Вихревой теплогенератор – источник тепла в доме. Вихревые теплогенераторы


Вихревой теплогенератор: современный источник тепла

Цена отопления и горячего водоснабжения постоянно растет. Поэтому в последнее время многие задумались о том, как решить проблему дорогих энергоресурсов. Многие специалисты утверждают, что решить проблему позволяет вихревой теплогенератор.

Конструкция вихревого теплогенератора

В этой статье вы узнаете, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете можно ли самостоятельно изготовить вихревой теплогенератор.

История возникновения

Вихревой тепловой генератор является перспективной и инновационной разработкой. Однако, технология не является новой, так как ей уже почти 100 лет. Еще тогда ученые задумались, как применять явление кавитации.

Газообразная среда попадая в трубу Ранка делиться на горячий и холодный воздух

Первая «вихревая труба» была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году. Ранк первый заметил, что температура на входе в циклон отличается от температуры воздушной струи на выходе. На начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот на эффективность охлаждения воздушной струи.

Принцип работы вихревой трубы достаточно прост

Подобная технология получила новую ветку развития в 60-х годах 20 века. Именно в этот период советские ученые нашли способ, как улучшить трубу Ранка, запустив по трубам вместо воздуха жидкость. В сравнении с воздухом температура жидкости меняется более интенсивно. Опытным путем было установлено, что жидкая среда, которая протекает через трубу Ранка аномально быстро разогревается с коэффициентом преобразования энергии в 100%.

В тот период не было никакой необходимости в дешевых источниках тепловой энергии. Поэтому технология не нашла никакого применения. Первые кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

В вихревом генераторе вода циркулирует в замкнутом контуре

Энергетические кризисы привели к тому, что интерес к альтернативным источникам электроэнергии значительно вырос. На сегодняшний день практически каждый может купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Длительное время многие думали, что кавитация – это паразитное явление, характеризующееся образованием пузырьков, которые в процессе схлопывания провоцируют разрушение окружающих предметов. Теплогенератор вихревого типа – это прибор, в котором паразитное явление приносит пользу.

Теплогенератор Потапова подключенный к отопительному радиатору

Кавитация в дальнейшем позволяет не давать воде тепло, а извлекать его из движущейся воды, нагревая ее до значительных температур. Кавитация – это паразитное явление, но несмотря на это конструкционные элементы современных теплогенераторов не страдают. В этом случае кавитационные процессы протекают не вокруг дискового активатора, а за ним.

Принцип действия кавитационного преобразователя

Описание процесса:

  1. В преобразователь подается основной поток жидкой среды обычной температуры.
  2. Навстречу основному потоку подают дополнительные потоки жидкой среды.
  3. Разнонаправленные потоки сталкиваясь создают эффект кавитации. Благодаря этому жидкая среда на выходе из преобразователя нагревается.

Устройство и функционирование

Если рассмотреть устройство действующих образцов вихревых теплогенераторов тогда можно заметить, что оно несложное. Они представляют собою массивный двигатель, к которому подключают цилиндрическое приспособление «улитка».

«Улитка» считается доработанной версией трубы Ранка. Она имеет характерную форму, поэтому интенсивность кавитационных процессов значительно выше в сравнении с вихревой трубой. В полости «улитки» присутствует дисковый активатор – это диск с особой перфорацией. При вращении диска жидкая среда приводится в действие за счет чего будут происходить кавитационные процессы:

  1. Электродвигатель крутит дисковый активатор. По мнению специалистов, дисковый активатор является самым главным элементом в установке, и он посредством прямого вала присоединяется к электродвигателю. При включении устройства в рабочий режим двигатель передает крутящий момент на активатор.
  2. Активатор раскручивает жидкую среду. Конструкция активатора была разработана таким образом, чтобы, попадая на полость диска жидкая среда приобретала кинетическую энергию.
  3. Процесс преобразования механической энергии в тепловую. Выходя из активатора жидкая, среда будет терять ускорение и в результате резкого торможения возникает эффект кавитации. В результате подобных манипуляций кинетическая энергия нагревает жидкую среду до +95 градусов, и механическая энергия становится тепловой.

Сфера использования

На сегодняшний день использовать подобные установки можно в следующих сферах:

  • Отопление. Оборудование позволяет преобразовать механическое движение воды в тепло. Поэтому технологию активно можно использовать для обогрева различных зданий и сооружений. На территории России сравнительно недавно появилось около 10 населенных пунктов, где вместо традиционного способа обогрева используют гравитационные генераторы.
  • Нагрев воды для бытового использования. Теплогенератор при включении в сеть достаточно быстро нагревает воду. Поэтому оборудование можно использовать для разогрева воды в автономном водопроводе, бассейнах, банях или прачечных.
  • Смешивание несмешиваемых жидкостей. В лабораторных условиях по мнению специалистов подобные установки можно использовать для смешивания жидкостей с разной плотностью.

Интеграция в отопительную систему

Перед тем, как использовать теплогенератор в отопительной системе его сначала необходимо внедрить. Ознакомиться с процессом более детально вы сможете на фото ниже:

Схема внедрения вихревого теплогенератора в отопительную систему загородного дома

Перед генератором, который обозначен цифрой (2) устанавливается центробежный насос (1). Он отвечает за подачу воды под давлением в 6 атмосфер. После генератора устанавливается расширительный бак (6) и запорная арматура.

Преимущества использования кавитационных генераторов

  1. Экономичность. Благодаря достаточно эффективному расходу электричества и высокому КПД, теплогенератор будет намного выгоднее, чем другие виды отопительного оборудования.
  2. Небольшие габариты. Стационарный генератор отлично подойдет для небольшого дома. Если установить его в обычную котельную тогда останется много свободного места.
  3. Небольшой вес. Благодаря этому, даже крупные установки можно расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем не существует. При монтаже прибора в отопительную систему будет присутствовать повышенный уровень шума. Поэтому осуществлять установку можно только в нежилом помещении.
  4. Простота конструкции. Теплогенератор является простым устройством. Из-за небольшого количества деталей он редко выходит из строя.
  5. При необходимости теплогенератор можно интегрировать уже в готовую систему.
  6. Нет необходимости в водоподготовке. Для нормальной работы газового котла нужен фильтр проточной, то после установки кавитационного нагревателя можно не бояться засоров.
  7. Экологичность. Кавитационные установки никак не влияют на экосистему, так как единственным энергопотребляющим компонентом является электродвигатель.
  8. Работа оборудования не требует постоянного контроля. Кавитационный обогреватель работает в автономном режиме. Инструкция использования является простой и вам достаточно будет просто включить двигатель в сеть.

Выводы

Чтобы сделать прибор своими руками нужно изучить соответствующие чертежи и схемы. Приступить к изучению действующих устройств можно в интернете на специализирующих форумах.

Теперь вы знаете, что представляет собою инновационный источник альтернативной энергии. Подходит вам такое оборудование или нет решаете только вы. Надеемся, что эта информация была полезной и интересной.

Читайте также: vse-elektrichestvo.ru/novosti/led-lampy-filament-wolta-nazad-v-budushhee.html.

vse-elektrichestvo.ru

Принцип действия вихревых теплогенераторов

К.х.н. О. В. Мосин

Водородная энергетика и двигатели внутреннего сгорания на основе воды и водорода.

 Часть 4

 

-Согласно теории движения, при раскручивании потока воды в вихревом теплогенераторе должно выделяться в виде излучений или тепла 2 Дж внутренней энергии воды на каждый Джоуль энергии, затрачиваемой насосом на раскручивание воды. Следовательно, предельная эффективность теплогенератора при этом не превышает 300%.

 

-Использование тепловой энергии, запасенной в исходной воде, без изменения ее теплоемкости и структуры не может приводить к нагреву этой воды до температуры, большей исходной. Следовательно, в вихревом теплогенераторе используется не тепло, запасенное в исходной воде, а происходит превращение в тепло другой внутренней энергии воды, например энергии межмолекулярных связей, межатомных и внутриатомных связей и даже внутриядерных связей.

 

-Вода благодаря водородным связям является самым удивительным веществом в природе, обладающим рядом аномальных свойств. При таянии льда водородные связи между молекулами воды разрываются не все, и в жидкости остаются льдоподобные молекулярные ассоциаты - в основном тетрамеры, образующие при их объединении тетраэдрические правои левовинтовые структуры - цепочки.

 

-Вихревое движение воды и торсионные поля выстраивают обрывки цепочек тетрамеров воды параллельно друг другу, что облегчает сцепление их концами и "полимеризацию" воды без ее охлаждения. "Полимеризация" сопровождается выделением энергии связи между тетрамерами в виде излучений и тепла.

 

-Объединения в ассоциаты и комплексы всего 10 % молекул воды достаточно, чтобы выделяющаяся энергия их связи нагрела воду до кипения. Этот процесс можно использовать в тепловых насосах. Там же, где нет внешнего источника тепла, такое повышение температуры воды будет лишь иллюзией тепловыделения, т.к. образующиеся комплексы метастабильны и быстро распадаются уже с поглощением тепла, затрачиваемого теперь на разрыв межмолекулярных связей.

 

-Если бы выделение внутренней энергии воды в условиях теплогенератора происходило только за счет возникновения временных межмолекулярных связей в воде, то после выхода воды из теплогенератора она должна бы быстро остывать без теплообмена с окружающей средой из-за расходования тепла на разрыв этих связей. Следовательно, "лишнее" тепло вихревом теплогенераторе появляется не за счет образования межмолекулярных связей, а по другой причине, например за счет реакций ядерного синтеза.

 

-Если в вихревом теплогенераторе идут реакции ядерного синтеза, то тепловыделение из него может быть большим, чем то энерговыделение, которое необходимо по теории движения при ускорении вращения воды. При этом эффективность теплогенератора может превышать 300%.

 

 

-В неравновесных условиях распыления воды форсунками и воздействия на нее ударных волн в камере сгорания двигателя, работающего на смеси воды с обычным топливом, молекулы воды могут на короткое время объединяться в кластеры капиллярно-конденсированной воды с выделением энергии связи в виде тепла, затрачиваемого на осуществление рабочего хода поршня двигателя. После этого кластеры, распадаясь в выхлопной трубе двигателя, забирают из выхлопных газов тепло, что повышает эффективность использования тепла, получаемого от сгорания обычного топлива в двигателе. При этом разнообразные добавки к воде, подбираемые обычно методом проб и составляющие "ноу-хау" технических решений такого рода, играют роль не катализаторов диссоциации воды, а вещества, объединяющего молекулы воды в кластеры.

 

Идея о "полимеризации" динамических ассоциатов воды в полях вращения смыкается с представлениями академика Б. В. Дерягина о свойствах капиллярно-конденсированной воды, состоящей из кластерных комплексов, связанных атомами щелочных металлов или кремния, способствующих образованию винтообразных структур.

 

В кварцевых капиллярах вода как бы полимеризуется в кластерные комплексы, выделяя при этом значительное тепло и приобретая высокую термостойкость. Академик Дерягин подчеркивал, что так вода должна вести себя не только в капиллярах, но и в неравновесных условиях мощных силовых полей. А ведь при распылении воды в аэрозольные капельки форсункой или карбюратором двигателя вода тоже может на какую-то долю секунды приобретать почти такую же структуру, как в капиллярах. Дело не в том, что жиклер карбюратора - это тоже тончайшая трубочка, почти капилляр. Проталкивая воду через жиклер или отверстие форсунки, мы делаем только подготовительную работу, чтобы разорвать воду на мелкие капельки струей воздуха в карбюраторе как в пульверизаторе. Потом основную работу делают силы поверхностного натяжения полученных микроскопических капелек, вылетающих из карбюратора в камеру сгорания двигателя. Они сжимают воду в микроскопических каплях не слабее, чем в капилляре. Так, при диаметре капелек воды 1 мкм (туман) давление, создаваемое в них силами поверхностного натяжения при комнатной температуре, составляет 0,3 атм. А в аэрозолях оно составляет уже 3-300 атм. (Здесь - коэффициент поверхностного натяжения воды при 25°С.)

 

Но с повышением температуры воды коэффициент ее поверхностного натяжения, как известно, быстро уменьшается. Казалось бы, что это должно мешать нашей затее уплотнения воды в капельках. Однако для процесса диспергирования воды форсункой или жиклером это как раз полезно, ибо уменьшает работу, затрачиваемую насосом на диспергирование. Чем выше температура воды, тем легче получить более мелкие ее капли, ибо в нагретой воде тепловым движением ее молекул уже частично разорваны старые межмолекулярные связи.

 

Когда впрыскивание воды осуществляют в струю холодного воздуха, то только охладившись в ней, капли сдавливаются силами поверхностного натяжения до указанных выше давлений. Вот теперь, если их еще и тряхнуть посильнее ударной волной детонации от возгорания бензина, впрыскиваемого одновременно с водой, то вода микрокапелек может на какое-то время превратиться в капиллярную воду. Для объединения кластеров воды в кластерные комплексы под действием сил поверхностного натяжения в неравновесных условиях ударной волны, недостает только атомов кремния или их заменителей в воде. Те таинственные порошки, которые вводили в воду все изобретатели водяных заменителей бензина, и служат этой цели. При их наличии молекулы воды уже охотно и быстро объединяются в кластерные комплексы.

 

Всего 10-ти процентам молекул воды в капельках достаточно объединиться в кластерные комплексы, чтобы выделилось тепло, достаточное для нагрева всей воды капелек до кипения. А если объединятся 50 процентов молекул, то тепловой эффект такой, как от вспышки порции бензина. И все это тепло содержится в скрытом виде в изначальной воде, дефицита которой у нас пока нет. Это тепло быстро отдается газам и парам в камере сгорания, так как теплопроводность квазикапиллярной воды близка к теплопроводности металлов.

 

С водой, кстати, после этого ничего плохого не случается, если, конечно, вещество порошка подобрано не вредным для людей и окружающей среды. Ибо через долю жунды квазикапиллярная аэрозольная вода теряет свои особые свойства и становится обыкновенной. При этой релаксации она буквально "пожирает" тепло из окружающей среды - выхлопных газов двигателя - почти столь же интенсивно, как до того выделяла тепло. Но к этому времени уже произошел выхлоп из камеры сгорания, мы уже получили от воды то тепло, которое хотели взять, а выхлопные газы и требуется охлаждать, прежде чем выбрасывать в воздух. Таким образом, и здесь вода работает фактически как рабочее тело теплового насоса. В камере сгорания двигателя она отдает запасенное в ней скрытое тепло, взятое когда-то из окружающей среды, а в выхлопной трубе забирает тепло от выхлопных газов - продуктов сгорания бензина или дизельного топлива. Но в отличие от теплового насоса здесь вода используется всего один раз. Будучи выброшенной из выхлопной тубы в виде капель и паров, она безвозвратно теряется. Но какое все же удачное получается сочетание свойства воды, на мгновение превращающейся в квазикапиллярную и в результате этого самопроизвольно разогревающейся изнутри, со схемой работы двигателя внутреннего сгорания, которому тепло и нужно на мгновение, пока его поршень движется от верхнего положения к нижнему при рабочем ходе.

 

В описанном процессе двигатель внутреннего сгорания как бы берет взаймы у воды ее тепло на время рабочего хода, чтобы через мгновение вернуть это тепло ей из своих выхлопных газов. Вода с ее уникальными свойствами в этом процессе служит тем промежуточным телом, которое помогает полнее использовать тепло от сгорания органического топлива. В результате тепловой КПД двигателя, обычно составляющий не более 30%, повышается.

 

Рис.  Схема вихревого теплогенератора

 

Вихревой теплогенератор работает так. Вихревую трубу теплогенератора присоединяют инжекторным патрубком 1 к фланцу центробежного насоса (на рисунке не показан), подающему воду под давлением 4 – 6 атм. Попадая в улитку 2, поток воды сам закручивается в вихревом движении и поступает в вихревую трубу 3, длина которой в 10 раз больше ее диаметра. Закрученный вихревой поток в трубе 3 перемещается по винтовой спирали у стенок трубы к ее противоположному (горячему) концу, заканчивающемуся донышком 4 с отверстием в его центре для выхода горячего потока. Перед донышком 4 закреплено тормозное устройство 5 – спрямитель потока, выполненный в виде нескольких плоских пластин, радиально приваренных к центральной втулке, сосной с трубой 3. Когда вихревой поток в трубе 3 движется к этому спрямителю 5, в осевой зоне трубы 3 образуется противоток. В нем вода тоже вращаясь движется к штуцеру 6, врезанному в плоскую стенку улитки 2 соосно с трубой 3 и предназначенному для выпуска «холодного» потока. В штуцере 6 установлен еще один спрямитель потока 7, аналогичный тормозному устройству 5. Он служит для частичного превращения энергии вращения «холодного» потока в тепло. Выходящая теплая вода направляется по байпасу 8 в патрубок 9 горячего выхода, где она смешивается с горячим потоком, выходящим из вихревой трубы через выпрямитель 5. Из патрубка 9 нагретая вода поступает либо непосредственно к потребителю, либо в теплообменник, передающий тепло в контур потребителя. В последнем случае отработанная вода первичного контура (уже с меньшей температурой) возвращается в насос, который вновь подает ее в вихревую трубу через патрубок 1.

В заключение необходимо подчеркнуть, что попытки использования воды вместо бензина или дизельного топлива в обыкновенных двигателях, долго приспосабливавшихся к работе на органических топливах, - далеко не лучший путь. Так, например, попадание воды из рабочих цилиндров в картер может привести к порче картерного масла, да и многие детали системы подачи топлива и выхлопного тракта автомобиля могут окислиться от воды. Необходимо разрабатывать особые двигатели, изначально предназначенные для работы на воде. Первые опытные образцы таких двигателей сконструированы в лаборатории фирмы "ЮСМАР" в Кишиневе. В этом двигателе, вместо поршня с шатуном и кривошипным валом используется вода, выдавливаемая расширяющимися продуктами сгорания из рабочей камеры в турбину. Это упрощает схему силового механизма и избавляет от необходимости изготавливать такие сложные детали, как коленчатый вал, шатуны и поршни. Конечно, эти двигатели пока примитивны и имеют множество недоработок, но они работают. Несомненно, с истощением нефтяных ресурсов, у таких двигателей большое будущее.

 

К.х.н. О.В. Мосин

Литературные источники и материалы к статье: www.ntpo.com/techno/techno1_7/12.shtml

www.o8ode.ru

ENERGOINFORM.ORG - Опыт профессионалов - Вихревые теплогенераторы

Энергоинформ / Опыт профессионалов / Теплогенераторы: Вихревые теплогенераторы

Вихревые теплогенераторы

В данной статье рассмотрена история создания вихревых теплогенераторов, принципы их работы, а также приведены основные технические характеристики моделей вихревых теплогенераторов, производимых российскими фирмами на данный момент.

История создания вихревых теплогенераторов уходит корнями в первую треть двадцатого века, когда французский инженер Жозеф Ранк столкнулся с неожиданным эффектом, исследуя свойства искусственно создаваемого вихря в разработанном им устройстве — вихревой трубе. Сущность наблюдаемого эффекта заключалась в том, что на выходе вихревой трубы наблюдалось разделение сжатого воздушного потока на теплую и холодную струю.

Исследования в данной области были продолжены немецким изобретателем Робертом Хилшем, который в сороковых годах прошлого столетия улучшил конструкцию вихревой трубы Ранка, добившись увеличения разности температур двух воздушных потоков на выходе из трубы. Однако как Ранку, так и Хилшу не удалось теоретически обосновать наблюдаемый эффект, что отсрочило его практическое применение на многие десятилетия. Следует отметить, что более-менее удовлетворительное теоретическое объяснение эффекта Ранка — Хилша с точки зрения классической аэродинамики не найдено до сих пор.

Одним из первых ученых, которому пришла в голову идея запустить в трубу Ранка жидкость, является российский ученый Александр Меркулов, профессор Куйбышевского (ныне Самарского) государственного авиакосмического университета, которому принадлежит заслуга в развитии основ новой теории. Созданная Меркуловым в конце 50-х годов Отраслевая научно-исследовательская лаборатория тепловых двигателей и холодильных машин провела огромный объем теоретических и экспериментальных исследований вихревого эффекта. Идея использовать в качестве рабочего тела в вихревой трубе не сжатый воздух, а воду, была революционной, поскольку вода, в отличие от газа, несжимаема. Следовательно, эффекта разделения потоков на холодный и горячий ожидать не стоило. Однако результаты превзошли все ожидания: вода при прохождении по "улитке" быстро нагревалась (с эффективностью, превышавшей 100%). Ученый затруднялся объяснить подобную эффективность процесса. По мнению некоторых исследователей, аномальное повышение температуры жидкости вызвано микрокавитационными процессами, а именно "схлопыванием" микрополостей (пузырьков), заполненных газом или паром, которые образуются в ходе вращения воды в циклоне. Невозможность объяснить столь высокий КПД наблюдаемого процесса с точки зрения традиционной физики привела к тому, что вихревая теплоэнергетика прочно обосновалась в списке "псевдонаучных" направлений.

Между тем, данный принцип был взят на вооружение предпринимателями, что привело к разработке работающих моделей тепло-и электрогенераторов, реализующих описанный выше принцип. В данный момент времени на территории России, некоторых республик бывшего Советского Союза и ряда зарубежных стран успешно функционируют сотни вихревых теплогенераторов различной мощности, произведенных рядом отечественных научно-производственных предприятий. Некоторые из них будут рассмотрены в данной статье.

Вихревые теплогенераторы "ЮСМАР"

ООО "ЮСМАР", г. Кишинев, ул. Фередеулуй, 4, Молдова, MD-2005 тел: 8 10 373 22 545043 факс: 8 10 373 22 540272 e-mail: [email protected]

Заслуга в создании теплогенераторов "Юсмар" принадлежит Ю.С. Потапову. В 1992 им была создана научно-техническая фирма "Юсмар", которая занимается производством теплогенераторов, предназначеных для отопления и горячего водоснабжения жилых, производственных и складских помещений в местах, удаленных от тепло-и газопроводов. Эффективность теплогенераторов "Юсмар", превышающая 100%, была доказана рядом практических исследований. Получены патенты Молдавии N167 от 18.03.1993, патент России N2045715 от 26.04.1993, патент Франции N 9310527 от 9.09.1993.

Модельный ряд установок "Юсмар" включает в себя четыре модели (ЮСМАР 1,2,3 и 4), которые различаются по вырабатываемой мощности и производительности. Теплогенераторы "Юсмар" имеют мощность 2,8,4,0, 11, 45 и 65 кВ, выпускаются с 1993 года. Их теплопроизводительность — от 6900 до 66200 ккал/час. Частота вращения электродвигателя составляет 2900 об/мин для всех моделей при одинаковой температуре теплоносителя (воды), равной 90 °С. Масса установок составляет от 150 до 400 кг. Теплогенераторы "Юсмар" позволяют обогревать помещения объемом до 2500 м3. Все установки работают в автоматическом режиме. В Москве с Ю.С. Потаповым можно связаться через компанию "РУФИКО", тел: (095) 268 25 24

Вихревые проточные термогенераторы "НТК"

ООО "Нотека-С", ул. Жуковского, 1, г. Жуковский, Московская область, Россия, 140160 Тел: (095) 556-32-30 Факс: (095) 556-95-04 e-mail: [email protected] www.noteka.narod.ru

Термогенераторы "НКТ" производятся фирмой "Нотека-С", которая была создана в 1998 году как внедренческая, использующая новейшие российские разработки в области нетрадиционной вихревой энергетики. За четыре года ООО "Нотека-С", начав с дилерских отношений с молдавской фирмой "ЮСМАР", стала компанией, владеющей собственным производством и испытательной базой для отработки новых видов продукции. Научно-внедренческая фирма "НОТЕКА" занимается разработкой и внедрением экологически чистых энергетических систем на основе применения принципов нетрадиционной вихревой энергетики. Основной продукцией фирмы являются локальные тепловые узлы на основе вихревых гидравлических теплогенераторов "НТК" (Рис.1)

Теплогенератор "НТК" предназначен для преобразования энергии движущейся в нем жидкости в тепловую, используемую для обогрева в заданных диапазонах температур жилых, производственных и складских помещений, а также теплиц и других зданий и сооружений сельскохозяйственного назначения. Рабочей жидкостью, используемой в системе для центральных и южных климатических поясов является вода, тогда как в холодных районах страны может использоваться антифриз.

Модельный ряд термогенераторов "НТК" включает в себя пять модификаций: НТК 11, НТК 22, НТК 37, НТК 55 и НТК 75. Индекс в названии указывает Рис. 1 на установленную мощность установки (в кВт). В ходе работы установки потребляют 10,21,37,55 и 75 кВт энергии соответственно. Все модели имеют одинаковую частоту вращения электродвигателя — 2900 об/мин и позволяют обогревать помещения объемом до 3500 м3. Теплопроизводительность установки НТК 11 составляет 8600 ккал/час, тогда как теплопроизводительность термогенератора НТК 75 составляет 65000 ккал/час. Термогенераторы НТК работают, используя большую, чем в теплогенераторах "Юсмар", температуру теплоносителя — до 115 ° С. Масса установок составляет от 160 до 700 кг. Все термогенераторы НТК работают в автоматическом режиме.

Вихревые теплогенераторы "ВТГ-5"

Рис.1 Вихревые теплогенераторы "ВТГ-5"

НПП "Альтернативные Технологии Энергетики и Коммуникации", г.Москва тел: (095)9770549 факс: (095) 9155545, 4960136 e-mail: [email protected]

Вихревые теплогенераторы "ВТГ-5" производятся НПП "АТЭК" и имеют двенадцать модификаций — ВТГ-5/1...12. Коэффициент преобразования потребляемой генератором энергии в тепловую -1,9...2,4. Также НПП "АТЭК" выполняет именные заказы на разработку и изготовление бестопливных автономных квантовых вихревых теплоэлектростанций мощностью от 50 до 8000 кВт.

Вихревые теплогенераторы "МУСТ"

Научно-производственное предприятие "Ангстрем", 170017, Тверь, пос. Б Перемерки, а/я 157 тел: (0822) 331844 http://www.ptechnology.ru/MainPart/Energy/EnergT.html

Рис. 2 Рис. 3
Вихревые теплогенераторы "МУСТ"

Вихревые теплогенераторы "МУСТ" (Рис.2) производятся НПП "Ангстрем", г.Тверь. Директором НПП "Ангстрем" и разработчиком теплогенерато-ра "МУСТ" является кандидат физико-математических наук Р.И. Мустафаев. Принцип действия данного типа вихревого теплогенератора основан на изобретении Мустафаева (патент РФ № 2132517), которое позволяет получать тепловую энергию непосредственно из воды, воздействуя на неё механическим способом. В данном случае механическое воздействие — это приведение воды в вихревое движение. Принципиальное отличие генератора "МУСТ" от других теплогенераторов, преобразующих электрическую энергию в тепловую, состоит в том, что энергия подаётся только на насос, прокачивающий воду. Коэффициент преобразования электроэнергии равен 1,2, но может достигать и 1,5. Всего в России работает около ста вихревых теплогенераторов "МУСТ". Выпускаемые модели теплогенераторов "МУСТ" позволяют обогревать помещения объемом до 11,000 м3. Масса установки составляет от 70 до 450 кг. Тепловая мощность установки МУСТ 5,5 составляет 7112 ккал/час, тогда как тепловая мощность установки МУСТ 37 — 47840 ккал/час. Теплоносителем, используемым в вихревом теплоге-нераторе МУСТ может выступать вода, тосол, полигликоль, либо любая другая незамерзающая жидкость.

Вихревые термогенераторы "ТМГ"

ОАО "Завод КОММАШ", ул. Ставского, 4, г. Пенза, Россия, 440600 Коммерческая служба (8412) 63-47-08 Тел./факс (8412) 63-49-39, 63-35-44 http://www.kommash.itbc.ru/termovihr.htm ООО "Термовихрь" ул. Ставского, 4, г. Пенза, Россия, 440600, Тел.:(8412) 63-38-28 Факс:(8412)63-39-16 E-mail: [email protected]

Вихревой термогенератор "ТМГ" производится на Пензенском Заводе Коммунального Машиностроения (КОММАШ). Модельный ряд включает в себя вихревые термогенераторы, установленная мощность которых составляет от 1 до 45 кВт.

Рис.4 Термогенератор ТМГ накопительного типа       Рис.5 Термогенератор ТМГ (промышленный) Объем обогреваемых помещений составляет до 1650 м3.

Теплопроизводительность термогенераторов ТМГ составляет от 2000 до 34800 ккал/час. Все термогенераторы функционируют в автономном режиме. Частота вращения электродвигателя составляет 2900 об/мин и является универсальной для всех моделей. На основе вихревых термогенераторов ТМГ производится монтаж автономных отопительных систем для отопления жилых домов, торговых объектов, школ, больниц и других жилых, общественных и производственных помещений. Наибольшую актуальность использование подобных термосистем приобретает в условиях, где отсутствует централизованное теплоснабжение, а подвод магистрали природного газа требует капиталовложений или невозможен.

Вихревые генераторы тепла "ГТ"

e-mail: [email protected], [email protected]

Вихревые генераторы тепла "ГТ" имеют следующие модификации: ГТ 1,2,3,4 и 5. Минимальная мощность электродвигателей насосной установки составляет 0,6 кВт (ГТ 1), максимальная — 180 кВт (ГТ 5). Минимальная масса генератора тепла (без рабочей жидкости) составляет 12 кг, максимальная — 367 кг. Диапазон рабочих температур составляет от 40 до 95°С. Минимальный расход рабочего тела при циркуляции составляет 3 м3/час, максимальный — 350 м3/час. Номинальная тепловая мощность генератора ГТ 1 составляет 4,85 кВт; генератора ГТ 5 — 107,5 кВт.

Вихревые тепловые генераторы "ТГВ"

Рис. 6

ООО "Центр-Лес", г. Москва, ул. Складочная, д.1, стр.9 тел: (095) 517 90 80, 771 34 63

Вихревой тепловой генератор (ТГВ) предназначен для отопления и горячего водоснабжения жилых домов, общественных зданий, производственных помещений и сельскохозяйственных комплексов. Энергетическая эффективность генераторов ТГВ (Рис.6) составляет от 1.16 до 1.2 в зависимости от режима работы насоса. Модельный ряд вихревых теплогенераторов ТГВ представлен шестью моделями: ТГВ 3, ТГВ 5, ТГВ 7, ТГВ 11, ТГВ 11, ТГВ 22, ТГВ 37.

Использование данных теплогенераторов позволяет обогревать помещение объемом от 150 до 1850 м3. Мощность используемого в модели ТГВ 3 двигателя составляет от 3 до 4,5 кВт, тогда как наиболее мощная модель ТГВ 37 оснащена двигателем мощностью 37 кВт. Диапазон температур рабочей жидкости составляет от 65 до 90° С. Максимальный Рис. 6 объем потребляемой энергии (генератором ТГВ 37) — 22 кВт/ч. При этом его теплопроизводительность равна 31800 ккал/ч. Все типы вихревого теплогенератора ТГВ функционируют в автоматическом режиме.

Вихревой теплогенератор "ВИТА-15"

ООО УК "ОРБИ", бульвар Мира, д. 12, г. Н. Новгород, Россия, 603086

В Нижнем Новгороде компанией "ОРБИ" было налажено производство вихревых теплогенераторов "ВИТА-15". По словам Бориса Поташника, генерального директора управляющей компании "ОРБИ", в ходе испытаний данного теплогенератора с 1 кВт затраченной электроэнергии было получено 1,35 кВт тепла (газета Биржа плюс свой дом, №42 от 11.03.2003).

Кавитационный генератор Николая Петракова

В одном из номеров "Российской газеты" была опубликована информация об изобретении алтайского механика Николая Петракова. Он создал сверхэкономичную установку для обогрева помещений, расходующую в полтора раза меньше энергии, чем лучшие отечественные системы. В основе его изобретения также лежит эффект кавитации, при котором происходит быстрый нагрев воды почти до температуры кипения за счет "схлопывания" большого количества пузырьков, образующихся вследствие вращения электродвигателем крыльчатки насоса. "Ноу-хау" изобретения Петракова, давшее существенный прирост КПД, заключается в оригинальной конструкции впускных и выпускных клапанов.

Теплогенератор "VIP"

INTERENERGORESURS Ltd, ул. Фучикова, 16, 979 01, Римавска Собота, Словакия Тел.: 00421 47 563 14 32 Тел./факс: 00421 47 563 11 44 e-mail: [email protected]

Теплогенераторы "VIP" (Рис.7) производятся в Словакии фирмой INTERENERGORESURS Ltd. Их установленная потребляемая мощность (кВт) модифицируется по техническому заданию заказчика. Генераторы изготавливаются по соответствующим параметрам насоса с мотором; безтопливные тепловые установки VIP могут иметь установленную потребляемую мощность от 3 кВт до 150 кВт. Частота вращения вала двигателя -2950 об/мин. Потребляемый ток — 380 В, 50 герц. Максимально допустимая температура теплоносителя в тепловом генераторе составляет не более 95°С. Тепловая эффективность установки 20 кВт. Режим работы — автоматический.

Как утверждает директор фирмы, господин Павловский, проверки теплогенераторов "VIP" осуществлялись в г. Донецк, ОАО Проектно-конструкторский и технологический институт "Газоаппарат". Испытательный центр "Газоаппарат", 1996 год. Была достигнута максимальная эффективность 155 % (Протокол П-ОВА-19/96 Испытаний теплоустановки безтопливной ТБ-2-6,9 ТУ У 240070270.001-96). Зарегистрировано в Государственном Комитете Украины по стандартизации и метрологии 13.06.1996 г. №086/003488. Испытания также проводились в г. Киев, НПО "Холод". Испытательный стенд, 1997 год, эффективность 180 %, и в г. Превидза, Словакия — VANSOFT

s.r.o. Установка VIP, с погруженным насосом и тепловым генератором. Испытательный стенд. 1998 год, эффективность 126 %.

Как заявляет Павловский, теплогенераторы "VIP" успешно работают в г. Киев, НПО "Холод", на стенде которого проходили испытания установки, Донецк, Краматорск, Перевальск (Банк "Украина"), Полтава, Селидово, Луганск, Феодосия (Картинная галерея Айвазовского), Черкассы, Днепропетровск.

Примечание редакции (журнала "Новая энергия"): Растущая конкуренция в сфере новых технологий, в частности, в области разработки и производства вихревых теплогенераторов зачастую приводит к возникновению конфликтных ситуаций. Так, автором-разработчиком теплогенераторов "VIP", производимых в Словакии фирмой "Интерэнергоресурс", является Г. Г. Иваненко (технический директор компании). Известно, что ранее он долгое время работал с Ю.С. Потаповым. Однако никакого упоминания о Ю.С. Потапове и его разработках на интернет-сайте компании нами обнаружено не было.

Мы связались с Ю.С.Потаповым. По его мнению, эффективность всех теплогенераторов Иваненко "VIP" не превышает 95%.

Нами был послан запрос генеральному директору компании "Interenergoresours", Михаилу Павловскому, и вскоре от него был получен ответ в форме емайл, начинающегося злой критической цитатой Круглякова из "комиссии РАН по борьбе со лженаукой", и нам стало ясно с кем связан господин Павловский. Он утверждает, что Ю.С. Потапов не только не имеет ни одного реального протокола испытаний вихревых теплогенераторов с эффективностью более 100%, но и вообще Потапов никогда не имел такого изобретения, как "вихревой теплогенератор". Павловский ссылается на книгу Базиева, автора теории "электрино", в которой Базиев пишет, что проведенный им расчет тепловых установок "Юсмар" показал эффективность всего 13%. По мнению теоретика Базиева, теплогенераторы "Юсмар" хуже обычных электронагревателей.

Павловский утверждает, что испытания двух теплогенераторов "Юсмар", проведенных в Кишиневе с участием эксперта из кишиневского института на средства заинтересованного инвестора, закончились неудачей — первый теплогенератор сгорел еще до начала испытаний, тогда как второй показал эффективность всего 36% и также сгорел. Павловский ссылается на информацию о том, что разработки Ю.С. Потапова, а также эксплуатация самих установок "Юсмар" якобы запрещена постановлением правительства Республики Молдова. Однако, номер и дату этого постановления Павловский не дает.

Возможно, что проблемы Павловского в том. что он не договорился с Потаповым о покупке "ноу-хау", и пытается производить теплогенераторы, не понимая принципов их работы.

Таким образом, можно сделать вывод, что инвесторам нужна серьезная юридическая экспертиза, которая позволит выявить истинного патентообладателя изобретения "вихревой теплогенера-тор", решить проблему авторства и лицензирования. Хотя, с другой стороны, принцип вихревой трубы Ранка, реализованной в конкретном устройстве, имеющем новизну (отличия от других изобретений), может быть основанием для получения патента любым разработчиком.

Рис. 8 Рис. 9
Установка VIP-1-7,5 (без Рис.9 Схема подключения теплогенератора VIP теплоизолирующего корпуса) для воздушно-вентиляционного отопления. Эффективность преобразования электрической энергии в тепловую — до 300%

Итак, остается пожелать изобретателям удачи и сказать "сделай сам"!

Новая Энергетика N 2(17), 2004 Обзор по материалам Интернет подготовил Н. Овчаренко

www.energoinform.org

Вихревой теплогенератор. Правда и вымысел

вихревой теплогенератор

Вихревой теплогенератор состоит из двигателя и кавитатора. В кавитатор подается вода (или другая жидкость). Двигатель раскручивает механизм кавитатора, в котором происходит процесс кавитации (схлопывания пузырьков). За счет этого, происходит нагрев жидкости, подаваемой в кавитатор. Подводимая электроэнергия расходуется на следующие цели: 1- нагрев воды, 2 - преодоление силы трения в двигателе и кавитаторе, 3- излучение звуковых колебаний (шум). Разработчики и производители утверждают, что принцип действия основан "на использовании возобновляемой энергии". При этом, не понятно, откуда эта энергия берется. Тем не менее, не происходит никакого дополнительного излучения. Соответственно, можно предположить, что вся энергия, подводимая к теплогенератору, тратится на нагрев воды. Таким образом, можно говорить о КПД, близком к 100%. Но не более...Но перейдем от теории к практике.

На заре развития «вихревых теплогенераторов» предпринимались попытки проведения независимой экспертизы. Так, известная модель ЮСМАР изобретателя Ю.С.Потапова из Молдовы тестировалась американской компанией Earth Tech International (г.Остин, штат Техас), специализирующейся на экспериментальной верификации новых направлений в современной физике. В 1995 г. были проведены пять серий экспериментов по измерению соотношения между генерируемой тепловой и потребляемой электрической энергией. Заметим, что все многочисленные модификации испытуемого устройства, предназначенные для разных серий экспериментов, лично согласовывались с Ю.С.Потаповым в ходе визита одного из сотрудников компании в Молдову. Подробнейшее описание конструкции испытуемого теплогенератора с вихревой трубой, режимные параметры, методики проведения измерений и результаты приводятся на сайте компании www.earthtech.org/experiments/.

Для привода водяного насоса использовался электродвигатель с КПД=85%, тепловые потери которого на нагрев окружающего воздуха не принимались при расчете теплопроизводительности «вихревого теплогенератора». Отметим, что не измерялись и тепловые потери на нагрев окружающего воздуха, что, безусловно, несколько снижало получаемый КПД теплогенератора.

Результаты исследований, проведенных при варьировании основных режимных параметров (давление, расход теплоносителя, начальная температура воды и др.) в широком диапазоне продемонстрировали, что эффективность теплогенератора изменяется в диапазоне от 33 до 81%, что сильно не «дотягивает» до 300%, заявленных изобретателем перед проведением экспериментов.

Хотя по "тепловому вихрегенератору" ;) расскажу...Были некоторые примеры значительной экономии денежных средств на отопление в переходные периоды нашей экономики, когда деньги предприятий начинали считать. Сразу скажу, что с связано это с гримасами экономики, а совсем не с теплотехникой.

Скажем, некоторое предприятие желает отапливать свои помещения. Ну холодно им видите ли.По некоторым причинам, ясно каким, не может вложиться в Газовую трубу, строить свою котельную на угле, мазуте - не хватает масштабов, а центральное отопление отсутствует или далеко.Остается электричество, но при получении разрешения на использование электроэнергии в термальных целях устанавливали предприятию тариф, превышающий в несколько раз обычный.Такие были раньше правила, и не только в России, но в Украине, Молдове и др. государствах, которые отпочковались от нас.Вот тут приходил на помощь г-н Потапов и подобные.Покупали чудо-устройство, тариф на электроэнергию для электродвигателей оставался обычный, тепловой КПД естественно никак больше сотни быть не мог, а вот в денежном отношении КПД был и 200 и 300, смотря во сколько раз сэкономили на тарифе.Применяя ТН можно было достичь еще большей экономии, но для тех времен и вихретеплогенератора с эффективностью якобы 1,2-1,5 вполне было достаточно.Ведь еще больший заявляемый КПД мог только повредить и отпугнуть покупателей, ведь квоты на электроснабжение выделялись по потребляемой мощности, а давал генератор тепла столько-же, если не меньше, в связи с потерями по cos Ф.По теплопотерям помещений в 30-40% погрешности еще как-то можно было уложиться, списать на колебания погоды.Сейчас это ушло в прошлое, но тема вихрегенераторов по инерции продолжает всплывать, и ведь находятся дураки, которые покупают, клюнув на информацию с фотками и адресами, что ряд уважаемых предприятий в свое время использовали их у себя и экономили большую кучу денег.Только всей подоплеки им никто не рассказывает.

vmestogaza.ru

Вихревые теплогенераторы(ВТГ): Ю. С. Потапова и Установка ЮСМАР-М

Теплогенератор Ю. С. Потапова очень похож на вихревую трубу Ж. Ранке, изобретенную этим французским инженером ещё в конце 20-х годов XX века. Работая над совершенствованием циклонов для очистки газов от пыли, тот заметил, что струя газа, выходящая из центра циклона, имеет более низкую температуру, чем исходный газ, подаваемый в циклон. Уже в конце 1931 г. Ранке подаёт заявку на изобретенное устройство, названное им «вихревой трубой». Но получить патент ему удаётся только в 1934 г., и то не на родине, а в Америке (Патент США №1952281.)

Содержание материала

История создания

Французские же учёные тогда с недоверием отнеслись к этому изобретению и высмеяли доклад Ж. Ранке, сделанный в 1933 г. на заседании Французского физического общества. Ибо по мнению этих учёных, работа вихревой трубы, в которой происходило разделение подаваемого в неё воздуха на горячий и холодный потоки как фантастическим «демоном Максвелла», противоречила законам термодинамики. Тем не менее вихревая труба работала и позже нашла широкое применение во многих областях техники, в основном для получения холода.

Для нас наиболее интересны работы ленинградца В. Е. Финько, который обратил внимание на ряд парадоксов вихревой трубы, разрабатывая вихревой охладитель газов для получения сверхнизких температур. Он объяснил процесс нагрева газа в пристеночной области вихревой трубы «механизмом волнового расширения и сжатия газа» и обнаружил инфракрасное излучение газа из ее осевой области, имеющее полосовой спектр, что потом помогло нам разобраться и с работой вихревого теплогенератора Потапова.

В вихревой трубе Ранке, схема которой приведена на рисунке 1, цилиндрическая труба 1 присоединена одним концом к улитке 2, которая заканчивается сопловым вводом прямоугольного сечения, обеспечивающим подачу сжатого рабочего газа в трубу по касательной к окружности её внутренней поверхности. С другого торца улитка закрыта диафрагмой 3 с отверстием в центре, диаметр которого существенно меньше внутреннего диметра трубы 1. Через это отверстие из трубы 1 выходит холодный поток газа, разделяющийся при его вихревом движении в трубе 1 на холодную (центральную) и горячую (периферийную) части. Горячая часть потока, прилегающая к внутренней поверхности трубы 1, вращаясь, движется к дальнему концу трубы 1 и выходит из нее через кольцевой зазор между её краем и регулировочным конусом 4.

Вихревая труба Ранке на схеме

Рисунок 1. Вихревая труба Ранке: 1-труба; 2- улитка; 3- диафрагма с отверстием в центре; 4- регулировочный конус.

 

Законченной и непротиворечивой теории вихревой трубы до сих пор не существует, несмотря на простоту этого устройства. «На пальцах» получается, что при раскручивании газа в вихревой трубе он под действием центробежных сил сжимается у стенок трубы, в результате чего нагревается тут, как нагревается при сжатии в насосе. А в осевой зоне трубы, наоборот, газ испытывает разрежение, и тут он охлаждается, расширяясь. Выводя газ из пристеночной зоны через одно отверстие, а из осевой — через другое, и достигают разделения исходного потока газа на горячий и холодный потоки.

Жидкости, в отличие от газов, практически не сжимаемы. Поэтому более полувека никому и в голову не приходило подать в вихревую трубу воду вместо газа или пара. И автор решился на, казалось бы, безнадёжный эксперимент — подал в вихревую трубу вместо газа воду из водопровода.

К его удивлению, вода в вихревой трубе разделилась на два потока, имеющих разные температуры. Но не на горячий и холодный, а на горячий и тёплый. Ибо температура «холодного» потока оказалась чуть выше, чем температура исходной воды, подаваемой насосом в вихревую трубу. Тщательная же калориметрия показала, что тепловой энергии такое устройство вырабатывает больше, чем потребляет электрической двигатель насоса, подающего воду в вихревую трубу.

Так родился теплогенератор Потапова.

Конструкция теплогенератора

Правильнее говорить об эффективности теплогенератора — отношении величины вырабатываемой им тепловой энергии к величине потребленной им для этого извне электрической или механической энергии. Но поначалу исследователи не могли понять, откуда и как в этих устройствах появляется избыточное тепло. Предполагали даже, что туг нарушается закон сохранения энергии.

Схема вихревого теплогенератора

Рисунок 2. Схема вихревого теплогенератора: 1-инжекционный патрубок; 2- улитка; 3- вихревая труба; 4- донышко; 5- спрямитель потока; 6- штуцер; 7- спрямитель потока; 8- байпас; 9- патрубок.

 

Вихревой теплогенератор, схема которого приведена на рисунке 2, присоединяют инжекционным патрубком 1 к фланцу центробежного насоса (на рисунке не показан), подающего воду под давлением 4-6 атм. Попадая в улитку 2, поток воды сам закручивается в вихревом движении и поступает в вихревую трубу 3, длина которой раз в 10 больше ее диаметра. Закрученный вихревой поток в трубе 3 перемещается по винтовой спирали у стенок трубы к ее противоположному (горячему) концу, заканчивающемуся донышком 4 с отверстием в его центре для выхода горячего потока. Перед донышком 4 закреплено тормозное устройство 5 — спрямитель потока, выполненный в виде нескольких плоских пластин, радиально приваренных к центральной втулке, соосной с трубой 3. В виде сверху он напоминает оперенные авиабомбы или мины.

Когда вихревой поток в трубе 3 движется к этому спрямителю 5, в осевой зоне трубы 3 рождается противоток. В нём вода, тоже вращаясь, движется к штуцеру 6, врезанному в плоскую стенку улитки 2 соосно с трубой 3 и предназначенному для выпуска «холодного» потока. В штуцере 6 изобретатель установил ещё один спрямитель потока 7, аналогичный тормозному устройству 5 Он служит для частичного превращения энергии вращения «холодного» потока в тепло. А выходящую из него тёплую воду направил по байпасу 8 в патрубок 9 горячего выхода, где она смешивается с горячим потоком, выходящим из вихревой трубы через спрямитель 5. Из патрубка 9 нагретая вода поступает либо непосредственно к потребителю, либо в теплообменник (все про теплообменные аппараты), передающий тепло в контур потребителя. В последнем случае отработанная вода первичного контура (уже с меньшей температурой) возвращается в насос, который вновь подаёт её в вихревую трубу через патрубок 1.

После тщательных и всесторонних испытаний и проверок нескольких экземпляров теплогенератора «ЮСМАР» они пришли к заключению, что ошибок нет, тепла получается действительно больше, чем вкладывается механической энергии от двигателя насоса, подающего воду в теплогенератор и являющегося единственным потребителем энергии извне в этом устройстве.

Но непонятно было, откуда появляется «лишнее» тепло. Были предположения и о скрытой огромной внутренней энергии колебаний «элементарных осцилляторов» воды,  высвобождающейся в вихревой трубе, и даже о высвобождении в её неравновесных условиях гипотетической энергии физического вакуума. Но это только предположения, не подкреплённые конкретными расчетами, подтверждающими экспериментально полученные цифры. Было ясно только одно: обнаружен новый источник энергии и похоже, что это фактически даровая энергия.

В первых модификациях тепловых установок Ю. С. Потапов подсоединял свой вихревой теплонагреватель, изображённый на рисунке 2, к выпускному фланцу обыкновенного рамногоцентробежного насоса для перекачивания воды. При этом вся конструкция находилась в окружении воздуха (Если что здесь про воздушное отопление дома своими руками) и была легко доступна для обслуживания.

Но КПД насоса, как и КПД электродвигателя, меньше ста процентов. Произведение этих КПД составляет 60-70%. Остальное — потери, идущие в основном на нагрев окружающего воздуха. А ведь изобретатель стремился греть воду, а не воздух. Поэтому он решился поместить насос и его электромотор в воду, подлежащую нагреву теплогенератором. Для этого использовал погружной (скважный) насос. Теперь тепло от нагрева мотора и насоса отдавалось уже не в воздух, а той воде, которую требовалось нагреть. Так появилось второе поколение вихревых теплоустановок.

Теплогенератор Потапова превращает в тепло часть своей внутренней энергии, а точнее часть внутренней энергии своей рабочей жидкости — воды.

Но вернёмся к серийным тепловым установкам второго поколения. В них вихревая труба по-прежнему находилась в воздухе сбоку от термоизолированного сосуда, в который был погружён скважный мотор-насос. От горячей поверхности вихревой трубы нагревался окружающий воздух, унося часть тепла, предназначавшегося для нагрева воды. Приходилось трубу обматывать стекловатой для уменьшения этих потерь. И чтобы не бороться с этими потерями трубу погрузили в тот сосуд, в котором уже находятся мотор и насос. Так появилась последняя серийная конструкция установки для нагрева воды, получившая имя «ЮСМАР».

Схема теплоустановки "ЮСМАР-М"

Рисунок 3. Схема теплоустановки «ЮСМАР-М»: 1 — вихревой теплогенератор, 2 — электронасос, 3 — бойлер, 4 — циркуляционный насос, 5 — вентилятор, 6 — радиаторы, 7 — пульт управления, 8 — датчик температуры.

Установка ЮСМАР-М

В установке «ЮСМАР-М» вихревой теплогенератор в комплекте с погружным насосом помещены в общий сосуд-бойлер с водой (см. рисунок 3) для того, чтобы потери тепла со стенок теплогенератора, а также тепло, выделяющееся при работе электродвигателя насоса, тоже шли на нагрев воды, а не терялись. Автоматика периодически включает и отключает насос теплогенератора, поддерживая температуру воды в системе (или температуру воздуха в обогреваемом помещении) в заданных потребителем пределах. Снаружи сосуд-бойлер покрыт слоем теплоизоляции, которая одновременно служит звукоизоляцией и делает практически неслышимым шум теплогенератора даже непосредственно рядом с бойлером.

Установки «ЮСМАР» предназначены для нагрева воды и подачи её в системы автономного водяного отопления жилых помещений, промышленных и административных зданий, а также в душевые, бани, на кухни, в прачечные, мойки, для обогрева сушилок сельхозпродуктов, трубопроводов вязких нефтепродуктов для предотвращения их замерзания на морозе и других промышленных и бытовых нужд.

Фото тепловой установки "ЮСМАР-М"

Рисунок 4. Фото тепловой установки «ЮСМАР-М»

Установки «ЮСМАР-М» питаются от промышленной трёхфазной сети 380 В, полностью автоматизированы, поставляются заказчикам в комплекте со всем необходимым для их работы и монтируются поставщиком «под ключ».

Все эти установки имеют одинаковый сосуд-бойлер (см. рисунок 4), в который погружают вихревые трубы и мотор-насосы разной мощности, выбирая наиболее подходящие конкретному заказчику. Габариты сосуда-бойлера: диаметр 650 мм, высота 2000 мм. На эти установки, рекомендуемые для использования как в промышленности, так и в быту (для обогрева жилых помещений путем подачи горячей воды в батареи водяного отопления), имеются технические условия ТУ У 24070270,001 -96 и сертификат соответствия РОСС RU. МХОЗ. С00039.

Установки «ЮСМАР» используют на многих предприятиях и в частных домовладениях, они получили сотни похвальных отзывов от пользователей. В настоящее время Уже тысячи теплоустановок «ЮСМАР» успешно работают в странах СНГ и ряде других стран Европы и Азии.

Их использование особенно выгодно там, куда ещё не дотянулись газопроводы и где люди вынуждены использовать для нагрева воды и обогрева помещений электроэнергию, которая с каждым годом становится всё дороже.

Схема подключения тепловой установки "ЮСМАР-М" к системе водяного отопления

Рисунок 5. Схема подключения тепловой установки «ЮСМАР-М» к системе водяного отопления: 1 -теплогенератор «ЮСМАР»; 2 — циркулярный насос; 3-пульт управления; 4 -терморегулятор.

Теплоустановки «ЮСМАР» позволяют экономить треть той электроэнергии, которая необходима для нагрева воды и отопления помещений традиционными методами электронагрева.

Отработаны две схемы подключения потребителей к теплоустановке «ЮСМАР-М»: непосредственно к бойлеру (см. рисунок 5) — когда расход горячей воды в системе потребителя не подвержен резким изменениям (например, для отопления здания), и через теплообменник (см. рисунок 6) — когда расход воды потребителем колеблется во времени.

У теплоустановок «ЮСМАР» нет деталей, нагревающихся до температуры свыше 100°С, что делает эти установки особенно приемлемыми с точки зрения пожарной безопасности и техники безопасности.

Схема подключения тепловой установки "ЮСМАР-М" к душевой

Рисунок 6. Схема подключения тепловой установки «ЮСМАР-М» к душевой: 1-теплогенератор «ЮСМАР»; 2 -циркулярный насос; 3- пульт управления; 4 -термодатчик, 5 — теплообменник.

Используемая литература:

  1. Ю.С. Потапов, Л.П. Фоминский, С.Ю. Потапов — » Энергия вращения»-01.01.2008 г.

Поделитесь материалом с друзьями в социальных сетях

helpinginer.ru

Вихревой теплогенератор

Вихревой теплогенератор – источник энергии, в основу которого положен вихревой эффект – разделение жидкости (газа) на две фракции при закручивании в конических или цилиндрических камерах. При этом на периферии такой камеры образуется вихрь с повышенной температурой, а в центре образуется другой вихрь с противоположным движением потока и пониженной температурой. Впервые такой эффект был замечен при замере температуры в промышленных циклонах Ж. Ранком – французским изобретателем и инженером. После того, как Ранку удалось разделить потоки на горячий и холодный, он подал заявку на изобретенное устройство (1931 г.), но только в 1934 г., он стал обладателем патента (Патент США №1952281). К сожалению, данным изобретением никто не заинтересовался, пока в 1946 г. Р. Хильш (физик) не опубликовал экспериментальную работу над вихревой трубкой с указанием рекомендаций по их конструированию. Впоследствии вихревые трубки получили название трубки Ранке-Хилша, а работой заинтересовались другие инженеры-исследователи.

Наиболее распространенные вихревые теплогенераторы:

Вихревой теплогенератор Григгса (гидросонная помпа)

Л. Григгс занимал должность главного инженера в небольшой компании, занимающейся отопительными системами, и пытался создать фрикционный нагреватель с максимально упрощенной конструкцией. При проведении испытаний устройство демонстрировало феномен избыточного тепла, который Григгс воспринял как ошибку и не придал значение. Совершенствуя конструкцию вихревого теплогенератора и готовя его к производству, он так и не смог уговорить руководство фирмы на серийное изготовление (было изготовлено всего несколько экспериментальных установок), так как по конструкции его установки были намного сложнее конструкций ТЭНов (теплоэлектронагревателей).

Конструкция вихревого теплогенератора ГриггсаВихревой теплогенератор Григгса

В основу конструкции теплогенератора лежит ротор, выполненный монолитно из алюминия (диаметр ротора 12″) на поверхности данного ротора выполнены отверстия с диаметром около 10 мм, глубина сверления так же была приблизительно равна 10 мм. Ротор устанавливался на стальной вал и фиксировался штифтом, вращение осуществлялось в подшипниковых опорах с помощью электродвигателя, который в свою очередь соединялся с валом через муфту. Ротор размещался внутри колоколообразного корпуса (статора) выполненного из стали, при этом зазор между ротором и статором обеспечивался в пределах 1 мм. Концы вала были уплотнены, для предотвращения утечки нагретой жидкости. Непосредственно нагрев осуществлялся в зазоре за счет трения и жидкости и металла, а так же завихрений, образующихся в отверстиях ротора (кавитация). Вихревой теплогенератор мог нагревать жидкость до 80°С, при этом первоначальная температура теплоносителя колебалась от 20 до 40°С, так же высокая температура на выходе из генератора зависит от расхода, то есть чем меньше расход, тем выше температура. По тезисным выкладкам и журнальным публикациям, основанных на патентах Григгса, эффективность нагрева достигала коэффициента 1,6.

Конструктивные особенности теплогенератора Сярга

Вихревой теплогенератор Сярга стал продолжением конструкции Шаубергера, Гексена и Клемма, хотя некоторые утверждают, что автор не был знаком с их трудами. Так же это видно и из поданного им патента, где не были упомянуты вышесказанные изобретатели. (Патент № 2000130423 от 2000г.)

Конструкция теплогенератора Сярга

Конструктивно теплогенератор состоит из стального сосуда (корпуса) внутри которого размещены теплообменник (перфорированный статор) и ротор. Ротор имеет подшипниковую опору и приводится во вращение высокооборотистым электродвигателем. В корпусе так же присутствуют штуцера, необходимые для подвода холодной воды с одной стороны и отвода горячей воды с другой стороны. Ротор – сборочная единица, состоящая из специализированных дисков, верхней и нижней крышек и диафрагм, устанавливаемых между дисками. Верхняя крышка оборудована патрубком для нагнетания через нее холодной воды, внутренняя часть которой выполнена по принципу «внутреннего винта Архимеда».

Вихревой теплогенератор Сярга

При вращении ротора в вихревой теплогенератор под давлением и через входной патрубок попадает холодная вода. Образуются центробежные силы, выталкивающие жидкость из центра диска, которая пройдя по каналам, ударяется в ячейки статора. Вследствие данной работы в определенных полостях диска образуется вакуум (так полагает автор изобретения), что при адиабатических процессах позволяет на границе зон вакуума и высокого давления локально достичь повышения температур в несколько тысяч градусов по Цельсию. Наиболее эффективный нагрев осуществляется при обеспечении соотношения диаметра диска к диаметру полости самого диска 3:1, а толщина диска должна составлять примерно 15% от наружного диаметра.

Вихревой теплогенератор Потапова

В основе теплогенератора Потапова лежит видоизмененная конструкция трубки Ж. Ранке. Потопов, наверное, первый решилВихревой теплогенератор Потапова пропустить сквозь трубку не газ (воздух), как это уже делалось на протяжении пятидесяти лет, а воду. Цель данного эксперимента была получить горячую и холодную воду. Разделение потоков произошло, но  на горячий поток и теплый (в сравнении с исходной температурой). Путем калориметрии было установлено, что данная установка вырабатывает больше тепловой энергии, чем двигатель потребляет электрической.

Конструкция вихревого теплогенератора Потапова

Как уже писалось ранее, вихревой теплогенератор Потапова основан на трубке Ранке, к которой через промежуточный патрубок подключается центробежный насос, нагнетающий воду в улитку с давлением от 4 до 6 бар. В улитке поток закручивается и попадает в цилиндрическую часть теплогенератора, при этом длина цилиндрической части составляет десять частей диаметра. Поток, проходя по цилиндрической части, совершает спиральное движение и, дойдя до конца трубки, упирается в донышко с центральным отверстием. Перед донышком установлено тормозное устройство, выполняющее функцию спрямления потока и образования противотока по которому жидкость вращаясь, возвращается к штуцеру, установленному в плоской стенке улитки. Через это отверстие выходит «холодный» поток. Непосредственно в штуцере установлено еще одно спрямляющее устройство, аналогичное основному, что позволило дополнительно вести съем тепловой энергии.

consultinfo.net

Вихревой теплогенератор

Вихревой нагреватель сред

На фиг.1 схематично показан предложенный теплогенератор, общий вид в разрезе; на фиг.2 - разрез А-А на фиг.1.

Справа - вихревой нагреватель сред, чертёж.

Предложеный вихревой теплогенератор состоит из цилиндрической рабочей камеры 1, на стенке 2 которой жестко соосно установлеа труба 3 с утолщением 4 ее стенки и имеющая толщину ее стенки 2-20 мм по основной ее длине и которая отстоит на расстояние 10-150 мм от противоположной стенки 5 камеры 1. На трубе 3 на расстоянии 10-150 мм от стенки 2 жестко установлен шнек 6, имеющий последовательно изменяющиеся по его длине участки с разным направлением навивки их винтовых линий. На сенке 2 имеются входной и выходной соответственно патрубки 7 и 8 для рабочей жидкости (на чертеже не показана), которая может быть водой, глицерином или глицерином с водой. На рабочей камере 1 находится теплообменник 9 с входным и выходным соответственно патрубками 10 и 11.

Предложенный теплогенератор работает за счет движения рабочей жидкости через патрубки 7 и 8 под напором, создаваемым насосом, который на чертеже не показан. При этом жидкость вначале попадает на шнек 6.

При этом за счет гидравлических ударов в потоке жидкости, возникающих в местах перехода одного участка шнека 6 в другой, где происходит изменение направления закрутки потока согласно изменяющемуся направлению винтовой линии навивки, возникают пузырьки пара и газа, выделяющегося из жидкости. Эти пузырьки всхлапываются с выделением тепла на осевой линии трубы 3, где фокусируется энергия от вибраций, отраженная от внутренней поверхности трубы 3. Это тепло через теплообменник 9 передается потребителю.

Слева и справа - вихревой теплогенератор, чертёж.

Вихревой теплогенератор предназначен для экономии электроэнергии при получении тепла, имеет КПД до 700% и содержит в качестве завихрителя шнек, выполненный с неравномерным по длине шагом винтовой линии его навивки, не имеет аналогов в мире. Разрабатываемые в мире вихревые теплогенераторы имеют завихрители пластинчатые и дырчатые, в которых закрученный поток жидкости ударяется от твердые поверхности преград и происходит разрыв при давлении до 2000 атм и температуре до 1000 С пузырьков пара и воздуха, которые образуются в зонах пониженного давления, которые находятся за этими преградами по ходу движения потока, на этих поверхностях образуются кавитационные разрушения и возникают вредные шумы, в моем же устройстве всего этого нет, так как ударные явления и зоны пониженного давления образуются гидравлическими ударами в глубинах потока из-за неравномерности шага навивки винтовой линии шнека.

Описание рынка продукта

Большие потребительские свойства этого устройства позволят ему первенствовать на мировом рынке.

На какой стадии находится проект в настоящее время

Из-за отсутствия денежных средств проект находится на стадии патентования, поданы заявки с положительным решением по формальной экспертизе, на уплату пошлины "за экспертизу по существу" нет денег: №№ 2002010257, 2002010258, 2002010259, 2002010260, 2002010261, 2002010645, 200508021, 200604689, 200606501 в Укрпатент и № 2007133769 в Роспатент.

Описание организации выполнения проекта и вывода продукта на рынок

Будет выполнен опытный образец, проведены испытания опытного образца и результаты этих испытаний будут предъявлены заинтересованным заводом, с которыми будут заключены взаимовыгодные соглашения.

Главные препятствия реализации проекта

Не найдены инвесторы и спонсоры для получения денежных средств.

Вихревой теплогенератор - описание

Вихревой теплогенератор, содержащий замкнутый циркуляционный контур, закручивающее устройство, теплообменник, отличающийся тем, что закручивающее устройство выполнено в виде шнека с участками с разным направлением винтовой линии их навивки, жестко установленного на расстоянии 10-150 мм от конца ее на трубе, которым она жестко соосно установлена на бокой стенке цилиндрической рабочей камеры и имеющей по основной ее длине толщину стенки 2-20 мм, а свободный конец этой трубы отстоит от противоположной боковой стенки рабочей камеры на расстояние 10-150 мм, входной патрубок находится между этой трубой и цилиндрической поверхностью рабочей камеры на боковой стенке рабочей камеры, на которой установлена эта труба, а выходной патрубок находится в этой же боковой стенке в пределах этой трубы. На фиг.1 схематично показан предложенный теплогенератор, общий вид в разрезе; на фиг.2 - разрез А-А на фиг.1.

Предложеный вихревой теплогенератор состоит из цилиндрической рабочей камеры 1, на стенке 2 которой жестко соосно установлеа труба 3 с утолщением 4 ее стенки и имеющая толщину ее стенки 2-20 мм по основной ее длине и которая отстоит на расстояние 10-150 мм от противоположной стенки 5 камеры 1. На трубе 3 на расстоянии 10-150 мм от стенки 2 жестко установлен шнек 6, имеющий последовательно изменяющиеся по его длине участки с разным направлением навивки их винтовых линий. На сенке 2 имеются входной и выходной соответственно патрубки 7 и 8 для рабочей жидкости (на чертеже не показана), которая может быть водой, глицерином или глицерином с водой. На рабочей камере 1 находится теплообменник 9 с входным и выходным соответственно патрубками 10 и 11. Предложенный теплогенератор работает за счет движения рабочей жидкости через патрубки 7 и 8 под напором, создаваемым насосом, который на чертеже не показан. При этом жидкость вначале попадает на шнек 6. При этом за счет гидравлических ударов в потоке жидкости, возникающих в местах перехода одного участка шнека 6 в другой, где происходит изменение направления закрутки потока согласно изменяющемуся направлению винтовой линии навивки, возникают пузырьки пара и газа, выделяющегося из жидкости. Эти пузырьки всхлапываются с выделением тепла на осевой линии трубы 3, где фокусируется энергия от вибраций, отраженная от внутренней поверхности трубы 3. Это тепло через теплообменник 9 передается потребителю.

Вихревой нагреватель сред На фиг.1 схематично показан предложенный нагреватель, общий вид; на фиг.2 - разрез А-А на фиг.1; на фиг.3 - шнек на трубе в развертке; на фиг.4 - разрез Б-Б на фиг.3. Предложенный нагреватель сосотоит из корпуса 1, в котором находится с возможностью вращения вал 2 привода 3. На валу 2 жестко установлен шнек 4 с шагом винтовой линии его навивки изменяющимся в сторону и больше, и меньше по ходу навивки. На шнеке 4 жестко установлена упругая труба 5, на которой в ее конце имеется коническая часть 6, а также жестко установлен шнек 7, с таким же направлением винтовой линии его навивки, как и у шнека 4, и также изменяющимся шагом винтовой линии его навивки. Шнек 7 выполнен из камертонов 8, имеющих пары пластин повернутые навстречу друг другу, как показано на фиг. 3 и 4, где стрелкой показано направление потока среды в корпусе 1 по отношению к этому углу между пластинами 9. Корус 1 имеет входное и выходое отверстия 10 и 11 соответственно.

При работе привода 3 жидкая или газообразная поступает через отверстие 10 и выходит - через отвертие 11. Этот напор создается шнеками 4 и 7 и вибрациями пластин 9 камертонов 8, как в вибрационном насосе. Неравномерность шага навивки шнеков 4 и 7, и упругость трубы 5, а также вибрации пластин 9 создают высокочастотные колебания, которые сопровождаются выделением тепа, и через отверстие 11 среда выходит нагретой. В случае газообразной среды среда вблизи отверстия 11 имеет достаточно большое давление за счет ее разогрева и своим воздействием на шнеки 4 и 7 создает крутящий момент, который будет достаточным, чтобы вал 2 вращался и при отключеном приводе 3 или крутил, например, генератор электрического тока.

Движение среды на фиг.1 показано стрелкой. Вихревой нагреватель сред имеет корпус, в котором на валу электродвигателя-генератора тока находится завихритель, выполненный в виде шнека, имеющего переменный по длине шаг его винтовой линии и набранный из камертонов, работает на воде, как вихревой теплогенератор, и на воздухе, как нагреватель воздуха (при достижении вращения этого шнека 2000 оборотов в минуту он вместе с нагревом воздуха начинает работать в режиме молекулярного бестопливного двигателя без получения энергии извне, электродвигатель обращается в генератор тока и начитает отдавать ток в сеть. Ударные вибрации в потоке от неравномерности шага винтовой линии шнека и набранности его из камертонов создают условия, при которых потоком происходит получение тепловой энергии за счет взаимодействий на уровне элементарных частиц материи потока с полями (торсионным и другими) мирового пространства. КПД достигает 700%.

Относительно вихревого теплогенератора, то тут дела обстоят следующим образом. Мной изобретен очень выгодный завихритель к ВТГ, который может давать очень качественную кавитацию ( от нее на 99% звисит выделение тепла), но нужен и другой насос. Те насосы, которые повсеместно применяются на ВТГ в мире при больших нагрузках очень сильно теряют свою производителдьность и о достойном КПД из-за этого не стоит и мечтать. Я уже давно прелагаю очень выгодные роторные насосы вытенснения (2 устаревших патента и 15 заявок), но никто эту выгоду поиметь не хочет. Мои эти насосы все по изобретениям под названиям "Роторная машина" и они абсолютно не теряют свою производительность от возникшего большого сопротивления в трубопроводе. Смотрите ниже материал, который я на днях послал в Германию, откуда мне написали, что они заплатили миллион евро на Краматорский (его адрес они не указали) и этот завод сделал оптные образцы ВТГ, которые имели 300% КПД и демонстрировались на многих выставках, а вот теперь, когда этот завод присылает эти ВТГ для продажи, они еле тянут на 100% КПД и они никак не могут их настроить. Кавитация там происходит не так, как у Потапова на тормозных устройствах, а пред соплом Ловаля. Зародыши пузырьков произсходят в суженном месте сопла Ловаля, где скорость потока максимальна и поэтому пониженное давление в потоке. Мой завихритель работал бы эффективнее. Не нужно было бы капризной настройки на резонанс, как в радиосхеме, так как ультроколебания потока отражались бы от внутренней поверхности трубы - смотрите статью "Рабочий пульс рукотоворной звезды" в журнале №Техника молодежи" №2 за 2006 год, где описано изобретение по патенту РФ № 2258268 и резултаты лабраторных исследований по этому устройству.

Меня очень удивляет то малое разнообразие конструкций ВТГ в мире, патентоспособных очень много, но их патентоспособность заключается в очень небольших изменениях в одном и том же: у ПЛАСТИНЧАТЫХ тормозных устройств (возглавляют русские) - это изменения в пластинах и у ПЕРЕГОРОДОЧНЫХ тормозных устройств (возглавляют американцы) формы отверстий в этих перегородках. Но никто не хочет провести анализ круто и изменить саму сущность явлений. Во-первых, КПД на прямую связан с мощностью кавитации (99% выделения тепла от кавитации), а кавитация на прямую зависит от мощности удара о тормозное устройство. И в то же время все применяют очень неперспективные в этом плане центробежные и вихревые насосы, которые, именно, в этих условиях прохождения потока через тормозные устройства теряют свою высокую производительность и "месят жидкость по кругу", так как их центробежный принцип предполагает при достижении центробежной силой силы сопротивления в трубопроводе иметь производительность равную нулю, то есть в трубопроводе можно закрывать задвижку, а эти насосы будут благополучно работать и "месить жидкость по кругу".

Тут нужны насосы вытеснения - они не терпят закрытой задвижки: ламаются или приводят в действие предохранительные устройства. Помповые насосы вытеснения не годятся, так как они не роторные и поэтому тихоходные, плунжерные с косой шайбой тоже не годятся, так как у них мал суммарный рабочий объем, роторные вытеснительные имеют малый рабочий объем и неуравновешенность, которая не позволяет иметь большие обороты, за счет большой величины которых можно иметь большую производительность. Роторные насосы вытеснения (уравновешенные) и с большим рабочим объемом нужно везде, по ним "плачет" мировой рынок, а ВТГ он нужен в первую очередь, чтобы кардинально повысить его КПД. Я ПРЕДЛАГАЮ ТАКИЕ НАСОСЫ. Почитайте, пожалуйста, мое следующее письмо по моему изобретению "Роторная машина", по которому мной заявлено (имеются и старые патенты) много очень выгодных для самых различных условий применения и изготовления РОТОРНЫХ НАСОСОВ ВЫТЕСНЕНИЯ. Мной предложен ВТГ с совершенно новым шнековым завихрителем, который позволяет через гидрои пневмоудары очень выгодно избавиться от тормозных устройств. Все беды в этих причинах и "ЛЕЧИТЬ" их крайне не перспективно. В сороковый-шестедесятые годы пытались получать тепло при помощи тепловых насосов. Брали зимой из пруда воду, закручивали ее поток и прогоняли через прямолинейный участок трубы (этот способ был запатентован во Франции и носит название "труба Ранке"), центробежная сила вращения сортировала по весу молекулы воды (они имеют разную температуру и поэтому удельный вес их соответствует их температуре) и по центру трубы шел холодный поток (это явление противоречит логике - , ведь, теплая вода легче), который отделялся и возвращался в пруд, а теплая вода шла на отопление помещений.

В наши дни под "тепловым насосом" понимают перевернутый по своему назначению холодильник: в морозильник помещают мощный теплопереносчик, а от компрессора получают тепло. Углерод из атмосферы можно получать через эту "трубу Ранке", закручивая предварительно поток воздуха перед проходом его через "трубе Ранке". Эффект будет тем больше, чем будет больше центробежная сила: больше радиус трубы и больше угловая скорость вращения. Проект "Вихревой теплогенератор" мало эффективен без проекта "Роторная машина", так как в вихревом теплогенераторе выделение энергии происходит большей частью (99%) за счет кавитационных процессов, происходящих за счет удара о тормозные устройства (сейчас в мировой практике - это пластины на пути потока, или дырчатая перегородка, или многочастотные электрические заряды по эффекту Юткина, мной предложен найболее эффективный способ торможения потока - через шнеки с неравномерным шагом навивки, который постоянно меняет своим изменением шага проходное сечение потока и инициирует гидроудары, которые обеспечивают кавитацию с большим количеством очагов этих выделений в самом потоке, а не так, как у всех, у поверхности твердого тела, это обеспечивает большее выделение энергии и кавитационные явления в потоке, а не у твердой поверхности не разрушают этой поверхность, а звуковые явления проходя через поток уже не являются вредными для человека) и это торможение потока предъявляет повышенные требования к насосу вихревого теплогенератора.

Он должен быть высокопроизводительным и не терял эту высокую производительность при большом сопротивлении в трубопроводе, а в вихревом теплогенераторе это сопротивление присутствует в виде тормозных устройств. В настоящее время высокопроизводительными являются центробежных насосы с различными их модефикациями, но они теряют свою производительность при увеличении сопротивления в трубопроводе, но их применяют в современных вихревых теплогенераторах, потому что насосы вытеснения (поршневые и роторные), которые не теряют свою производительность при увеличении сопротивления в трубопроводе, малопроизводительные и по этой причине не применяются в современных вихревых теплогенераторах. Насос же по моему этому проекту "Роторная машина" является насосом вытеснения с очень большой производительностью, потому что имеет большой рабочий и объем и большие обороты ротора, так как все детали в нем хорошо уравновешены и позволяют иметь большие обороты ротора. Так что, если оба эти проекта будут выполнены совместно, то этот новый в мировой практике вихревой теплогенератор будет иметь очень высокие показатели. Вихревые теплогенераторы кое-где и пошли, но очень вяло и очень разноречивые отклики о них. Но я понял в чем там дело. Во-первых, насосы центробежные, которые на них стоят, (другие не имеют такой производительности) не дают нужной скорости потока, так как их производительность резко падает при увеличении сопротивления в трубопроводе. Рушится у них сама идея получения тепла от кавитации, которая происходит от удара (происходит большое сопротивление в трубопроводе) струи об тормозные устройства (у одних авторов - это пластины, а у других - дырчатая перегородка) и имеется вредный шум и разъедание металла.

Во-вторых, сами завихрители неэффективны. Удивительно, но я решил все эти проблемы. Но нужно начинать не с вихревых теплогенераторов.Их тоже нужно оставить на потом. В первую очередь нужно начинать с моих многочисленных изобретений "Роторная машина" и то не по всему их комплексу, а только, как насосы. Схем у меня много, но принципиально разных - 5, а все остальные - это варианты, за которые могут уцепиться конкуренты. Ведь, как только насос попадет на рынок, конкуренты тут же будут искать эти варианты, чтобы подать на них заявки и получить уже свои патенты. А я их заранее опередил и кроме того эти варианты увеличат шанс правильного выбора насоса на максимум положительных свойств и избавления от недостатков. Относительно финансового вопроса, то тут все обстоит следующим образом. Нужно иметь хоть какие-то деньги, чтобы сделать опытный образец и испытать его, а гонорар я согласен получать в виде 10% (это считается минимум) от будущей прибыли. Если будет опытный образец, то его нужно хорошо испытать, добраться до всех неполадок, которые могут возникать при эксплуатации.

Я бы мог у себя в Запорожье это прекрасно сделать еще и деньги не этом заработать. Я бы стал подавать объявления, что продаю насосы по принципу вытеснения (такие есть, но производительность у них низкая и еще много разных проблем) и очень большой мощности. Покупателю бы демонстрировал опытный образец и предлагал бы купить этот насос по моему изготовлению той мощности, какая нужна покупателю, но за предоплату 50%. Я знаю, что в странах СНГ мне вообще могут не уплатить никакой гонорар, у наших людей еще с советских времен на изобретателей "дедовщина" и традиция не платить как людям - единаличникам капиталистически настроеным и менталитет в настоящее время вообще такой. В развитых странах захотят на своей территории быть патентообладателями и должны обратиться ко мне за хорошие деньги с просьбой по их заявкам (авторство мое, так как у меня приоритетная дата, которую во всем мире обойти нельзя) в их Патентное ведомство подписаться, как автор. Они будут в заявке заявителями, а в патенте патентообладателями.

Это патентообладание им многое дает: государство 3 года не берет налоги и конкуренты должны им идти на всевозможные уступки при покупке у них лицензий на изготовление на территории их страны этих изделий. Следующим письмом я высылаю Вам много материала по этому насосу. Могу таким же образом выслать материал и еще по 14 заявкам. Вполне возможно, что это окажется кому-то их самой ближней темой. Во-первых, на опытный образец у меня нет денег, на Украине теперь все писанные и неписанные законы направлены, чтобы не было малого бизнеса, чтобы все за копейки работали на "дядю". Во-вторых, моя интеллектуальная собственность защищена заявками. Через 18 месяцев после подачи заявка публикуется и вторично подать нереально - не пройдет по новизне, еще через 18 месяцев заявка теряет возможность получить патент, хотя за плату можно продлить этот срок на 6 месяцев. Мне легко подавать заявки, потому что имею большой опыт. Многие свои заявки я "огородил" частоколом заявок по вариантам выполнения - это на случай, если кто-то захочет получит патент в обход моему патенту и по уже готовой логически по всем законам теории доказанной изобретенной схеме подаст заявку по патентоспособному варианту - знает патентные тонкости подачи заявки и специалист по этой тематике. То все эти варианты я уже "застолбил". В-третьих, создать комфортные юридические условия инвестор может через юридически грамотные согласительные документы в наших взаимоотношениях. Но и эти бумаги успех не гарантируют, если инвестор не сможет найти изобретателя, а это происходит практически всегда, потому что изобретатель не может инвестору представить готовую команду, которая у изобретателя "не водится", потому что он, как правило, не зацикливается на готовом производстве, потому что там он и не нужен.

Теперь поясню, в чем я вижу отличия моего "Вихревого теплогенератора" от всех существующих и от "Вихревого теплогенератора" Мустафаева в том числе. В наше время нет эффективного насоса вытеснения больший производительности, а у всех "Вихревых теплогенераторов" требуется не только большое давление рабочей жидкости, но и большая скорость ее потока, так как чем больше скорость потока, тем эффективнее выделяется тепловая энергия при взаимодействии этого быстрого потока с тормозными устройствами, которые у одних "Вихревых теплогенераторов" выполнены в виде пластин, а у других - в виде перегородки с отверстиями. Мой "Вихревой теплогенератор" тоже имеет выделение тепла при взаимодействии быстрого потока с тормозным устройством, только это устройство выполнено иной конструкции - в виде шнека, который выполняет роль закручивающего устройства. Шнек получает дополнительную функцию - функцию тормозного устройства введением мной в его конструкцию такого фактора: винтовая линии шнека имеет неравномерный шаг по его величине и по направлению навивки.

Кроме соединения двух функций в одной детали-шнеке, имеется увеличение на большой порядок потребительских свойств "Вихревого топлогенератора":

1. Образование тепла происходит по всему сечению потока рабочей жидкости, а не у поверхностей пластин или перегородки с отверстиями.

2. Так как дающая тепло кавитация происходит не у твердых поверхностей, то эти поверхности не страдают от разрушающих действий кавитации и срок службы "Вихревого теплогенератора" значительно увеличивается, и кроме того, кавитация сопровождается большим шумом, но этот шум не может выйти за пределы устройства во вредных для человека количествах, так как в моем "Вихревом теплогенераторе" рабочая жидкость поглощает значительную его часть.

Если подытожить все сказанное выше, то мы имеем: 1. Без насоса вытеснения по моему изобретению "Роторная машина" свою эффективность по получению тепла любой "Вихревой теплогенератор", и мой в том числе, теряют как минимум в 2 раза.

2. Мой "Вихревой теплогенератор" выделение тепла имеет по всему сечению потока рабочей жидкости, поэтому КПД его выше.

3. Мой "Вихревой теплогенератор" имеет больший срок службы и не имеет вредного воздействия шумов на человека Сельское хозяйство нуждается в дешевой энергетике, мной изобретен очень эффективная ветроэлектростанция, в конструкции которой играет большую роль мое изобретение "Роторная машина" (насосы, компрессоры, гидрои пневмоприводы), которое также очень важную роль играет и в моих изобретениях: "Вихревой теплобур" (очень эффективная буровая устанвка), "Вихревой теплогенератор" (отопление, нагрев жидкостей), "Установка для опреснения воды", "Веломобиль" (это был бы прекрасный вид транспорта для сельской местности, если в нем применить и мое изобретение "Электродвигатель-генератор тока"), а так же, если по этому изобретению "Роторная машина" выполнить насос по принципу вытеснения (4 патента и 25 заявок), то этот насос мог бы "отменить" все широко применяемые насосы, так как у применяемых насосов множество недостатков, а в моем их практически нет, а преимущества очень значительные.

Если кого-то заинтересовали эти изобретения, то пишите мне (АДРЕС В КОНТАКТАХ САЙТА), вышлю по этим моим изобретениям описания с чертежами заявок на изобретения, а так же чертежи и пояснения к опытным образцам. Из-за безденежья не выполнен ни один опытный образец ни по одному из этих изобретений. По этим моим изобретениям можно было бы иметь громадный бизнес, так как рынок воспринял бы изделия по этим моим изобретениям с большим удовольствием из-за высоких у них потребительских свойств. Толстосумам мое авторство не нужно, достаточно им того что они будут патентообладателями и практически всю прибыль забирать себе. В развитых странах я, как автор, мог бы быть востребованным (приоритетные даты у меня есть и на территории их стран других авторов быть не может, а заявку на территории свой станы им подать нужно, чтобы иметь патент на территории своей страны), так как там государство поощряет выпуск продукции по изобретениям трехгодичными каникулами от налогов и конкуренты находятся в зависимости от них из-за необходимости покупать у них лицензии на выпуск этой продукции.

Заявки дают приоритетную дату, через 18 месяцев их публикуют и поданая после этого кем-то другим заявка не должна при экспертизе по существу проходить по критерию новизны, формальную (первичную) экспертизу она может пройти, так как там ведется экспертиза только по правильности подачи заявки. Вы говорите "бизнес не любит многословия", но он очень любит шоу в свой адрес и за этим пустозвонством не может и не хочет решать такие патовые ситуации, как у меня: за моим насосом вытеснения мировой рынок ПЛАЧЕТ, а им "по барабану", что у них очень большая прибыль остается не востребованной. А всего-то для них незначительная мелочь - дать деньги на изготовление опытного образца и капитально с ним познакомит специалистов. Тогда у них будут "железные" факты, что будущая прибыль от них никуда не уйдет. Животным нужна не меньше, чем людям, хорошая вода, тогда и прибыль от животноводства будет. Очень часто в колодцах плохая вода, а в глубоких скважинах отличнейшая (есть пласты воды, образованные в ходе становления планеты, которые не были ни чем связаны с теми нечистотами, что в верхних слоях, и эти пласты воды целебные), но современная техника малоэффективна для выполнения скважин. Я изобрел очень эффективную буровую установку "Вихревой теплобур", но она не может быть достаточно эффективна без моего насоса вытеснения "Роторная машина". Но внедрить без поддержки "сильных мира сего" я не могу. Говорят "бизнес не любит многословия", но он очень любит шоу в свой адрес и за этим пустозвонством не может и не хочет решать такие патовые ситуации, как у меня: за моим насосом вытеснения мировой рынок ПЛАЧЕТ, а им "по барабану", что у них очень большая прибыль остается не востребованной. А всего-то для них незначительная мелочь - дать деньги на изготовление опытного образца и капитально с ним познакомит специалистов. Тогда у них будут "железные" факты, что будущая прибыль от них никуда не уйдет.

Нужно работать по тем темам, от которых им не отвертеться. Энергетика сейчас у всех на устах, но в ней много провалов. Зайдите в интернет по словам: новая энергетика, Потапов Юрий, нетрадиционная энергетике и Вы много узнаете об этом. Были большие надежды на вихревые теплогенераторы (Вы по моим материалам видите, что на этом принципе у меня: "Вихревой тепологенератор", "Вихревой нагреватель сред", "Молекулярный двигатель", "Вихревой теплобур", "Установка для опреснения воды" и "Ветродвигатель"), но сейчас к ним отношение очень разное: одни заверяют, что они у них отлично работают, хотя КПД ниже задекларированного, а другие считают, что толку никакого. Тепло там выделяется на молекулярном уровне из полей, которые в отличие от электричества, магнетизма и гравитации замерить ничем нельзя. Эти поля, отдав энергию, возвращают на прежнюю высоту свой понизившийся энергетический уровень уже за счет энергии мирового пространства. Утверждают, что вакуум - это плюс и минус две большие энергии, компенсировавшие друг друга в мировом пространстве. Это выделение происходит при особых условиях, в данном случае при кавитации: образовании и всхлапывании пузырьков пара и газов, которое происходит за счет удара закрученного потока о тормозные устройства в виде пластин или перегородки с отверстиями.

От того, что это происходит у твердой поверхности, эта поверхность от этого разрушается и по твердому телу проводится наружу шум на недопустимо высоком уровне для человека. Мной предложено очень эффективное закручивающее устройство - шнек (это типа винт), в котором тормозных устройств нет, но эти годрои пневмоудары есть и кавитация от них, но в самом потоке из-за того, что шаг винтовой линии шнека все время меняется и меняется площадь сечения для прохождения потока и соответственно сопротивление движению потока, от этого кавитация находится в больших количествах, так как по всему сечению потока, и кавитация мало взаимодействует с твердой поверхностью и поэтому не может ее разрушить и шум от нее не передается через твердую поверхность и теряет силу в потоке. Но все это Вам не нужно никому доказывать, это они захотят услышать или прочесть по интернету от автора. Ваша задача найти заинтересованных людей и сообщить мне, что именно они хотят со мной связаться, а все остальное - это моя задача, те деньги я Вам плачу за сам факт Вашего нахождения Вами этого этого клиента. Возможно по обстоятельствам Вы захотите и сможете участвовать и в дальнейшей судьбе этого бизнеса, всех обстоятельств предугадать трудно, то тут уже будут другие обстоятельства и свои договорные и со мной, и с ними денежные условия.

Должен Вам пояснить такой факт, что в большенство этих устройств есть насос и роль его очень большая, так как торможение потока увеличивают нагрузку на насос и центробежные насосы, применяемые сегодня в этих устройствах, ведут себя плохо, так как из-за их центробежного устройства их производительность падает с повышением сопротивления в трубопроводе, КПД сильно падает, мной изобретено много очень эффективных насосов ВЫТЕСНЕНИЯ (у них не центробежный принцип, а вытеснительный. Если применить именно мои эти насосы (в заявке они "Роторная машина": насосы, компрессоры, приводы и двигатели), то эффект от этих всех устройств резко возрастет. Да и сам этот насос может применяться везде во все машинах и устройствах вытеснить все применяемые сегодня в мире насосы. Есть еще очень перспективные: газовые пистолеты, веломобили и так далее, если найдутся на них желающие, то тоже не теряйтесь – представляйте их им.

1. Упоминаемых расчетов нет, потому что нет опытного образца, но есть некоторые данные, которые могут пригодиться в этих расчетах. В журнале "Техника-молодежи" №2 за 2006 год есть статья "Рабочий пульс рукотворной звезды", там даны результаты лабораторных исследований, которые подтверждают тот факт, что в жидкости высокочастотные колебания отражаются от внутренней цилиндрической поверхности трубы и камулятируются по ее осевой линии и по этой линии имеется плазменный шнур с большой разностью электрических потенциалов.

2. Поверхность шнека должна быть гладкой и выполняться он должен из нержавеющей стали, кроме того по материалам заявки предусмотрено, что режим работы установки такой, что небольшая часть воды не превращается в пар и этот остаток воды уносит с собой всю соль. Даже, если какие-то слои на поверхности шнека будут образовываться, то они не будут иметь с этой поверхностью достаточную силу сцепления, чтобы не оборваться за счет вибраций, к тому же, сухими они не будут.

3. Шнековая конструкция завихрителя тем хороша, что несет в себе возможности трубы Ранке. В трубе Ранке за счет вращения потока в поосевой его части температура всегда ниже ( на этом принципе в 40-50-х годах строили тепловые насосы - это теперь их пытаются реанимировать на основе обратной работы обычного холодильнике) и поэтому пар всегда будет у цилиндрической поверхности объема, в котором находится шнек, и остаток воды из корпуса будет выходить в поосевой части.

4. Большое давление на входе в установку (это обеспечивает большую скорость потока в шнеке) будет создаваться за счет применения моего роторного насоса вытеснения, материалы по которому я Вам высылал. 5. Конусность корпуса не нужна, а поток не вращаться не может, так как проходит через шнек.

6. Соплом Лаваля можно считать каждое уменьшение шага винтовой линии шнека. Ламинарности потока в шнеке не получится из-за того, что перед каждым уменьшенным шагом навивки всегда будет очень большое давление с замедлением потока, об зону этого большого давления будет ударяться сзади идущий поток и в этих пробках всегда будут знакопеременные нагрузки вибрации. Все источники вибраций не могут не влиять друг на друга, поэтому суммарные волновые графики вибраций будут далеки от синусоидальной кривой и каждый зубец этой кривой будет носителем своих вибраций и эта колебательная система будет высокочастотной и будет создавать условия для выделения энергии на молекулярном уровне в счет этих энергоотдающих полей, которые в отличие от электричества, магнетизма и гравитации не поддаются измерениям и являются передовой на фронте науки.

7. Шнековая конструкция, действительно, несет в себе очень много преимуществ.

8. Тот вариант роторного насоса вытеснения, который я Вам выслал, имеет много заявленных вариантов, среди которых есть вариант, в котором нет дублирующей зубчатой передачи (или как это в присланном Вам чертеже опытного образца - внешняя зубчатая передача с передаточным отношением, равным единице, заменена простой передачей, которая заявлена мной и чертеж по заявке смотрите в ПРИКРЕПЛЕНИИ, в котором коромысло посредине шарнирно установлено на корпусе и своими концами через продольные прорези связано с его установкой накрест, а не параллельно, как у паровоза, с эксцентриками обоих валов насоса), а выполнен так, что барабаны не катятся друг по другу с небольшим проскальзыванием, а находятся в мелкозубом зубчатом зацеплении (это обеспечивает надежно замыкание рабочего объема на его коротком участке между входным и выходным отверстиями в корпусе насоса, а большие зубья, которые играют роль поршней, коррегированы так, что их начальная окружность совпадает с начальной окружностью этой мелкозубой зубчатой передачи, с целью, чтобы сохранялось передаточное отношение мелкозубой зубчатой передачи и для этой крупнозубой передачи, чтобы эти очень разные по высоте зуба передачи могли без проблем работать по одной и той же начальной окружности и между барабанами не было проскальзывания. Можно большие зубья не коррегировать, а просто большой зуб выполнять (без его ножки)на барабане, выполненном его цилиндрической поверхностью по начальной окружности мелкозубого зубчатого венца, находящего на этом же барабане, начиная от его этой же начальной окружности и зубчатую впадину на другом барабане к нему соответственно.

9. Современные вихревые теплогенераторы чаще всего выполняются с теплообменниками (рабочая жидкость имеет короткий контур и поэтому в насосе большое давление присутствует и на его входе, что выручает современные центробежные насосы, применяемые чаще всего у них, чтобы иметь высокое давление и на выходе из насоса) и уже с этими теплообменниками связан водяной контур отопления или контур с какой-либо жидкостью, в производственном цикле обработки которой присутствует нагрев. Рабочей жидкостью современных вихревых теплогенераторов с теплообменником является: глицирин, глицирин с водой или же всевозможные нефтепродукты. Рабочая жидкость у них в начальный момент запуска имеет вязкость гораздо больше вязкости воды, зато после нагрева их вязкость резко падает и становится на много меньше вязкости воды.

10. Уплотнения имеются только у насоса, а он работает в нормальных условиях, единственно, что его нужно выполнять с коррозиестойким покрытием или из соответствующего сплава, а уплотнения - не под простую воду, а под морскую.

С уважением Измалков Герман Иванович

www.apxu.ru