящимися энергоблоками НВАЭС и особенно Татьяну, без которой бы эта экскурсия, скорее всего, не состоялась. Так же мои благодарности за ликбез по устройству атомных станций начальнику смены Роману Владимировичу Гридневу, а так же Владимиру vmulder - за приятную компанию.

--------------------------- Подписаться на обновления блогаДобавляйтесь! В социальных сетях я публикую анонсы свежих постов, а в инстаграме — самые красивые фотографии!

Использование моих фотографий в любых СМИ, в печатных материалах и на любых сайтах, за исключением личных блогов и страниц в социальных сетях, ЗАПРЕЩАЕТСЯ. Только после согласования со мной. Прочим копипастерам напоминаю, что при перепечатке фотографий и текста активная индексируемая ссылка на источник обязательна!

muph.livejournal.com

Устройство АЭС

User Rating:  / 53 Details Parent Category: Зона отчуждения Category: Наука

Цепная реакцияВ обычных электростанциях, работающих на угле или природном газе, ископаемое топливо сжигают в топке и тепло пламени образует в котле пар. Этот пар - исторический двигатель индустриальной эпохи – с ревом устремляется под давлением, иногда достигающим 190 кгс/см2 при температуре до 1000 0С, на огромный турбогенератор. Пар вращает мощную турбину, соединенную с гигантским генератором, вырабатывающим электричество. Такая современная электростанция дает более 1 млн кВт.ч энергии. Электростанции данного типа «прожорливы» в отношении топлива. Так, если применяют уголь, то каждый час необходимо сжигать его более чем 400 тон. Атомная электростанция «сжигает» беспламенное топливо, представленное ураном. Тепло выделяется в результате деления атомов в условиях сдерживаемой человеком цепной реакции.

Поскольку самого процесса сжигания как такового не происходит, выхлопные газы отсутствуют и, конечно же, нет загрязнения атмосферы двуокисью серы или углерода.

Тепловая и ядерная электростанция

Ядерная «топка» представляет собой активную зону, объемом, меньшим, чем средний объем жилой комнаты в нашем доме. В ней содержится годовой запас ядерного топлива - более 100 т окиси урана в виде таблеток диаметром с наперсток. Около 10 млн этих крошечных таблеток аккуратно размещены в трубках длиной 3,7 м, или топливных стержнях, герметично закрытых для предотвращения утечки радиации. Ядерное топливо, используемое в современных атомных электростанциях, содержит только несколько процентов 235U,) в сравнении с 90 % содержания его в радиоактивном материале, раздробленном в атомном оружии на отдельные субкритические части. В результате вероятность того, что ядерный реактор взорвется наподобие атомной бомбы, отсутствует. Но несмотря на столь низкое содержание ядерного топлива, оно все же потенциально сильное вещество — в одной такой таблетке с массой 14 г выделяется энергии, по количеству равное той, что мы получаем при сжигании 0,6 м3 нефти.  Для того чтобы начать и поддерживать цепную реакцию на определенном уровне, топливные стержни надо внедрить в определенное вещество, преимущественно состоящее из легких химических элементов, цель которого состоит в торможении или замедлении» нейтронов, образующихся в результате деления 235U появившись при делении атома урана, эти нейтроны движутся с большой скоростью, но, как это ни странно, они будут более эффективными в плане расщепления других атомов урана в том случае, если сперва затормозятся в активной зоне реактора, столкнувшись с другими атомами легких элементов.

 

Принцип устройства ядернорго реактора

Существуют всевозможные вещества, которые применяют в качестве активной зоны или замедлителя реактора. Три из них применяют наиболее часто: графит (углерод), обычная (легкая) вода или «тяжелая» вода, т. е. вода, в которой водород заменен на дейтерий — более тяжелый изотоп водорода. Рассмотрение устройства активной зоны ядерного реактора, по-видимому, будет чрезмерно насыщено техническими деталями, что выходит за рамки нашей статьи, но оно оказывается чрезвычайно важным для понимания конструкции промышленных атомно-энергетических установок. Ключевыми элементами безопасной работы реактора служат регулирование цепной реакции, охлаждение активной зоны и защита. Реакторы должны проектироваться, изготовляться, работать и подвергаться проверке так, чтобы вероятность отказа любого из этих ключевых элементов была предельно мала, потому что в результате аварии огромное количество радиоактивности попадет в окружающую среду. Проектирование реакторов основано на принципе дублирования, т. е. создания многочисленных параллельных систем с таким расчетом, что если одна система откажет, вторая возьмет на себя ее функции. Это особенно важно для системы охлаждения реактора.

Стержни управления

Процесс в реакторе регулируется путем погружения в активную зону стержней из бора или кадмия, которые стремятся поглотить нейтроны. Посредством непрерывной регулировки стержней, вводя и выводя их из активной зоны, работу реактора можно поддерживать на желаемом уровне.

Охлаждение реактора

Атомные реакторы применяют для множества различных целей. Физическую научно-исследовательскую лабораторию в большей степени интересует свойство реактора создавать внутри него плотный поток нейтронов. Получаемые нейтроны могут быть использованы для проведения экспериментов в области ядерной физики или для бомбардировки мишеней с целью образования радиоактивных изотопов, также необходимых для исследовательских, медицинских и промышленных нужд. В этом смысле колоссальная энергия, рассеиваемая в виде тепла, представляет собой помеху, которая должна быть устранена с помощью определенных типов систем охлаждения реактора. С другой стороны, когда реакторы используют для получения электричества, продуцируемое ими тепло имеет огромную ценность. Здесь реальным недостатком является нежелательная радиоактивность реактора, в связи с чем последний должен быть тщательно герметизирован и хорошо экранирован. В энергетическом ядерном реакторе огромное количество продуцируемого в активной зоне тепла должно постоянно отводиться в виде водяного пара и поступать на турбины, вращающие электрогенераторы. Это происходит одним из двух способов. В реакторах с активной зоной, или замедлителем, выполненной из графита, избыточное тепло удаляет газ, проходящий сквозь эту зону. С другой стороны, в реакторах, где в качестве замедлителя использована легкая или тяжелая вода, удалять тепло из активной зоны можно принудительной циркуляцией воды. Вне зависимости от того, используется для охлаждения вода или газ, метод теплоотвода обязательно должен быть как адекватным, так и непрерывным, иначе активная зона и топливные контейнеры могут расплавиться и произойдет утечка большого количества радиоактивных веществ. В равной степени важно, чтобы система контроля за интенсивностью теплоотвода была чувствительной и эффективной, и скорость выделения тепла, даже на небольшой период времени, не превышала охлаждающей способности системы теплоотвода. Реактор можно остановить в случае подозрения на недостаточную функцию системы охлаждения, но даже и тогда продолжение охлаждения реактора очень важно, потому что, хотя тепло не выделяется как результат процесса ядерного деления, оно все еще продолжает образовываться из-за остаточной радиоактивности в топливных элементах. Сразу после остановки реактора это количество тепла составляет 5 % от того, которое генерировалось при работе на полную мощность. Поэтому продолжение непрерывного охлаждения ядерного топлива абсолютно необходимо.

Защита

Поскольку предназначенное для загрузки в реактор само по себе ядерное топливо слабо радиоактивно, обращаться с ним можно без применения экранирования. После того как реактор проработает некоторое время и расщепляющийся материал будет частично использован, активность топлива возрастет приблизительно в 10 раз из-за образования радиоактивных продуктов деления ядер. По этой причине для экранирования продуктов деления требуется очень мощная защита вокруг активной зоны реактора. Вот почему так важно, чтобы герметичное сооружение, изолирующее реактор, не нарушило своей целостности, иначе радиоактивные вещества вырвутся в окружающую среду.

 

chornobyl.ru

Гидроаккумулирующие электростанции, принцип действия ГАЭС, устройство

Аккумулирующая гидроэлектростанция

ГАЭС (гидроаккумулирующие электростанции) служат для накопления электроэнергии во время низкого потребления сетями электричества (в ночной период) и отдачи её во время пиковых нагрузок, уменьшая тем самым необходимость изменения мощности в течение суток основных электростанций (атомных, тепловых). Тепловые и атомные станции не способны быстро снижать свою мощность во время значительного спада потребления, поэтому ночью себестоимость электроэнергии существенно возрастает и электростанции работают в значительной степени вхолостую.

История использования гидроаккумулирующих электростанций

Чтобы улучшить качество энергоснабжения и увеличить эффективность всей системы, были разработаны ГАЭС. Первые подобные станции были построены в конце 19 века в Западной Европе, в частности в 1882 г. в Швейцарии была запущена установка Леттем мощностью 103 кВт. Аналогичное сооружение через 12 лет было запущено на одной из прядильных фабрик Италии. До 20 столетия функционировало всего 4 ГАЭС, к 60-м гг. 20 века насчитывалось уже 72 работающие установки, к 2010 г. их число достигло 460.

Принцип действия

У гидроаккумулирующих электростанций есть два периода работы — насосный и турбинный. Во время первого режима ГАЭС является потребителем электроэнергии, которая подаётся от тепловых электростанций во время минимальной нагрузки на последние (обычно примерно 7-12 часов в сутки). При этом на ГАЭС происходит перекачка воды в верхний аккумулирующий бассейн из нижнего питающего водохранилища (станция запасает энергию). В турбинном режиме ГАЭС отдаёт накопленную энергию обратно в сеть во время максимальной нагрузки на неё (2-6 часов в сутки). Вода в этот период из верхнего бассейна направляется обратно в питающее водохранилище, вращая при этом турбину генератора.

Верхний бассейн может не иметь естественной приточности, работая исключительно на запасённой в наносный период воде. Такие ГАЭС принято называть «чистыми». Также функционируют «смешанные» гидроаккумулирующие станции, верхний бассейн которых имеет дополнительную естественную приточность. При этом в турбинном режиме используется и аккумулированная, и поступающая естественным образом вода.

Принцип действия насосно-аккумулирующих электростанций заключается в преобразовании энергии воды. В таких инженерных сооружениях есть два периода работы: насосный и турбинный. В первый период электростанция является потребителем энергии от других видов, например, тепловых электростанций. В это время с помощью насосов вода перекачивается в верхний бассейн (происходит зарядка). Во время турбинного режима работы вода вращает турбины, попадая в нижнее хранилище, с помощью чего запасённая энергия отдаётся потребителю (разрядка).

Делается это для того, чтобы обеспечить города, промышленность необходимой мощностью во время пикового энергопотребления.

Устройство

Кроме верхнего бассейна и питающего водохранилища в состав ГАЭС входит здание электростанции, железобетонный или металлический напорный водопровод, водоприёмник, который служит для подачи воды в верхний бассейн во время работы станции в насосный период и для забора воды из него в турбинный период. В самом здании электростанции устанавливается турбина, генератор-электродвигатель и насос либо только генератор-электродвигатель и обратимая турбина (турбина-насос).

Чаще всего ГАЭС устанавливаются рядом с мощными потребителями энергии недалеко от мощных тепловых или атомных электростанций там, где этому способствуют топографические, гидрологические и геологические условия. Необходимо, чтобы на местности имелась возможность устроить верхний бассейн и нижнее водохранилища рядом друг с другом. КПД гидроаккумулирующих станций колеблется в диапазоне 0,6 — 0,7. Обычно для работы используются уже существующие водохранилища и озёра или те места, где верхний бассейн имеет естественную приточность.

Разделяют «чистые» гидроаккумулирующие станции и «смешанные». В первом случае верхний бассейн не обладает естественной приточностью, таким образом энергия вырабатывается только за счёт запасённой заранее воды. В смешанных электростанция используется кроме аккумулированного объёма ещё и приточный сток. КПД подобных сооружений составляет 60-70%. Обычно устанавливаются вблизи мощных электростанций, там где возможно организовать нижнее водохранилище и верхнее хранилище близко друг к другу.

Другой вид аккумулирующих электростанций — ветряные. В них используется простой принцип, когда ветер вращает ветряное колесо, а энергия запасается в аккумуляторной батарее. Они намного меньше гидроаккумулирующих электростанций по размеру. Сейчас активно развиваются конструкции малой мощности, направленные на обеспечение энергией отдельных домов и фермерских хозяйств. Мощность их составляет 300 Вт — 20 кВт. Ветрогенераторы средней мощности могут снабжать электричеством небольшие удалённые населённые пункты с общим потреблением 20 — 600 кВт. Мощные аккумулирующие станции выдают более мегаватта.

В связи с постоянным повышением тарифов на электроэнергию подобные сооружения получили большое распространение в Европе. Сейчас они устанавливаются повсеместно, в том числе и в черте города. К недостаткам можно отнести создаваемый шум на уровне 45 дБ и выше. Также во многих странах запрещается их использование в сезон миграции птиц.

pue8.ru

Принцип работы дизельных электростанций

Другие направления деятельности УК КРОН

www.4akb.ru

Оборудование для обслуживания аккумуляторов

ural-k-s.ru

Промышленное иавтосервисное оборудование

www.metallmeb.ru

Производство мебели специального назначения

verstaki.com

Слесарные верстаки и производственная мебель

Дизельная электростанция предназначается для использования в качестве автономного источника электроэнергии. Такие агрегаты широко применяются для резервирования сетей ответственных потребителей, таких как банки, больницы, заводы, цеха с непрерывными циклами производства. В этих случаях электростанция включается в работу только при отключении основной лини электропитания. Однако в некоторых ситуациях дизельные электростанции используются и в качестве постоянного источника тока для бесперебойной подачи электроэнергии. Примером таких объектов могут служить удаленные поселки, буровые вышки. Применяются электростанции и в быту: в загородных коттеджах, на дачных участках. Иногда к ним подключают электроинструменты при работе в саду или на строительной площадке.

 

Сегодня на рынке представлено огромное разнообразие этих полезных агрегатов: от маленьких переносных генераторов, предназначенных для бытового использования и оснащенных колесами и ручками, до огромного стационарного промышленного оборудования, масса которого может достигать нескольких десятков тонн. Однако вне зависимости от веса и мощности, принцип работы дизельных электростанций одинаков для всех моделей.

 

В состав дизельгенератора входят:

Принцип работы дизельных электростанций

  • Топливный двигатель, работающий на дизельном горючем с различными подсистемами подачи топлива, охлаждения, воздуха. Системы воздушного охлаждения, как правило, устанавливаются на агрегаты малой мощности, промышленные же устройства оснащаются жидкостным охлаждением. По способу подачи воздуха двигатели бывают с турбонаддувом (в этом случае туробокомпрессор подает воздух в камеру внутреннего сгорания двигателя с помощью привода от выхлопных газов двигателя), с турбонаддувом и промежуточным охлаждением воздуха и без турбонаддува.
  •  

  • Альтернатор - генератор переменного тока бывает асинхронной или синхронной модели. Различные системы мониторинга и контроля работы генератора подбираются в зависимости от предполагаемого использования устройства.
  •  

  • Рама, к которой крепится все оборудование. Она может иметь различные модификации: пространственный каркас, тент-каркас, контейнер, кожух и т. д. и выполнять различные дополнительные функции, к примеру, гасить вибрации, поглощать шум, защищать агрегат от агрессивных воздействий окружающей среды или упрощать транспортировку изделия.

 

Принцип работы дизельных электростанций заключается в преобразовании механической энергии в электрическую.

Принцип работы дизельных электростанций/p>

Топливо в дизельном двигателе воспламеняется. Вырабатывающаяся при этом энергия расширения газов преобразуется в механическую энергию вращения коленвала при помощи кривошипно-шатунного механизма. Ротор генератора при вращении возбуждает электромагнитное поле, которое в свою очередь создает в обмотке генератора индукционный переменный ток, подаваемый на выход потребителю.

 

Все генераторы на дизельном топливе подразделяются на однофазные и трехфазные. Первые подходят для бытового использования и питания небольших объектов. Трехфазные же агрегаты, как правило, используются для обеспечения электроэнергией крупных промышленных объектов с соответствующей электросетью либо оборудования, требующего для работы напряжения 380 В.

 

В зависимости от модели и назначения дизельные электростанции могут оснащаться дополнительными устройствами, такими как система электрического запуска или автоматического резервирования сети и изготавливаться в различных вариантах исполнения в зависимости от поставленных задач.

www.one-power.ru

Устройство современных электростанций

Другие направления деятельности УК КРОН

www.4akb.ru

Оборудование для обслуживания аккумуляторов

ural-k-s.ru

Промышленное иавтосервисное оборудование

www.metallmeb.ru

Производство мебели специального назначения

verstaki.com

Слесарные верстаки и производственная мебель

Электростанции состоят из 2-ух функциональных блоков, которыми являются генератор, вырабатывающий электрическую энергию и ДВС (двигатель внутреннего сгорания). Существуют два типа двигателей для электростанций - карбюраторный (работающий на бензине) и дизельный (работающий на дизельном топливе). Большинство конструкций ДВС объединяется с генератором в единый функциональный блок, вырабатывая электроэнергию 220В или 380В с частотой 50 Гц. Некоторые устройства имеют разъем для зарядки автомобильных аккумуляторов, в который подается напряжение в 12В.

Дизельные электростанции, разработанные сегодня, поддерживают мощность от 100 Вт до 10000 кВт. Бензиновые электростанции бывают мощностью не более 12 кВт.

На корпусе генератора крепятся электрические узлы, количество которых зависит от модели и марки производителя. Обычно это разные электрические разъемы и предохранители. Над двигателем установлен топливный бак, емкость которого зависит от типа электростанции.

В электростанциях применяется три системы запуска двигателя:

На современных электростанциях устанавливаются специальные генераторы, которые оснащаются системой самовозбуждения. Большая часть из них имеет автоматическую регулировку напряжения, которая вырабатывает электроэнергию с заданными параметрами и соответствует требованиям европейских стандартов. Если Вам необходимо однофазное электропитание, то выбирайте электростанцию с однофазным генератором. Для поддержки трехфазной сети и большого количества потребителей, используют трехфазные генераторы, предусматривая нагрузку каждой фазы в 20-30%.

Также в электростанциях могут использоваться два типа системы охлаждения. В бензиновых электростанциях применяется только воздушное охлаждение. В дизельных устройствах могут использоваться как воздушное, так и радиаторное (водяное охлаждение).

Для снижения уровня вибраций во время работы генератора применяют специальные амортизаторы.

Комплектация электростанций может включать в себя дополнительные устройства. Это могут быть специальные шасси, шумопоглощающий защитный кожух, система дистанционного управления и т.п.

www.one-power.ru

Основное оборудование - электростанция - Большая Энциклопедия Нефти и Газа, статья, страница 1

Основное оборудование - электростанция

Cтраница 1

Основное оборудование электростанций определяется выбором паровых турбин, поскольку от них непосредственно зависит выбор паровых котлов.  [1]

Основное оборудование электростанции общей мощностью 2400 тыс. кет состоит из восьми блоков по 300 тыс. кет на параметры пара 240 ат и 560 С с промежуточным перегревом до 570 С. На каждый блок устанавливается двухкорпусный прямоточный котлоаг-регат Таганрогского котельного завода паропроизводи-тельностью 950 т / ч с давлением пара 255 ат, температурой первичного пара 565 С и вторичного 570 С.  [2]

Основное оборудование электростанции общей мощностью 2400 МВт ( рис. 16 - 5) состоит из восьми блоков мощностью по 3000 МВт на параметры пара 23.5 МПа ( 240 кгс / см2) и 540 С с промежуточным перегревом до 540 С.  [3]

Основное оборудование электростанции смонтировано в энерговагоне на базе блок-бокса типа 100, изготовляемого экспериментальным управлением монтажно-блочных устройств Миннефтегазстроя.  [4]

Почти все основное оборудование электростанций было зарубежное, а сами электростанции принадлежали иностранцам.  [5]

Капитальный ремонт основного оборудования электростанций осуществляется в основном во время сезонных снижений нагрузки системы. Резерва мощности для проведения капитальных ремонтов не требуется, когда площадь провала годового графика месячных максимумов нагрузки больше необходимой. Если площадь провала графика оказывается меньше необходимой для проведения капитальных ремонтов, то в системе требуется специальный ремонтный резерв.  [7]

Паровой баланс основного оборудования электростанции выражается следующими уравнениями.  [8]

Зона монтажа основного оборудования электростанций считается опасной зоной. Проходы в зоне подъема и монтажа элементов основного оборудования должны быть ограждены с вывешиванием предупредительных плакатов.  [9]

В книге рассмотрено основное оборудование электростанций и подстанций: синхронные генераторы и компенсаторы, силовые трансформаторы, приведена методика расчета токов КЗ, даны описания электрических аппаратов, токоведущих частей и их выбор. Необходимое внимание уделено схемам электрических соединений электростанций и подстанций и конструкциям распределительных устройств. Приведены основные сведения о схемах дистанционного управления, сигнализации, блокировок, об установках оперативного постоянного тока, заземляющих устройствах. Изложение материала сопровождается решением примеров.  [10]

Технико-экономическое планирование ремонта основного оборудования электростанций осуществляется централизованно в энергосистеме при разработке ее годового техпромфинплана.  [11]

Оптимизация режимов работы основного оборудования электростанций необходима как для целей оперативного планирования ( установления диспетчерских заданий и ведения режима), так и для перспективного планирования и проектирования энергетических установок.  [12]

В пределе простой основного оборудования электростанций в ремонте может быть сокращен до минимума, определяемого технологическими и другими условиями демонтажа изношенных деталей и узлов и замены их запасными.  [14]

Капитальный и средний ремонты основного оборудования электростанций осуществляются в основном во время сезонных ( летних) снижений нагрузки системы. Резерв мощности для проведения капитальных и средних ремонтов не требуется в тех случаях, когда летнее снижение нагрузки ( летний провал годового графика месячных максимумов нагрузки) позволяет провести все капитальные и средние ремонты в этот период.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru