Цифровые микросхемы. Логический элемент НЕ (INV). Инвертор микросхема
Цифровые микросхемы. Логический элемент НЕ (INV)
Всем доброго времени суток! Как дом строят из кирпичей, так и цифровые устройства состоят из простых элементов – цифровых микросхем. Наиболее простые из них – логические элементы (или вентили, gates). В одной микросхеме может содержаться только строго определённое количество логических элементов, их может быть или 1, или 2, или 3, или 4, или 8 в одной микросхеме. Соответственно каждый логический элемент может иметь от 1 до 12 входов и 1 выход. При этом связь между входами и выходом соответствует таблице истинности. Логические элементы относятся к так называемым комбинационным микросхемам, и у них отсутствует какая-либо внутренняя память.
Достоинством логических вентилей является высокое быстродействие и небольшая потребляемая мощность, но на их основе довольно трудно реализовать сложную функциональность, поэтому чаще всего они используются в качестве дополнения к более сложным цифровым микросхемам или микроконтроллерам.
Логический элемент НЕ (Hex Inverters)
Начнём с наиболее простого из логических элементов – логического элемента НЕ (INV) или как его ещё называют инвертора. Как понятно из названия инвертор применяется для инвертирования, то есть изменения уровня сигнала (например, на вход поступает логическая «1», а на выходе получаем логический «0»). Как самый простой из логических элементов инвертор содержит всего один вход и один выход. Инверторы могут быть с тремя типами выходов: 2С, ОК или с Z – состоянием. Как указывалось в этой статье логический элемент НЕ имеет следующую таблицу истинности:
Таблица истинности логического элемента НЕВход | Выход |
0 | 1 |
1 | 0 |
На принципиальных схемах логические элементы НЕ (инверторы) имеют следующее обозначение
Обозначения логических элементов НЕ (Hex Inverters): ANSI (слева) и DIN (справа).Микросхемы инверторов содержат обычно шесть логических элементов НЕ (INV) и обозначаются префиксом ЛН (например, К155ЛН1, К561ЛН2). Как говорилось ранее, для ТТЛ микросхем с выходом ОК необходим выходной нагрузочный резистор (pull-up). Величина которого рассчитывается очень просто: R > U/IOL, где U – напряжение источника питания, к которому подключается резистор.
Применение инверторов
Обычно, элементы НЕ применяются для преобразования уровней сигнала (из высокого в низкий или из низкого в высокий уровень). Второе предназначение – увеличения нагрузочной способности (буферизации) с инвертирование выходов более сложных микросхем. Например, когда сигнал с выхода микросхемы необходимо подать на несколько других, а выходной ток недостаточен.
Но существует и несколько нестандартных применений инверторов: построение генераторов и в случае, когда необходимо создать задержку сигнала.
Схема генератора на логических элементах НЕСхемы генераторов представляют собой обыкновенные RC-генераторы, но характеристики можно рассчитать только приблизительно, так как она зависит от напряжения питания и типа применённой микросхемы. Частота генератора будет равна
Генераторы данного типа можно применять там, где не важна стабильность частоты, а важен лишь факт генерации импульсов. Более стабильные по частоте генераторы получаются, если вместо конденсатора применить кварцевый резонатор.
Довольно часто в цифровых схемах необходимо получит некоторую задержку сигнала, в этом случае инверторы могут пригодиться, на большую задержку рассчитывать не приходится (примерно до 100 нс). Для получения задержки сигнала инверторы соединяют последовательно.
Схема для создания задержки сигнала на инверторахВеличину задержки можно рассчитать приблизительно по сумме задержек входного и выходного сигналов (tPLH и tPHL) для данной микросхемы. Например, для четырёх инверторов величину задержки можно оценить по формуле
но необходимо учитывать, что значения реальных задержек сильно отличаются от тех что даны в справочнике (в справочнике даны максимальные величины, а реальные могут обличаться более, чем в 2 раза).
Более значительные величины задержки сигнала можно получить, используя интегрирующие RC-цепи, но и здесь нельзя точно говорить о величине задержки, потому что разные типы цифровых микросхем срабатывают при разном уровне сигнала и разных напряжениях питания.
Схема для создания задержки сигнала c интегрирующей цепьюНиже приведена таблица некоторых семейств микросхем, которые имеют в своём составе инверторы
Серия | Номер микросхемы | |||||||
ЛН1 | ЛН2 | ЛН3 | ЛН5 | ЛН6 | ЛН7 | ЛН8 | ЛН10 | |
К155 | 6НЕ | 6НЕ(ОК) | 6НЕ(ОК) | 6НЕ(ОК) | 6НЕ(Z) | 6НЕ(Z) | — | — |
К555 | 6НЕ | 6НЕ(ОК) | — | — | — | 6НЕ(Z) | — | — |
КР1533 | 6НЕ | 6НЕ(ОК) | — | — | — | 6НЕ | 6НЕ(ОК) | |
К561 | 6НЕ(Z) | 6НЕ | 6НЕ(Z) | — | — | — | — | — |
КР1554 | 6НЕ | — | — | — | — | — | — | — |
КР1564 | 6НЕ | — | — | — | — | 6НЕ(Z) | — | — |
Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками
Скажи спасибо автору нажми на кнопку социальной сети
www.electronicsblog.ru
Импульсные преобразователи напряжения
Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств
Доброго дня уважаемые радиолюбители!Сегодня на сайте “Радиолюбитель“ мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)
Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного.Импульсные преобразователи подразделяются на группы: – понижающие, повышающие, инвертирующие; – стабилизированные, нестабилизированные; – гальванически изолированные, неизолированные; – с узким и широким диапазоном входных напряжений.Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.
Первая схема.Нестабилизированный транзисторный преобразователь: Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.
Вторая схема.Стабилизированный транзисторный преобразователь напряжения: Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.
Третья схема.Нестабилизированный преобразователь напряжения на основе мультивибратора: Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.
Четвертая схема.Преобразователь на специализированной микросхеме: Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.
Пятая схема.Нестабилизированный двухступенчатый умножитель напряжения: Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.
Шестая схема.Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM: Типовая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.
Седьмая схема.Два напряжения от одного источника питания: Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.
Восьмая схема.Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM: Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.
Девятая схема.Импульсный понижающий стабилизатор на микросхеме фирмы TEXAS: Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)
Десятая схема.Интегральный инвертор напряжения на микросхеме фирмы MAXIM:
Одиннадцатая схема.Два изолированных преобразователя на микросхемах фирмы YCL Elektronics: Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.
Двенадцатая схема.Двухполярный стабилизированный преобразователь напряжения на микросхеме фирмы National Semiconductor: Индуктивность первичной обмотки трансформатора Т1 – 22 мкГн, отношение витков первичной обмотки к каждой вторичной – 1:2.5.
Тринадцатая схема.Стабилизированный повышающий преобразователь на микросхеме фирмы MAXIM:
Четырнадцатая схемаНестандартное применение микросхемы фирмы MAXIM:
Эта микросхема обычно служит драйвером RS-232. Умножение напряжения получается с коэффициентом 1,6…1,8.
radio-stv.ru
Схема китайского инвертора на 250 ватт
Устройство и ремонт инверторов ЖК мониторов
Инвертор типа PLCD2125207A фирмы EMAX
Этот инвертор используется в ЖК мониторах фирм Proview, Acer, AOC, BENQ и LG с диагональю экрана не более 15 дюймов. Он построен по одноканальной схеме с минимальным количеством элементов. При рабочем напряжении 700 В и токе нагрузки 7мА с помощью двух ламп максимальная яркость экрана составляет около 250кд/м2. Стартовое выходное напряжение инвертора составляет 1650В, время срабатывания защиты— от 1 до 1,3с. На холостом ходу напряжение на выходе составляет 1350В. Наибольшая глубина яркости достигается при изменении управляющего напряжения DIM (конт. 4 соединителя CON1) от 0 (максимальная яркость) до 5 В (минимальная яркость). По такой же схеме выполнен инвертор фирмы SAMPO.
Принципиальная схема инвертора PLCD2125207A
Описание принципиальной схемы
Напряжение +12 В поступает на конт. 1 разъема CОN1 и через предохранитель F1 — на выв. 1-3 сборки Q3 (исток полевого транзистора). Повышающий DC/DC-преобразователь собран на элементах Q3-Q5, D1, D2, Q6. В рабочем режиме сопротивление между истоком и стоком транзистора Q3 не превышает 40 мОм, при этом в нагрузку пропускается ток до 5 А. Преобразователем управляет контроллер яркости и ШИМ, который выполнен на микросхеме U1 типа TL5001 (аналог FP5001) фирмы Feeling Tech. Основным элементом контроллера является компаратор, в котором напряжение генератора пилообразного напряжения (выв. 7) сравнивается с напряжением УО, которое в свою очередь определяется соотношением между опорным напряжением 1 В и суммарным напряжением обратной связи и яркости (выв. 4). Частота пилообразного напряжения внутреннего генератора (около 300 кГц) определяется номиналом резистора R6 (подключен к выв. 7 U1). С выхода компаратора (выв. 1) снимаются импульсы ШИМ, которые поступают на схему DC/DC-преобразователя. Контроллер обеспечивает также защиту от короткого замыкания и перегрузки. При коротком замыкании на выходе инвертора возрастает напряжение на делителе R17 R18, оно выпрямляется и подается на выв. 4 U1. Если напряжение становится равным 1,6 В, запускается схема защиты контроллера. Порог срабатывания защиты определяется номиналом резистора R8. Конденсатор С8 обеспечивает „мягкий» старт при запуске инвертора или после окончания действия короткого замыкания. Если короткое замыкание длится менее 1с (время определяется емкостью конденсатора С7), то нормальная работа инвертора продолжается. В противном случае работа инвертора прекращается. Для надежного запуска преобразователя время срабатывания защиты выбирается таким, чтобы в 10…15 раз превысить время старта и „поджига» ламп. При перегрузке выходного каскада напряжение на правом выводе дросселя L1 возрастает, стабилитрон D2 начинает пропускать ток, открывается транзистор Q6 и понижается порог срабатывания схемы защиты. Преобразователь выполнен по схеме полумостового генератора с самовозбуждением на транзисторах Q7, Q8 и трансформаторе PT1. При поступлении с главной платы монитора напряжения включения питания ON/OFF (3 В) открывается транзистор Q2 и на контроллер U1 подается питание (+12 В на выв. 2). Импульсы ШИМ с выв. 1 U1 через транзисторы Q3, Q4 поступают на затвор Q3, тем самым, запускается DC/DC-преобразователь. В свою очередь, с него питание подается на автогенератор. После этого на вторичной обмотке трансформатора РТ1 появляется высоковольтное переменное напряжение, которое поступает на лампы подсветки. Обмотка 1-2 РТ1 выполняет роль обратной связи автогенератора. Пока лампы не включены, выходное напряжение преобразователя растет до напряжения пуска (1650В), а затем инвертор переходит в рабочий режим. Если лампы не удается поджечь (вследствие обрыва, „истощения»), происходит самопроизвольный срыв генерации.
Неисправности инвертора PLCD2125207А и порядок их устранения
Лампы подсветки не включаются
Проверяют напряжение питания +12 В на выв. 2 U1. Если его нет, проверяют предохранитель F1, транзисторы Q1, Q2. Если неисправен предохранитель F1, перед его заменой проверяют транзисторы Q3, Q4, Q5 на корокое замыкание.
Затем проверяют сигнал ENB или ON/OFF (конт. 3 разъема CON1) — его отсутствие может быть связано с неисправностью главной платы монитора. Проверяют это следующим способом: подают управляющее напряжение 3…5 В на вход ON/OFF от незивисимого источника питания или через делитель от источника 12В. Если при этом лампы включаются, то неисправна главная плата, в противном случае— инвертор.
Если напряжения питания и сигнал включения есть, а лампы не светятся, то проводят внешний осмотр трансформатора РТ1, конденсаторов С10, С11 и разъемов подключения ламп CON2, CON3, потемневшие и оплавленные детали заменяют. Если в момент включения на выв. 11 трансформатора РТ1 на короткое время появляются импульсы напряжения (щуп осциллографа через делитель подключается заранее, до включения монитора), а лампы не светятся, то проверяют состояние контактов ламп и отсутствие на них механических повреждений. Лампы снимают из посадочных мест, предварительно открутив винт крепления их корпуса к корпусу матрицы, и, вместе с металлическим корпусом, в котором они установлены, равномерно и без перекосов вынимают. В некоторых моделях мониторов („Aсer AL1513» и BENQ) лампы имеют Г-образную форму и охватывают панель ЖКИ по периметру, и неосторожные действия при демонтаже могут их повредить. Если лампы повреждены или потемнели (что говорит о потере их свойств), их заменяют. Заменять лампы можно только на аналогичные по мощности и параметрам, в противном случае — либо инвертор не сможет их „поджечь», либо возникнет дуговой разряд, что быстро выведет лампы из строя.
Лампы включаются на короткое время (около 1 секунды) и тут же отключаются
В этом случае вероятнее всего срабатывает защита от короткого замыкания или перегрузки во вторичных цепях инвертора. Устраняют причины срабатывания защиты, проверяют исправность трансформатора РТ1, конденсаторов С10 и С11 и цепи обратной связи R17, R18, D3. Проверяют стабилитрон D2 и транзистор Q6, а также конденсатор С8 и делитель R8 R9. Если напряжение на выв. 5 менее 1 В, то заменяют конденсатор С7 (лучше — на танталовый). Если все перечисленные выше действия не дают результата, заменяют микросхему U1.
Отключение ламп также может быть связано со срывом генерации преобразователя. Для диагностики этой неисправности вместо ламп к разъемам CON2, CON3 подключают эквивалентную нагрузку — резистор номиналом 100 кОм и мощностью не менее 10 Вт. Последовательно с ним включают измерительный резистор номиналом 10 Ом. К нему подключают приборы и измеряют частоту колебаний, которая должна быть в пределах от 54 кГц (при максимальной яркости) до 46кГц (при минимальной яркости) и ток нагрузки от 6,8 до 7,8мА. Для контроля выходного напряжения подключают вольтметр между выв.11 трансформатора PT1 и выводом нагрузочного резистора. Если измеренные параметры не соответствуют номиналу, контролируют величину и стабильность напряжения питания на дросселе L1, а также проверяют транзисторы Q7, Q8, C9. Если при отключении правого (по схеме) диода сборки D3 от резистора R5 экран засвечивается, то неисправна одна из ламп. Даже с одной рабочей лампой яркости изображения бывает достаточно для комфортной работы оператора.
Экран периодически мигает и яркость нестабильна
Проверяют стабильность напряжения яркости (DIM) на конт. 4 разъема CОN1 и после резистора R3, отключив предварительно обратную связь (резистор R5). Если управляющее напряжение на разъеме нестабильно, то неисправна главная плата монитора (проверку проводят на всех доступных режимах работы монитора и по всему диапазону яркости). Если напряжение нестабильно на выв. 4 контроллера U1, то проверяют его режим по постоянному току в соответствии с табл. 1, при этом инвертор должен находиться в рабочем режиме. Неисправную микросхему заменяют.
Таблица 1
Состояние инвертора | Напряжения на выводах микросхемы U1, В | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Инвертор включен, но лампы не светятся | 12 | 12 | 2.2 | 0 | 2,32 | 0,2 | 1 | 0 |
Инвертор включен, лампы светятся | 2,6 | 12 | 2,1 | 0,1 | 0,8 | 1,2 | 1 | 0 |
Проверяют стабильность и амплитуду колебаний собственного генератора пилообразных импульсов (выв.7), размах сигнала должен составлять от 0,7 до 1,3 В, а частота— около 300 кГц. Если напряжение не-стабильно — заменяют R6 или U1.
Нестабильность работы инвертора может быть связана со старением ламп или их повреждением (периодическое нарушение контакта между подводящими проводами и выводами ламп). Чтобы проверить это, как и в предыдущем случае, подключают эквивалент нагрузки. Если при этом инвертор работает стабильно, то необходимо заменить лампы.
Через некоторое время (от нескольких секунд до нескольких минут) изображение пропадает
Неправильно работает схема защиты. Проверяют и при необходимости заменяют конденсатор C7, подключенный к выв. 5 контроллера, контролируют режим по постоянному току контроллера U1 (см. предыдущую неисправность). Проверяют стабильность работы ламп, измеряя уровень пилообразных импульсов на выходе схемы обратной связи, на правом аноде D3 (размах около 5 В) при установке средней яркости (50 единиц). Если имеют место „выбросы» напряжения, проверяют исправность трансформатора и конденсаторов С9, С11. В заключение проверяют стабильность работы схемы ШИМ контроллера U1.
Инвертор типа DIVTL0144-D21 фирмы SAMPO
Принципиальная схема этого инвертора приведена на рисунке (ниже). Он применяется для питания ламп подсветки 15-дюймовых матриц фирм SUNGWUN, SAMSUNG, LG-PHILIPS, HITACHI, которые используются в мониторах PROVIEW, AСER, BENQ, SAMSUNG, LG. Рабочее напряжение— 650 В при токе нагрузке 7,5 мА (при максимальной яркости) и 4,5мА — при минимальной. Стартовое напряжение („поджиг») составляет 1900 В, частота питающего напряжения ламп — 55 кГц (при средней яркости). Уровень сигнала регулировки яркости составляет от 0 (максимальная) до 5 В (минимальная). Время срабатывания защиты — 1…4 с.
Принципиальная схема инвертора
В качестве контроллера и ШИМ используется микросхема U201 типа BA9741 фирмы ROHM (ее аналог TL1451). Она является двухканальным контроллером, но в данном случае используется только один канал.
При включении монитора в сеть напряжение +12 В поступает на выв.1-3 транзисторной сборки Q203 (исток полевого транзистора). При включении монитора сигнал запуска инвертора ON/OFF (+3 В) поступает с главной платы и открывает транзисторы Q201, Q202. Тем самым напряжение +12 В подается на выв. 9 контроллера U201. После этого начинает работать внутренний генератор пилообразного напряжения, частота которого определяется номиналами элементов R204 и C208, подключенных к выв. 1 и 2 микросхемы. На выв.10 микросхемы появляются импульсы ШИМ, которые поступают на затвор Q203 через усилитель на транзисторах Q205, Q207. На выв. 5-8 Q203 формируется постоянное напряжение, которое подается на автогенератор (на элементах Q209, Q210, PT201). Синусоидальное напряжение размахом 650 В и частотой 55 кГц (в момент „поджига» ламп оно достигает 1900 В) с выхода преобразователя через разъемы CN201, CN202 подается на лампы подсветки. На элементах D203, R220, R222 выполнена схема формирования сигнала защиты и „мягкого» старта. В момент включения ламп возрастает потребление энергии в первичной цепи инвертора и напряжение на выходе DC/DC преобразователя (Q203, Q205, Q207) растет, стабилитрон D203 начинает проводить ток, и часть напряжения с делителя R220 R222 поступает на выв.11 контроллера, повышая тем самым порог срабатывания схемы защиты на время запуска.
Стабильность и яркость свечения ламп, а также защита от короткого замыкания обеспечивается цепью обратной связи на элементах D209, D205, R234, D207, C221. Напряжение обратной связи поступает на выв. 14 микросхемы (прямой вход усилителя ошибки), а напряжение яркости с главной платы монитора (DIM) — на инверсный вход УО (выв. 13), определяя частоту импульсов ШИМ на выходе контроллера, а значит, и уровень выходного напряжения. При минимальной яркости (напряжение DIM равно 5 В) она составляет 50кГц, а при максимальной (напряжение DIM равно нулю) — 60 кГц.
Если напряжение обратной связи превышает 1,6 В (выв. 14 микросхемы U201), включается схема защиты. Если короткое замыкание в нагрузке длится менее 2 с (это время заряда конденсатора С207 от опорного напряжения +2,5 В — выв. 15 микросхемы), работоспособность инвертора восстанавливается, что обеспечивает надежный запуск ламп. При длительном коротком замыкании инвертор выключается.
Неисправности инвертора DIVTL0144-D21 и методы их устранения
Лампы не светятся
Проверяют наличие напряжения +12 В на выв. 1-3 Q203, исправность предохранителя F1 (установлен на главной плате монитора). Если предохранитель неисправен, то перед установкой нового проверяют на короткое замыкание транзисторы Q201, Q202, а также конденсаторы С201, С202, С225.
Проверяют наличие напряжения ON/OFF: при включении рабочего режима оно должно быть равно 3В, а при выключении или переходе в ждущий режим — нулю. Если управляющее напряжение отсутствует, проверяют главную плату (включением инвертора управляет микроконтроллер LCD-монитора). Если все вышеперечисленные напряжения в норме, а импульсов ШИМ на выв. 10 микросхемы V201 нет, проверяют стабилитроны D203 и D201, трансформатор РТ201 (можно определить визуальным осмотром по потемневшему или оплавленному корпусу), конденсаторы С215, С216 и транзисторы Q209, Q210. Если короткое замыкание отсутствует, то проверяют исправность и номинал конденсаторов С205 и С207. В случае, если перечисленные выше элементы исправны, заменяют контроллер U201. Отметим, что отсутствие свечения ламп подсветки может быть связано с их обрывом или механической поломкой.
Лампы на короткое время включаются и гаснут
Если засветка сохраняется в течение 2 с, то неисправна цепь обратной связи. Если при отключении от схемы элементов L201 и D207 на выв. 7 микросхемы U201 появляются импульсы ШИМ, то неисправна либо одна из ламп подсветки, либо цепь обратной связи. В этом случае проверяют стабилитрон D203, диоды D205, D209, D207, конденсаторы С221, С219, а также дроссель L202. Контролируют напряжение на выв. 13 и 14 U201. В рабочем режиме напряжение на этих выводах должно быть одинаковым (около 1 В — при средней яркости). Если напряжение на выв. 14 значительно ниже, чем на выв. 13, то проверяют диоды D205, D209 и лампы на обрыв. При резком увеличении напряжения на выв. 14 микросхемы U201 (выше уровня 1,6В) проверяют элементы PT1, L202, C215, C216. Если они исправны, заменяют микросхему U201. При ее замене на аналог (TL1451) проверяют пороговое напряжение на выв. 11 (1,6 В) и, при необходимости, подбирают номинал элементов С205, R222. Подбором номиналов элементов R204, С208 устанавливают частоту пилообразных импульсов: на выв. 2 микросхемы должно быть около 200 кГц.
Подсветка выключается через некоторое время (от нескольких секунд до нескольких минут) после включения монитора
Вначале проверяют конденсатор С207 и резистор R207. Затем проверяют исправность контактов инвертора и ламп подсветки, конденсаторов С215, С216 (заменой), трансформатора РТ201, транзисторов Q209, Q210. Контролируют пороговое напряжение на выв. 16 V201 (2,5В), если оно занижено или отсутствует, заменяют микросхему. Если напряжение на выв. 12 выше 1,6В, проверяют конденсатор С208, в противном случае также заменяют U201.
Яркость самопроизвольно меняется (мигает) во всем диапазоне или на отдельных режимах работы монитора
Если неисправность проявляется только в некоторых режимах разрешения и в определенном диапазоне изменения яркости, то неисправность связана с главной платой монитора (память или контроллер LCD). Если яркость самопроизвольно меняется во всех режимах, то неисправен инвертор. Проверяют напряжение регулировки яркости (на выв. 13 U201 — 1,3 В (при средней яркости), но не выше 1,6 В). В случае, если напряжение на контакте DIM стабильно, а на выв. 13 — нет, заменяют микросхему U201. Если напряжение на выв. 14 нестабильно или занижено (менее 0,3 В при минимальной яркости), то вместо ламп подключают эквивалент нагрузки— резистор номиналом 80кОм. При сохранении дефекта заменяют микросхему U201. Если эта замена не помогла, заменяют лампы, а также проверяют исправность их контактов. Измеряют напряжение на выв.12 микросхемы U201, в рабочем режиме оно должно быть порядка 1,5В. Если оно ниже этого предела, проверяют элементы С209, R208.
Примечание. В инверторах других производителей (EMAX, TDK), выполненных по аналогичной схеме, но в которой используются другие компоненты (за исключением контроллера), вместо SI443 ® D9435, 2SС5706 ® 2SD2190, напряжение на выводах микросхемы U201 может изменяться в пределах ±0,3 В.
xn--80ajaba6ad4ce6h.xn--p1ai
Инвертор Luxeon,схема. | Персональный сайт разработчика.
Как то приходит ко мне знакомый и приносит инвертор. Говорит-, «Выключили свет, я подключил к инвертору электрокосилку и решил заняться полезным делом. Но потом он запищал и все».
Модель IPS-1200S, производитель заявляет о чистой синусоиде на выходе,и пиковой мощности в 1,2Квт. Давайте посмотрим что там внутри,и как оно работает. Все изображения «кликабельные».
Отвод тепла от выходных ключей обеспечивается через тепло
vbpage.wordpress.com
Сварочный инвертор не включается.Ремонт своими руками. схема
Всем привет!!! На днях в ремонт приносили сварочный инвертор, возможно моя заметка об этом ремонте кому то будет полезной.
Это уже не первый сварочный аппарат который пришлось делать, но если в одном случае неисправность проявилась так: Включил инвертор в сеть… и бабах, выбило автоматы защиты в электро щитке. Как показало вскрытие в сварочнике пробило выходные транзисторы, после замены всё заработало.
Но в этом случае всё было несколько иначе, со слов хозяина аппарат временами переставал варить хотя индикатор включения светился. Эти ребята сами вскрыли корпус — пытались определить неисправность и заметили, что инвертор реагировал на изгибание платы т.е. при её изгибе мог заработать. Но когда сварочный инвертор попал ко мне, он уже не включался вообще, даже индикатор включения не светился.
Сварочный инвертор не включается
«Титан — БИС — 2300»- именно эта модель инвертора поступила в ремонт, схемотехника повторяет сварочный аппарат аналогичной мощности «Ресанта» и как я предполагаю ещё многие другие инверторы. Посмотреть и скачать схему можно здесь.
В этом сварочном аппарате для питания низковольтных цепей применяется импульсный блок питания, как раз он и был неисправен. ИБП выполнен на ШИМ контролере UC 3842BN. Аналоги — отечественный 1114ЕУ7, Импортные UC3842AN отличается от BN только меньшим потребляемым током, и КА3842BN (AN). Схема ИБП ниже. (Кликните по ней для увеличения) Красным отмечены напряжения которые выдавал уже рабочий ИБП. Обратите внимание на то, что измерять напряжения 25V нужно не относительно общего минуса, а именно с точек V1+,V1- и также V2+,V2- они не связанны с общей шиной.
Ключ ИБП выполнен на транзисторе, полевик 4N90C. В моём случае транзистор остался целым, а вот микросхема потребовала замены. Также был в обрыве резистор R 010 — 22 Om/1Wt. После этого блок питания заработал.
Однако радоваться было рано, замерив напряжение на выходе сварочника, оказалось что его нет, а в режиме холостого хода должно быть примерно 85 вольт. Попробовал пошевелить плату, помните со слов хозяина это влияло, но ничего.
Дальнейшие поиски выявили отсутствие одного из напряжений 25 вольт в точках V2-,V2+. Причина, обрыв в трансформаторе обмотки 1-2. Пришлось выпаивать транс, использовал медицинскую иглу для освобождения выводов.
В трансформаторе один из концов обмотки был оборван от вывода.
Аккуратно восстанавливаем соединение используя подходящий проводок, восстановленное соединение не будет лишним зафиксировать капелькой клея или герметика. У меня под руками оказался полиуретановый клей им и воспользовался, делаем ревизию других выводов, если необходимо пропаиваем.
Перед установкой трансформатора следует подготовить плату, чтобы он без усилий вошёл в своё место. Для этого нужно очистить от остатков припоя отверстия, сделать это можно так же иглой от шприца подходящего диаметра.
После установки трансформатора сварочный инвертор заработал.
Как проверить микросхему
Как проверить микросхему не выпаивая её из платы и на что ещё обратить внимание.
Частично проверить микросхему можно при наличии вольтметра и регулируемого стабилизированного источника постоянного напряжения. Для полной проверки нужны генератор сигналов и осциллограф.
Поговорим о том, что проще. Перед проверкой обязательно выключите инвертор от сети питания. Далее — от внешнего регулируемого блока питания на вывод 7 микросхемы подаём напряжение 16 — 17 вольт, это напряжение запуска МС. При этом на выводе 8 должно быть 5 В. это опорное напряжение от внутреннего стабилизатора микросхемы.
Оно должно оставаться стабильным при изменении напряжения на 7 выводе. Если это не так МС неисправна.
Изменяя напряжение на микросхеме имейте в виду, что ниже 10 В микросхема отключается, и включится при 15-17 вольт. Не следует повышать напряжение питания МС выше 34 В Внутри микросхемы стоит защитный стабилитрон и при сильно завышенном напряжении его просто пробьёт.
Ниже приведена структурная схема UC3842.
Дополнение к этой статье: Через некоторое время принесли ещё один аппарат. Вышел из строя из за падения на бок. Это произошло потому, что за время работы винты скрепляющие корпус разболтались, а некоторые просто потерялись, поэтому при падении плата сыграла и коснулась корпуса монтажной стороной В результате замыкания вышли из строя все 4 выходных транзистора K 30N60HS Аналоги G30N60A4D, G40N60UFD. После замены всё заработало.
На этом всё! Если нашли полезной эту статью, оставляйте Ваши комментарии, делитесь с друзьями нажав на кнопки соцсетей.
blogvp.ru
Простой инвертор для CCFL ламп - Телевизионная техника - Схемы бытовых устройств
Рис.1 Схема простейшего инвертора для ламп CCFL.
Самое простое решение таймер NE555 во втором режиме, режиме генератора прямоугольных импульсов (так называемый нестабильный режим, когда на выходе идет меандр из прямоугольных импульсов, то есть выход нестабилен).
Рис.2 Инвертор в сборе, без балластного конденсатора и лампы
Почему именно эта схема, есть еще более простые генераторы, например на ШИМ UC3843 (UC3845), там вообще нужны всего резистор и конденсатор. Но именно в этой схеме реализованы простые элементы со стандартными значениями, и вам не придется искать конденсатор на 4,7нФ и резистор на 8,2 кОм. Элементная база используемая в этом генераторе снимается практически с любого электронного устройства имеющего в своем составе блок питания. Мы говорим о случае, когда купить отдельные элементы довольно сложно.
Рис. 3 Силовой ключ. IRF 730(5,5А, 400В, 1 Ом)
Транзистор на схеме не обозначен, ставим, например IRF510 (IRF540). В нашем примере был установлен транзистор IRF 730(5,5А, 400В, 1 Ом)
Важное замечание. После того как лампа зажжется, ее сопротивление становится равным нулю, только благодаря балластному конденсатору не происходит короткого замыкания во вторичной обмотке. Это единственный элемент на схеме, который придется подбирать. Самое главное – рабочее напряжение конденсатора не должно быть менее 1000В.
Рис. 3 ВЧ - трансформатор, снят с неисправного монитора, грифлик установлен непосредственно на трансформаторе.
Трансформатор берется первый попавшийся ВЧ-трансформатор из неисправного монитора. Грифлик (С4 10n *1000В) необходимо размещать непосредственно на ВЧ-трансформаторе.
Инвертор зажигает, как перегоревшие лампы от энергосберегающих ламп, так и лампы CCFL с мониторов. Так как запуска ламп при таком инверторе не предусмотрено, соответсвенно лампы работают в довольно жестком режиме.
cxema.my1.ru