Виды электродов по типу покрытия. Покрытия электродов


Покрытие электрода для сварки

 

Изобретение может быть использовано при изготовлении сварочных электродов. Покрытие электрода содержит компоненты в следующем соотношении, мас.%: мрамор 12-13, тальк 19-20, волластонит 45-46, ферросиликомарганец 11-12, ферротитан 11-12. Покрытие обеспечивает улучшение сварочно-технологических свойств при снижении стоимости за счет введения недорогих недефицитных компонентов. 3 табл.

Изобретение относится к области сварки углеродистых сталей, в частности, к покрытиям электродов, применяемых для сварки.

Известна шихта порошковой проволоки для сварки сталей, содержащая рутиловый концентрат, гематит, марганец, алюминий, фторид лития, силикокальций, оксид кадмия, лопариновый концентрат, никель при следующем соотношении компонентов, мас.%: рутиловый концентрат 35-40; гематит 38-45; марганец 6-8; алюминий 1,5-2,5; фторид лития 2,0-4,5; силикокальций 1,5-3,5; оксид кадмия 0,5-1,5; лопариновый концентрат 0,5-2,0; никель 3-5. Коэффициент заполнения шихтой полости проволоки составляет 30-34% (см. патент РФ №2012470, МПК5 В 23 К 35/368).Основным недостатком описанной шихты и, следовательно, порошковой проволоки для сварки сталей является высокая стоимость, обусловленная использованием дорогостоящего остродефицитного компонента рутила. Кроме этого, сфера применения описанной шихты ограничена сваркой сталей преимущественно под водой, а именно, при ремонте корпусов судов, восстановлении трубопроводов и других гидротехнических сооружений.Известен керамический флюс для сварки низколегированных высокопрочных сталей, содержащий обожженный магнезит, синтетический шлак типа флюса АНФ-6, глинозем, волластонит, гематит, металлический марганец, ферротитан (Т=6,7%), ферробор (В=20%), медный порошок и алюмомагний при следующем соотношении компонентов, мас.%: обоженный магнезит 26,0-34,0; флюс АНФ-6 36,0-45,0; глинозем 8,0-10,0; волластонит 13,0-19,0; гематит 0,5-0,9; металлический марганец 0,8-1,8; ферротитан 0,5-2,5; ферробор 0,1-1,1; медный порошок 0,2-0,8; алюмомагний 0,1-0,2. Отношение титана к бору выбрано в пределах 1,67-41,9, меди к бору 1,36-40,0, гематита к алюмомагнию 2,5-7,5 (см. патент РФ №1836203, МПК5 В 23 К 35/362).Сфера применения этого вещества ограничена автоматической сваркой под слоем флюса, и оно не может быть использовано в качестве покрытия электрода даже с учетом его невысокой стоимости вследствие отсутствия в составе такого компонента, как рутил.Известно покрытие электрода марки УОНИ-13/55 для сварки, содержащее мрамор, плавиковый шпат, кварцевый песок, ферромарганец, ферросилиций, ферротитан при следующем соотношении компонентов, мас.%: мрамор - 54; плавиковый шпат - 15; кварцевый песок - 9; ферромарганец - 5; ферросилиций - 5; ферротитан - 12. Электрод с этим покрытием относится к типу Э-50А. Покрытие наносится на проволоку. Сварка производится на постоянном токе обратной полярности от серийно выпускаемых источников питания (см. Закс И.А. Электроды для дуговой сварки сталей и никелевых сплавов: Справочное пособие. - СПб. 1996, с. 332, табл. 7.6).Это покрытие электрода имеет достаточно высокую стоимость из-за наличия остродефицитного плавикового шпата и не высокие сварочно-технологические свойства, во-первых, вследствие присутствия достаточного количества вредных примесей - серы и фосфора - в наплавленном металле, во-вторых, вследствие того, что электроды марки УОНИ-13/55 требуют обязательного подключения к источнику питания постоянного тока, тщательной очистки от ржавчины, жировых пятен поверхностей свариваемых изделий.Наиболее близким к предлагаемому изобретению (прототипом) является покрытие электрода марки МР-3 для сварки, содержащее мрамор, тальк, ферромарганец, рутил, каолин, целлюлозу при следующем соотношении компонентов, мас.%: мрамор - 18; тальк - 10; ферромарганец - 15,5; рутил - 50; каолин - 5; целлюлоза - 1,5. Электрод с таким покрытием относится к типу Э46. Покрытие наносится на проволоку. Для сварки используется источник питания переменного тока (см. Мойсов Л.И., Бурылев Б.П. Физико-химические основы создания новых сварочных материалов. - Ростов-на-Дону: Изд. Ростовского университета, 1993, с. 5, табл. 1.3).Недостатками покрытия электрода марки МР-3 являются высокая стоимость, обусловленная использованием дорогостоящего остродефицитного ввозимого из-за границы компонента-рутила, составляющего 50% массы покрытия, а также низкие сварочно-технологические свойства вследствие достаточно большого количества вредных примесей в наплавленном металле, таких как сера и фосфор, что отрицательно сказывается на качестве сварного шва.Предлагаемым изобретением решается задача снижения стоимости покрытия электрода для сварки путем введения недорогого недефицитного компонента и улучшения сварочно-технологических свойств.Для достижения указанного технического результата покрытие электрода для сварки, содержащее мрамор и тальк, дополнительно содержит волластонит, ферросиликомарганец и ферротитан при следующем соотношении компонентов, мас.%:Мрамор 12-13Тальк 19-20Волластонит 45-46Ферросиликомарганец 11-12Ферротитан 11-12В качестве недорого недефицитного компонента используется волластонит, являющийся местным сырьем. Волластонит заменяет дорогостоящий остродефицитный компонент рутил.Улучшение сварочно-технологических свойств обеспечивается путем снижения содержания вредных примесей в наплавленном металле, таких как сера и фосфор, при одновременном сохранении показателей механических свойств наплавленного металла (см. табл. 1-3).Содержание в покрытии электрода мрамора, составляющего 12-13 мас.%, является оптимальным, так как оно определено из условия обеспечения надежной газовой защиты сварочной ванны и ограничения допустимого содержания углерода в наплавленном металле. При уменьшении количества мрамора ниже 12 мас.% газовая защита сварочной ванны ухудшается, и в наплавленном металле образуются поры. При увеличении количества мрамора свыше 13 мас.% возрастает тугоплавкость покрытия электрода и ухудшается формирование сварного шва.Оптимальное количество вводимого в покрытие электрода талька, составляющее 19-20 мас.%, определяется, во-первых, пластическими свойствами покрытия, необходимыми для обмазки электрода, во-вторых, необходимостью иметь шлаковую систему типа CaO-MqO-SiО2. Количество талька ниже 19 мас.% приводит к ухудшению прессуемости покрытия электрода, а количество талька более 20 мас.% приводит к ухудшению формирования сварного шва.Введение в состав покрытия волластонита в количестве 45-46 мас.% является оптимальным, так как приводит к снижению содержания в наплавленном металле вредных примесей - серы и фосфора. Введение волластонита в количестве менее 45 мас.% приводит к увеличению содержания в наплавленном металле серы и фосфора, что ухудшает качество сварного шва. Введение волластонита в количестве более 46 мас.% приводит к повышению тугоплавкости шлака, образующегося в процессе плавления электродного покрытия, и повышению склонности наплавленного металла к образованию пор.Ферросиликомарганец и ферротитан в одинаковых количествах 11-12 мас.% введены в состав покрытия в качестве раскислителей и для обеспечения необходимых механических свойств наплавленного металла. Введение ферросиликомарганца и ферротитана в количествах, меньших чем 11 мас.%, приводит к уменьшению прочности наплавленного металла, а введение этих компонентов в количествах, больших чем 12 мас.%, приводит к неоправданному увеличению прочности наплавленного металла и повышению стоимости покрытия электрода.Предлагаемое изобретение иллюстрируется следующим примером. Для изготовления покрытия электродов для сварки использовали 12-13 мас.% мрамора, 19-20 мас.% талька, 45-46 мас.% волластонита, 11-12 мас.% ферросиликомарганца и 11-12 мас.% ферротитана. Компоненты покрытия загружались в смеситель для смешивания с последующим добавлением до 30% от массы жидкого стекла. Затем полученная обмазка наносилась на металлические стержни с диаметром до 4 мм из стали Св08 путем опрессовки.Таким образом были получены электроды с заявляемым покрытием. В процессе изготовления электродов установили, что они легко поддаются опрессовке, а покрытие электродов имеет высокое качество и эксплуатационную надежность.Результаты испытаний покрытия электрода УОНИ-13/55, покрытия электрода МР-3, выбранного в качестве прототипа, и заявляемого покрытия электрода приведены в табл. 1, отображающей химические составы наплавленных металлов, в табл. 2, отображающей механические свойства наплавленных металлов, в табл. 3 оценки сварочно-технологических свойств электродов.Как следует из таблиц, введение в покрытие электрода компонента волластонита позволяет уменьшить содержание серы в наплавленном металле в 2 раза и фосфора в наплавленном металле в 1,7 раза по сравнению с содержанием серы и фосфора в наплавленном металле, полученном с использованием покрытия электрода, выбранного в качестве прототипа. Прочность на разрыв наплавленного металла, полученного с использованием предлагаемого покрытия электрода, на 10-15% выше прочности на разрыв наплавленного металла, полученного с использованием покрытия электрода, выбранного в качестве прототипа, относительное удлинение - более чем на 30% выше относительного удлинения наплавленного металла, полученного с использованием покрытия электрода, выбранного в качестве прототипа. Таким образом, приведенный в табл. 1 химический состав наплавленного металла, полученного с использованием электрода для сварки с заявляемым покрытием, позволяет обеспечить высокие механические свойства этого металла (см. табл. 2) и улучшенные сварочно-технологические свойства электродов (см. табл. 3).Результаты испытаний показывают, что по механическим свойствам наплавленного металла электроды с предлагаемым покрытием относятся к типу Э-50А по ГОСТ 9466-75 “Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей”.Использование предлагаемого покрытия электрода по сравнению с известным покрытием электрода марки МР-3 - прототипом позволяет снизить стоимость за счет замены дорогостоящего и остродефицитного рутила на волластонит, улучшить сварочно-технологические свойства электрода при сохранении высоких показателей механических свойств наплавленного металла, полученного с использованием этого покрытия электрода.
Покрытие электрода для сварки

Формула изобретения

Покрытие электрода для сварки, содержащее мрамор и тальк, отличающееся тем, что оно дополнительно содержит волластонит, ферросиликомарганец и ферротитан при следующем соотношении компонентов, мас.%:Мрамор 12-13Тальк 19-20Волластонит 45-46Ферросиликомарганец 11-12Ферротитан 11-12

РИСУНКИ

Рисунок 1

www.findpatent.ru

Виды электродов по типу покрытия

Основной параметр, по которому производится разделение электродов на различные виды – это тип покрытия. Давайте попробуем разобраться во всем этом разнообразии электродов, которые решают абсолютно разные задачи.

Виды электродов по типу покрытия Электроды с кислым покрытием Данная разновидность электродов отличается наличием в своем составе оксидов кремния/алюминия и ферромарганца. Крахмал и декстрин, также присутствующие в покрытии, обеспечивают газовую защиту. «Кислые» электроды используются очень широко при работе с металлическими деталями и конструкциями не только загрязненными ржавчиной, но и пораженными коррозией. При этом швы получаются достаточно прочными – пористость исключается. Благодаря компонентам с повышенной кислотностью, при сварке такими электродами происходит эффективная дегазация металла в ванне расплава. Однако очищения от фосфора не происходит, и создается переизбыток кислорода. Шов, образованный при плавлении электрода с кислым покрытием, насыщается кислородом и часто включает неметаллические образования – чем и объясняется его пониженная ударная вязкость (не более 12 кгс-м/см2) и сравнительно слабая устойчивость к появлению кристаллизационных и «горячих» трещин. Из-за высокой окислительной способности применение «кислых» электродов невозможно для многих ответственных конструкций. Такие электроды пригодны для сваривания длинной дугой в любых пространственных положениях постоянным либо переменным током. Но газы, которые при этом испаряются, являются высокотоксичными – из-за значительной концентрации марганца. Электроды с основным покрытием Так называемое основное (низководородное) электродное покрытие содержит мел, мрамор (карбонат кальция), плавиковый шпат (разновидность кальциево-фторового соединения) и ферросплавы. Большое содержание карбонатов вызывает выделение необходимого количества защитного углекислого газа при разрушении обмазки. Чаще всего электроды с основным покрытием используются для проведения сварочных работ постоянным током, имеющим обратную полярность. Варить переменным током посредством таких электродов становится возможным тогда, когда в составе их покрытия дополнительно присутствуют поташ, жидкое стекло и т.п. Сварка низководородными электродами осуществляется во всех положениях короткой дугой. Предварительно требуется провести тщательную очистку рабочих поверхностей от влаги, ржавчины и грязи. Металл шовного соединения содержит незначительную концентрацию кислорода, отличается прекрасной устойчивостью к ударным нагрузкам (25кгс-см2), на нем не возникают «горячие» и кристаллизационные трещины. Кроме того, шов отлично переносит резкие перепады температуры и является резистентным по отношению к процессам старения. Благодаря низкой окислительной способности компонентов покрытия основных электродов, при сварке происходит преобразование фосфора и серы в шлак – поэтому швы получаются эластичными и чистыми. Кремниево-марганцевые добавки придают им прочность. Пористость металла сварной ванны возрастает в том случае, если работы проводятся длинной дугой, поверхность недостаточно хорошо очищена или применяются электроды с толстой обмазкой. Наличие фтористых соединений немного снижает стабильность электродуги – так как ионизация уменьшается. Основные электроды обладают повышенной чувствительностью к влажной среде, поэтому их необходимо прокаливать и сушить перед применением даже тогда, когда «пролежали» они совсем немного времени. Прокаливание – это очень важно – иначе качество сварного соединения существенно снизится. Электроды с основным покрытием повсеместно применяются для сварки углеродистых, низколегированных и высоколегированных сталей – в том числе – для сварки ответственных швов. Кроме того, данными электродами можно работать при низких температурах и с толстостенными металлоконструкциями, которые имеют в своем составе повышенную концентрацию серы и фосфора. Электроды с целлюлозным покрытием Данная разновидность обмазки содержит до пятидесяти процентов органических компонентов: наиболее часто – целлюлозу, а также марганец, рутил и другие неорганические составляющие. Благодаря высокому уровню концентрации защитного газа при сварке образуется лишь незначительное количество шлака. Электроды с целлюлозным покрытием используются для сваривания металлоконструкций в любых пространственных положениях посредством переменного тока. Предварительной обработки рабочих поверхностей не требуется. Кроме того, целлюлозные электроды позволяют проварить вертикальный шов сверху вниз – что очень удобно при определенных условиях. Основной недостаток электродов с целлюлозным покрытием в том, что качество соединения снижается в результате чрезмерного насыщения водородом металлического шва. Электроды с рутиловым покрытием Основу покрытия рутиловых электродов составляет двуокись титана (минерал рутил), а также – магнезит, мрамор, каолин, полевой шпат и ряд других органических и минеральных компонентов. Благодаря разрушению органики и карбонатов достигается должный уровень защиты сварной ванны. Данная разновидность электродов почти по всем показателям превосходит основные и кислые. Состав обмазки обеспечивает минимальную пористость при сваривании даже необработанных поверхностей как длинной, так и короткой дугой. Металл шовного соединения более устойчив к возникновению кристаллизационных трещин, чем при использовании электродов с основным покрытием, и «горячих» трещин при применении «кислых» электродов. Электроды с рутиловым покрытием выделяют при плавлении газовые соединения малой токсичности и образуют легко отслаивающийся шлаковый слой. Кроме того, они создают стабильную дугу и зажигаются легче, чем другие электроды. Еще одно достоинство рутила – минимальное разбрызгивание металла сварной ванны. Что касается показателя прочности, то рутиловые электроды обеспечивают самое лучшее сопротивление так называемой усталости шовного соединения при угловом сваривании в конструкциях, несущих значительные нагрузки. Возможность работать в различных пространственных положениях и степень производительности зависит от концентрации железа в рутиловой обмазке. Покрытия смешанного типа представляют из себя несколько вариантов совмещения других компонентов с основным рутиловым элементом. Это позволяет соответствующим образом улучшить свойства рутиловых электродов и повысить качество шва в зависимости от сферы применения. Неплавящиеся электроды Электроды неплавящегося типа производятся из тугоплавких токопроводящих материалов – циркония, графита, гафния и вольфрама. Используются они для технологии сваривания в среде инертных защитных газов. В соответствии с применяемым газом подбирается и разновидность электрода. Графит и вольфрам, к примеру, «идут в паре» с аргоном, гелием и их смесями, цирконий и гафний – с азотом. Также неплавящиеся электроды отличаются углом заточки и диаметром – 0,8/6 мм. Электродная проволока Проволока применяется при дуговой непрерывной сварке полуавтоматическими сварочными аппаратами в среде защитного газа (активного или инертного). В качестве меры измерения количества электродной проволоки выступает вес самой бобины. Диаметр сечения имеет довольно широкий вариативный диапазон – 0,4/6 мм. Существует несколько типов проволоки – порошковая и сплошная (стальная, медная и алюминиевая). Выбор зависит от вида и свойств свариваемого металла, условий сварки и от того, с какими характеристиками требуется получить шовное соединение. Сплошная проволока имеет однородный состав. Она применяется в том случае, когда защита ванны расплава осуществляется посредством подачи активного/инертного газа. Порошковая разновидность имеет сердечник с порошком, который может иметь различный химический состав. В процессе ее плавления дисперсия сердцевины разрушается, в результате чего вокруг сварной ванны образуется защитное облако газа, а затем возникает и шлаковый слой. Химические компоненты проникают и в структуру расплавленного металла, придавая шву необходимые свойства. Элементы, образующие состав сердечника, подразделяются на шлакообразующие, стабилизирующие, легирующие, газообразующие, раскислители и специальные. Электродная проволока производится с «начинкой» пяти разных типов: рутиловая, рутил-флюоритная, рутил-органическая, флюоритная, карбонат-флюоритная. Использование порошковой проволоки имеет большой плюс – не нужно применять тяжелые, крупногабаритные и взрывоопасные баллоны с газом. Также с помощью проволоки можно качественно сваривать детали не только в помещении, но и на открытом воздухе – ветер не будет помехой. Сварочный процесс отличается впечатляющей производительностью, а швы получаются отличными по всем параметрам. При сварочных работах неплавящимися электродами в качестве присадки часто применяют сплошную проволоку. Сварная ванна требует использование присадок тогда, когда зазор между рабочими поверхностями составляет свыше трех миллиметров. Подача проволоки производится как вручную, так и автоматически. Автоматическая подача электродной проволоки осуществляется благодаря работе специального подающего блока. Последний может быть интегрированным в сам сварочник, мобильным (выносным), или находиться непосредственно на горелке. В зависимости от типа подачи существуют толкающие, тянущие и тянуше-толкающие механизмы. По количеству роликов подающие блоки бывают двух/четырехроликовые. Роликовые механизмы предназначены для разных видов проволоки и отличаются размером самих роликов и конфигурацией (наличие/отсутствие продольно расположенных роликов).

Кроме статьи "Виды электродов по типу покрытия" смотрите также:

nanolife.info

Особенности различных видов электродных покрытий

ПРОИЗВОДСТВО ЭЛЕКТРОДОВ ДЛЯ РУЧНОЙ СВАРКИ

Влияние вида покрытия на качество наплавленного металла

Раскисление наплавленного металла одним или несколькими раскислителями снижает содержание кислорода, растворенного в жидком металле перед его кристаллизацией. Однако для обеспече­ния высоких пластических свойств металла шва необходимо не только снизить концентрацию остаточного кислорода, но и воз­можно полнее уменьшить количество продуктов раскисления, ос­тающихся в сварочных швах. Это можно осуществить подбором со­става покрытия, обеспечивающего определенные физико-химичес­кие свойства образующегося шлака. Необходимо, чтобы шлак при температуре жидкого металла обладал низкой вязкостью, хорошо смачивал жидкий металл и не препятствовал правильному форми­рованию шва. Он также должен иметь высокую химическую актив­ность по отношению к составу оксидных включений, образующих­ся в наплавленном металле. Омывая капли жидкого металла и сварочную ванну, шлак должен растворять и связывать продукты раскисления металла.

Учитывая, что жидкий металл как в капле, так и в сварочной ванне находится в состоянии непрерывного конвективного переме­шивания, такое рафинирование металла шва может быть осуществ­лено в значительной степени при условии совместного подбора раскислителей и шлаковой системы, т. е. рецептуры покрытия электродов.

Рассмотрим образование и химический состав оксидных вклю­чений и их взаимодействие со шлаком при сварке электродами с разными видами покрытий. (Отметим, что подразделение покры­тий по видам, хотя и нормировано стандартом, является весьма приближенным).

Электроды с кислым покрытием. Покрытие состоит из большо­го количества оксидов железа (Fe203) или марганца (Мп02) и раз­личных силикатов с высоким содержанием Si02, в результате чего обладает высоким окислительным потенциалом. В покрытии мо­жет присутствовать также ильменит или титановый концентрат. Раскислителем обычно является ферромарганец. Для газовой защиты вводят электродную целлюлозу (до 5%).

Шлак, образующийся при плавлении электрода, содержит боль­шое количество оксидов железа. Поэтому окисление плавящегося металла при высокой температуре осуществляется как за счет ат­мосферы дуги, так и за счет кислорода, переходящего из шлака.

Применяемый в качестве раскислителя марганец начинает окисляться в плавящемся покрытии при взаимодействрш с оксида­ми железа и частично — за счет кислорода атмосферы дуги. В жид­кий металл марганец переходит в весьма умеренном количестве.

При высокой температуре обычно происходит восстановление из Si02 небольшого количества кремния (0,07-0,12%) по реакции Si02 + 2Мп = 2МпО + Si (кремневосстановительный процесс). При этом марганец и кремний сосуществуют с кислородом, не взаимо­действуя с ним. Может протекать только реакция между углеродом и кислородом с образованием оксида углерода (СО).

В хвостовой части ванны, имеющей сравнительно низкую тем­пературу, восстановленный кремний и марганец, перешедший из покрытия, вступают в реакцию с кислородом, растворенным в жид­ком металле. В результате образуются мелкодисперсные включе­ния Si02 и МпО, которые частично могут образовать между собой химическое соединение Mn0-Si02 с температурой плавления 1285 °С. Такие соединения способны укрупняться за счет слияния нескольких молекул, и наплавленный металл оказывается значи­тельно загрязненным как крупными, так и мелкодисперсными включениями.

О количестве включений в наплавленном металле можно су­дить по содержанию кислорода в сварных швах, которое составляет 0,10-0,15%. При комнатной температуре кислород не растворяется в железе и может находиться только в виде оксидов Si02, FeO и МпО. Следует отметить, что крупные включения могут иметь экзогенное происхождение, так как заносятся в жидкий металл из шлака. На­личие включений, особенно мелкодисперсных, существенно сни­жает служебные характеристики сварных швов, в первую очередь, значения ударной вязкости при низких температурах. Кроме того, металл шва склонен к образованию кристаллизационных трещин.

Технологически электроды при сварке характеризуются мелко­капельным переносом и формированием плоских и гладких свар­ных швов.

Электроды с рутиловым покрытием. Покрытие состоит из большого количества рутила (с содержанием ТЮ2 примерно 95%), алюмосиликатов (калиевая слюда, каолин, полевой шпат), умерен - ного количества карбонатов (мрамор, магнезит). Раскислителем служит ферромарганец. Газовая защита, помимо карбонатов, осу­ществляется целлюлозой, вводимой в покрытие электродов (до 4-5%). В качестве связующего применяют калиево-натриевое или натриево-калиевое жидкое стекло. Атмосфера дуги является срав­нительно слабо окислительной за счет кислорода, образующегося при диссоциации карбонатов СаС03—>Са04-С0 + 1/2 02, разло­жении целлюлозы и при диссоциации влаги покрытия (гигроско­пической и конституционной).

Помимо окисления жидкого металла кислородом из атмосферы дуги, окисление происходит в результате кремневосстановительно­го процесса, возможного при наличии в покрытии большого коли­чества кислых оксидов (ТЮ2, Si02). Восстановление кремния про­текает при высоких температурах за счет марганца, находящегося в покрытии, а также за счет восстановления его железом по реакции Si02 + 2Fe = Si + 2FeO. Оксиды железа частично переходят в шлак, частично растворяются в жидком металле.

Концентрация восстановленного кремния достигает 0,13-0,20%, что заметно выше, чем при сварке электродами с кислым покрытием, а содержание кислорода обычно находится на уровне 0,04-0,07%.

При высоких температурах перешедший из покрытия марганец и восстановленный кремний не вступают в реакцию с кислородом, растворенным в жидком металле; возможна лишь реакция окисле­ния углерода. По мере понижения температуры такие реакции на­чинаются. При высокой концентрации восстановленного кремния (Si>0,20%) и пониженном содержании марганца (Мп<0,5%) в швах будут находиться, главным образом, мелкодисперсные включения оксидов кремния, отрицательно влияющие на пластические свой­ства швов. Поэтому развитие кремневосстановительного процесса целесообразно ограничить содержанием кремния до 0,13-0,15%. Это обычно осуществляют введением в состав покрытия карбона­тов (CaC03, MgC03), которые при плавлении покрытия разлага­ются на углекислый газ и оксиды основного типа СаО и MgO.

Связывая в шлаке оксиды кремния в прочные соединения Ca0-Si02 или Mg0Si02, основные оксиды понижают кислотность шлака, снижая тем самым концентрацию восстановленного крем­ния. Если при этом содержание марганца в наплавленном металле будет находиться на уровне 0,6%, то при снижении температуры хвостовой части сварочной ванны в ней одновременно будут обра­зовываться как оксиды кремния, так и оксиды марганца, которые,

соединяясь, дают легкоплавкое соединение Si02-Mn0. Соединения такого типа способны коагулировать (укрупняться), приобретая сферическую форму, что снижает вредное влияние неметалличес­ких включений.

В связи с пониженным содержанием кислорода в наплавленном металле и меньшим количеством оксидных включений электроды с рутиловым покрытием обеспечивают более высокие служебные ха­рактеристики сварных швов по сравнению с электродами с кислым покрытием.

Электроды с рутиловым покрытием обладают высокими сва- рочно-технологическими свойствами. Они позволяют легко выпол­нять сварку не только на постоянном, но и на переменном токе, практически во всех пространственных положениях, обеспечивают хорошее формирование сварных швов, легкое отделение шлака. Важной характеристикой является их сравнительно низкая токсич­ность при сварке.

Перечисленные особенности рутиловых электродов сделали их незаменимыми для сварки ответственных конструкций из углеро­дистых и низколегированных конструкционных сталей прочнос­тью до 490 МПа. В настоящее время рутиловые покрытия исполь­зуют и в высоколегированных электродах.

На базе электродов с рутиловым покрытием разработаны высо­копроизводительные электроды. Для этой цели в покрытие вводят железный порошок, который, являясь дополнительным присадоч­ным материалом, повышает коэффициент наплавки электродов. Другой разновидностью высокопроизводительных электродов яв­ляются рутиловые с толстым покрытием при соотношении D/d > 1,6. Их отличает легкое возбуждение дуги и мелкочешуйча­тые шры благоприятной формы.

Электроды с целлюлозным покрытием. Покрытие таких элект­родов содержит значительное количество электродной целлюлозы, доходящее до 40 45%. В качестве шлакообразующих используют рутил, тальк, иногда марганцевую руду или гематит. Раньше широ­ко использовали асбест, исключенный затем по санитарно-гигие­ническим показателям[2]. Для раскисления металла применяют фер­ромарганец, связующим служит натриевое или натриево-калиевое жидкое стекло. Высокое содержание целлюлозы в покрытии элект­родов обеспечивает мощную газовую защиту наплавляемого метал­ла даже при малом значении коэффициента массы покрытия, не превышающего 20-25%.

Газы, выделяющиеся при разложении целлюлозы, содержат большое количество водорода, оксида углерода и умеренное коли­чество кислорода. В связи с этим атмосфера дуги является слабо­окислительной.

В состав покрытия входит большое количество кислых оксидов, поэтому при сварке наблюдается существенное развитие кремне­восстановительного процесса. Для его частичного подавления в по­крытие иногда вводят марганцевую руду (Мп02), реже — гематит (Fe203). Прокалку электродов производят при температуре около 120-130 °С, что частично сохраняет влагу в покрытии и тем самым повышает его окислительный потенциал. При этих условиях на­плавленный металл имеет следующий химический состав: С < 0,12%; Мп < 0,50%; Si < 0,20%. Если прокалку электродов произ­водить в течение длительного времени при температуре > 170°С, то покрытие теряет чрезмерно большое количество связанной влаги, в результате чего его окислительный потенциал снижается и кремне­восстановительный процесс проходит в большей степени. Одно­временно с этим происходит также науглероживание наплавленно­го металла за счет восстановления углерода марганцем или желе­зом из его оксида СО.

Содержание кислорода в металле швов сравнительно невелико и составляет около 0,05-0,06%. Однако из-за сравнительно низкого содержания марганца и повышенного содержания кремния в метал­ле швов присутствуют, главным образом, мелкодисперсные включе­ния оксидов кремния. Поэтому пластические свойства наплавлен­ного металла, особенно ударная вязкость, весьма посредственны.

Отличительной особенностью электродов является возмож­ность выполнения сварки во всех пространственных положениях с высокой линейной скоростью и обеспечение глубокого проплавле­ния основного металла с формированием с обратной стороны шва плавного валика. Поэтому электроды с целлюлозным покрытием нашли широкое применение для сварки корневых швов стыков ма­гистральных трубопроводов. К недостаткам таких электродов отно­сят грубочешуйчатую поверхность швов, склонность к подрезам по свариваемым кромкам, повышенные потери на разбрызгивание, высокое содержание водорода в металле шва.

Электроды с основным покрытием. Покрытие состоит из боль­шого количества карбонатов щелочно-земельных металлов, глав­ным образом мрамора, плавикового шпата, небольшого количества кварца или рутила. Раскислителями являются ферротитан, ферро­силиций, ферромарганец, иногда ферроалюминий. В качестве свя­зующего применяют натриевое, натриево-калиевое или калиево­натриевое жидкое стекло.

Достаточно надежная газовая защита осуществляется за счет тер­мического разложения карбонатов по реакции СаС03—>Са0+С02.

Сильные раскислители (титан, алюминий, кремний) начинают взаимодействовать с углекислым газом еще в процессе плавления покрытия, например, по реакции с титаном 2С02 + Ті = 2С0 +ТЮ2. Углекислый газ, не вступивший в реакцию с раскислителями, в процессе плавления покрытия при высокой температуре сварочной дуги диссоциирует с выделением активного кислорода по реакции С02—»С0 + 1/2 02. Поэтому атмосфера дуги является окисли­тельной.

При высоких температурах кремний, титан и марганец сосуще­ствуют с кислородом, растворенным в металле. По мере снижения температуры в зависимости от концентрации и вида раскислителей кислород вступает с ними в реакцию, образуя оксиды соответству­ющих элементов. Обычно это бывают наиболее активные элемен­ты: титан и кремний. Образующиеся при этом кислые оксиды ТЮ2 и Si02 имеют большое сродство к шлаку с высокой основностью, содержащему значительное количество СаО.

Промывая сварочную ванну, такой шлак связывает кислые ок­сиды в прочные соединения СаОТЮ2 и Ca0-Si02, очищая тем са­мым металл от неметаллических включений. В результате, при ус­ловии соблюдения технологии изготовления и применения элект­родов с основным покрытием, содержание кислорода в наплавлен­ном металле составляет около 0,02-0,03%.

Низкое содержание кислорода, а следовательно, малое количе­ство оксидных включений, обеспечивает весьма высокие пластиче­ские свойства сварных швов как при положительных, так и при от­рицательных температурах. Другим важнейшим преимуществом электродов с основным покрытием является наибольшая среди по­крытий всех видов стойкость металла шва против образования тре­щин. Необходимо учесть, что это обеспечивается только при при­менении электродов с низким содержанием влаги в покрытии. По­следнее достижимо при строгом соблюдении предписанной техно­логии изготовления электродов, особенно в части применяемых пластификаторов и режимов термообработки электродов.

Электроды с покрытием рассматриваемого вида дают возмож­ность выполнять сварку практически во всех пространственных положениях с использованием постоянного тока, главным образом, при обратной полярности (на электроде «+»).

Высокая чистота наплавленного металла по различным вред­ным включениям и газам позволяет применять эти электроды для сварки ответственных и особо ответственных конструкций из угле­родистых и низколегированных сталей. Электроды с дополнитель­ным легированием необходимыми элементами через покрытие применяют для сварки сталей повышенной и высокой прочности, легированных теплоустойчивых сталей, для наплавочных работ.

На базе основных покрытий разработаны многочисленные мар­ки электродов для сварки высоколегированных сталей и сплавов.

Электроды с основным покрытием не лишены недостатков, к которым относят невысокую технологичность, особенно в услови-

Таблица 16. Содержание газов в наплавленном металле

Вид

электродного

покрытия

Водород, мл/100г металла

Углерод, кислород и азот, %

[нПиф

[Н]0ап

[С]

[0]пбщ

Кислое

5 15

8-12

0,08-0,09

0,08-0,12

0,02-0,03

Рутиловое и ильменитовое

20-30

7-15

0,08-0,12

0.06 0,10

0,01-0,02

Целлюлозное

30 45

12-18

0,10-0,14

0,03-0,07

0,01-0,02

Основное

1-10

2-7

0,05-0,08

0,02-0,06

0,01-0,015

* Определение по методике Международного института сварки.

Таблица 17. Влияние вида электродного покрытия на общее содержание и состав неметаллических иключений в наплавленном металле

Вид

электродного

покрытия

[Mn]/[Si]

Общее содержание оксидов, мае. %

Состав оксидов, %

МпО

Si(>2

А1203

FeO

Кислое

1-2

0,08-0,17

20-45

45-75

1-5

1 -5

Рутиловое и ильменитовое

2-6

0,06-0,13

5- 20

45 75

5-15

1-6

Целлюлозное

3-5

0,05-0,14

15-35

30-50

-

7-20

Основное

4-8

0,02-0,05

25-35

20-30

5-10

25 35

Таблица 18. Общее содержание фосфора и серы, а также характеристика сульфидных включений фазы в наплавленном металле и их форма (стержень Св-08А)

Вид

электродного

покрытия

Содержание в наплавленном металле, %

Сульфидная фаза

Р

S

Сфероидальная и полигональная

Цепочки и пленки

Кислое

0,025-0,040

0,025-0,045

Крупные (более 5 мкм)

Есть

Рутиловое и ильменитовое

0,020-0,035

0,020-0,035

Средине 3-5 мкм

Редко

встречаются

Целлюлозное

0.015-0,030

0,020-0,030

Основное

0,010-0,020

0,010-0,020

Мелкие (не более 3 мкм)

Нет

Таблица 19. Характеристики вязкопластических свойств металла шва

Вид

электродного

покрытия

Относи­тельное удлине­ние 85, %

Попереч­

ное

сужение

(р,%

Ударная вязкость (образец с круглым надрезом), Дж/см2, при температуре, °С

Температура перехода в хрупкое состояние, °С

20

-20

-40

-60

Кислое

16-20

45-55

60-

100

30-

70

-

-

+ 15-0

Рутиловое и ильмени говое

18-30

50-60

80-

180

50-

80

25-

60

-

+10- -15

Целлюлозное

16-25

55-65

80

150

60-

90

30-

70

-

+ 10- 20

Основное

22-35

60-70

150-

250

100-

180

60-

100

30-

80

-20 - -70

ях поточного производства; чувствительность к порообразованию при сварке, требующую особой тщательности при их хранении, транспортировке, подготовке к использованию, безусловного вы­полнения предписаний по чистоте и влажности свариваемых кро­мок; сложность при сварке на переменном токе.

Показатели, характеризующие свойства металла шва, выполня­емого электродами общего назначения с покрытиями разных ви­дов, приведены в табл. 16-19 [9].

msd.com.ua