Аустенитные нержавеющие стали: структура и свойства. Аустенитная сталь


Что такое аустенитная нержавеющая сталь: описание и особенности

Аустенитные стали имеют ряд особых преимуществ и могут применяться в рабочих средах, отличающихся значительной агрессивностью. Без таких сплавов не обойтись в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

Аустенитные стали — это стали с высоким уровнем легирования, при кристаллизации образуется однофазная система, характеризуемая кристаллической гранецентрированной решеткой. Такой тип решеток не меняется даже под воздействием очень низких температур (около 200 градусов Цельсия). В отдельных случаях имеется еще одна фаза (объем в сплаве не превышает 10 процентов). Тогда решетка получится объемноцентрированной.

Описание и характеристики

Стали разделяют на две группы относительно состава их основы и содержания легирующих элементов, таких как никель и хром:

  • Композиции, в основе которых содержится железо: никель 7%, хром 15%; общее количество добавок — до 55%;
  • Никелевые и железоникелевые композиции. В первой группе содержание никеля начинается от 55% и больше, а во второй — от 65 и больше процентов железа и никеля в соотношении 1:5.

Благодаря никелю можно добиться повышенной пластичности, жаропрочности и технологичности стали, а с помощью хрома — придать требуемую коррозийность и жаростойкость. А добавление других легирующих компонентов позволит получать сплавы с уникальными свойствами. Компоненты подбирают в соответствии со служебным предназначением сплавов.

Для легирования преимущественно используют:

  • Ферритизаторы, стабилизирующие структуру аустенитов: ванадий, вольфрам, титан, кремний, ниобий, молибден.
  • Аустенизаторы, представленные азотом, углеродом и марганцем.

Все перечисленные компоненты расположены не только в избыточных фазах, но и в твердом растворе из стали.

Сплавы, устойчивые к коррозии и перепадам температур

Широкий спектр добавок позволяет создать особые стали, которые будут применены для изготовления компонентов конструкций и будут работать в криогенных, высокотемпературных и коррозионных условиях. Поэтому составы разделяют на три типа:

  • Жаропрочные и жаростойкие.
  • Стойкие к коррозии.
  • Устойчивы к воздействию низких температур.

Жаростойкие сплавы не разрушаются под влиянием химикатов в агрессивных средах, могут использоваться при температуре до +1150 градусов. Из них изготавливают:

  • Элементы газопроводов;
  • Арматуру для печей;
  • Нагревательные компоненты.

Жаропрочные марки на протяжении длительного времени могут оказывать сопротивление нагрузкам в условиях повышенных температур, не теряя высоких механических характеристик. При легировании используются молибден и вольфрам (на каждое дополнение может отводиться до 7%). Для измельчения зерен в небольших количествах применяется бор.

Аустенитные нержавеющие стали (стойкие к коррозии) характеризуются незначительным содержанием углерода (не более 0,12%), никеля (8−30%), хрома (до 18%). Проводится термическая обработка (отпуск, закалка, отжиг). Она важна для изделий из нержавейки, ведь дает возможность хорошо держаться в самых разных агрессивных средах — кислотных, газовых, щелочных, жидкометаллических при температуре 20 градусов и выше.

У хладостойких аустенитных композициях содержится 8−25% никеля и 17−25% хрома. Применяют в криогенных агрегатах, но стоимость производства существенно возрастает, потому используются очень ограниченно.

Свойства термической обработки

Жаростойкие и жаропрочные марки могут подвергаться разным типам тепловой обработки, чтобы нарастить полезные свойства и модифицировать уже имеющуюся структуру зерен. Речь идет о числе и принципе распределения дисперсных фаз, величине блоков и собственно зерен и тому подобное.

Отжиг такой стали помогает уменьшить твердость сплава (иногда это важно при эксплуатации), а также устранить излишнюю хрупкость. В процессе обработки металл нагревается до 1200 градусов на протяжении 30−150 минут, потом его необходимо как можно быстрее охладить. Сплавы со значительным количеством легирующих элементов, как правило, охлаждаются в маслах или на открытом воздухе, а более простые — в обычной воде.

Нередко проводится двойная закалка. Сначала выполняют первую нормализацию составов при температуре 1200 градусов, затем следует вторая нормализация при 1100 градусах, что позволяет значительно увеличить пластические и жаропрочные показатели.

Добиться повышения жаропрочности и механической прочности можно в процессе двойной термической обработки (закалка и старение). До эксплуатации проводится искусственное старение всех жаропрочных сплавов (то есть выполняется их дисперсионное твердение).

tokar.guru

Аустенитные стали – жаропрочные и нержавеющие + Видео

Аустенитные стали, обладая рядом особых свойств, применяются в тех рабочих средах, которые отличаются высокой агрессивностью. Такие сплавы незаменимы в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

1 Аустенитные стали – общее описание

К аустенитным относят сплавы с высоким уровнем легирования, которые при кристаллизации обычно образуют однофазную систему, характеризуемую кристаллической гранецентрированной решеткой. Такой тип решетки в описываемых сталях остается неизменным даже в тех случаях, когда металл охлаждается до очень низких температур, называемых криогенными (в районе -200 градусов Цельсия). В некоторых случаях стали аустенитного класса имеют и еще одну фазу (ее объем в сплаве может достигать десяти процентов) – феррита с высокой степенью легирования. В этом случае решетка является объемноцентрированной.

Разделение аустенитных сталей на две группы производится по составу их основы, а также по содержанию в сплаве легирующих компонентов – никеля и хрома:

  1. Композиции на основе железа: содержание никеля – до 7 %, хрома – до 15 %, общее количество легирующих добавок – не более 55 %.
  2. Композиции на никелевой (55 % и более никеля) и железоникелевой основе (в них содержится 65 и больше процентов никеля и железа, причем отношение первого ко второму составляет 1 к 1,5).

Аустенитные стали – общее описание

Рекомендуем ознакомиться

В таких сплавах никель увеличивает пластичность, жаропрочность и технологичность стали, а хром отвечает за придание ей требуемой коррозионной и жаростойкости. А добавляя другие легирующие компоненты, можно добиться уникальных свойств аустенитных составов, набор коих и обуславливает служебное предназначение того или иного сплава.

Чаще всего аустенитные стали легируются следующими элементами:

  • Ферритизаторами, которые стабилизируют структура аустенита. К ним относят ванадий, вольфрам, ниобий, титан, кремний и молибден.
  • Аустенитизаторами, коими являются азот, углерод и марганец.

Все указанные компоненты располагаются как в избыточных фазах, так и непосредственно в твердом стальном растворе.

Аустенитные стали – общее описание фото

По принятой классификации, учитывающей систему легирования, любая аустенитная сталь может быть причислена к хромомарганцевой либо к хромоникелевой. Кроме того, сплавы делят на хромоникельмарганцевые и хромоникельмолибденовые.

2 Коррозионно-, жаро- и хладостойкие аустенитные сплавы

Разнообразие добавок позволяет создавать особые аустенитные стали, которые используются для изготовления деталей для конструкций, работающих в высокотемпературных, коррозионных и криогенных условиях. Исходя из этого, аустенитные составы и подразделяют на разные группы:

Жаростойкие составы не разрушаются при воздействии на них химической среды. Их можно применять при температурах до +1150 градусов. Из таких сталей изготавливают разнообразные слабонагруженные изделия:

  • элементы газопроводных систем;
  • арматуру для печного оборудования;
  • нагревательные детали.

Коррозионно-, жаро- и хладостойкие аустенитные сплавы

Жаропрочные марки сталей могут достаточно долго сопротивляться нагрузкам в высокотемпературных условиях, сохраняя при этом свои изначально высокие механические характеристики. Их обязательно легируют вольфрамом и молибденом (каждая из присадок может содержаться в стальной композиции в количестве до семи процентов). А для измельчения зерна в некоторые аустенитные сплавы вводят в небольших количествах бор.

Обозначим часто встречающиеся марки жаростойких и жаропрочных сталей описываемого в статье класса: Х15Н35ВТР, 10Х12Н20Т3Р, 40Х18Н25С2, 1Х15Н25М6А, 20X23h23, 10X15h28B4T, 10Х16Н14В2БР, 10X18h22T, 08Х16Н9М2, 10Х15Н35ВТ, 20Х25Н20С2, 1Х15Н25М6А, 20X23h23, 10X15h28B4T, 10Х16Н14В2БР, 10X18h22T.

Аустенитные нержавеющие стали (то есть коррозионностойкие) характеризуются малым содержанием углерода (не допускается наличия свыше 0,12 процентов этого химического элемента). Никеля в них может быть от 8 до 30 %, а хрома от 12 до 18%. Любая аустенитная нержавеющая сталь проходит термическую обработку (отпуск, закалку или отжиг стали). Термообработка необходима для того, чтобы изделия из нержавейки хорошо "чувствовали" себя в разных агрессивных средах – в щелочных, газовых, жидкометаллических, кислотных при температурах от +20 градусов и больше.

Коррозионно-, жаро- и хладостойкие аустенитные сплавы фото

Наиболее известны следующие марки аустенитных коррозионностойких сталей:

  • хромоникельмолибденовые: 03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16h25M3, 10Х17Н13М3Т;
  • хромомарганцевые: 07Х21Г7AН5, 10X14AГ15, 10X14Г14h5T;
  • хромоникелевые: 08Х18Н12Б, 03Х18Н11, 08X18h20T, 06X18Н11, 12X18h20T, 08X18h20;
  • с большим содержанием кремния (от 3,8 до 6,7 %): 15Х18Н12C4Т10, 02Х8Н22С6.

Хладостойкие аустенитные композиции содержат 8–25 % никеля и 17–25 % хрома. Применяются они для криогенных аппаратов, имеют высокую стоимость производства, поэтому используются весьма ограниченно. Чаще всего встречаются криогенные стали 07Х13Н4АГ20 и 03Х20Н16АГ6, которые легируются азотом. Этот элемент вводят для того, чтобы сплав при температуре +20° имел более высокий предел текучести.

3 Особенности аустенитных сплавов разных систем легирования

Наиболее распространенными считаются аустенитные хромоникелевые стали, которые имеют добавки молибдена. Их применяют тогда, когда есть риск образования щелевой либо питтинговой коррозии. Они демонстрируют высокую стойкость в восстановительных атмосферах, и делятся на два вида:

  • нестабилизированные титаном с содержанием углерода не более 0,03 %;
  • стабилизированные титаном с углеродом от 0,08 до 0,1 %.

Такие марки хромоникелевых композиций, как Х17Н13М2 и Х17Н13М3, оптимальны для конструкций, функционирующих в сернокислых средах, в уксусной десятипроцентной кислоте, в фосфорной кислоте в кипящем состоянии.

Особенности аустенитных сплавов разных систем легирования

Хромоникелевые стали с добавлением ниобия или титана отличаются минимальной опасностью к образованию коррозии межкристаллитного типа. Ниобия вводят по сравнению с углеродом в 9–10 раз больше, а титана – в 4–5,5 раз больше. К сплавам с подобной возможностью относят следующие составы: 0Х18Н12Б, 0Х18Н10Т, Х18Н9Т и некоторые другие.

Увеличить коррозионную стойкость описываемых сталей также можно посредством введения в них кремния. Яркими представителями таких специальных композиций являются такие сплавы:

  • 015Х14Н19С6Б;
  • 03Х8Н22С6.

Особенности аустенитных сплавов разных систем легирования фото

Они без преувеличения идеальны для производства химических сварных агрегатов, в которых хранится и перерабатывается азотная концентрированная кислота.

Хромомарганцевые стали типа 2Х18Н4ГЛ характеризуются высокими литейными характеристиками, поэтому их эксплуатируют на производствах, где применяются коррозионностойкие литые конструкции. Другие хромомарганцевые сплавы (например, 10Х13Г12Н2СА и 08Х12Г14Н4ЮМ) в горючих средах более стойки к коррозии, нежели хромоникелевые.

4 Термообработка аустенитных сталей и ее особенности

Жаропрочные и жаростойкие сплавы аустенитной группы подвергаются при необходимости разным видам термической обработки с целью увеличения своих свойств, а также для модификации имеющейся структуры зерна: число и принцип распределения дисперсных фаз, величина блоков и самого зерна и так далее.

Отжиг таких сталей применяется для уменьшения твердости сплавов (когда это требуется по условиям их эксплуатации) и устранения явления хрупкости. При подобной термической обработке металл нагревают до 1200–1250 градусов в течение 30–150 минут, а затем максимально быстро подвергают охлаждению. Сложные высоколегированные стали чаще всего охлаждают в масле либо на воздухе, а вот сплавы с малым количествам легирующих компонентов обычно погружают в воду.

Термообработка аустенитных сталей и ее особенности

Для сплавов типа ХН35ВТЮ и ХН70ВМТЮ рекомендуется термообработка в виде двойной закалки. Сначала выполняется первая нормализация их состава (при температуре около 1200 градусов), благодаря которой металл повышает показатель сопротивления ползучести за счет формирования твердой гомогенной фазы. А после этого осуществляется вторая нормализация с температурой не более 1100 градусов. Результатом описанной обработки является значительное увеличение пластических и жаропрочных показателей аустенитных сталей.

Термообработка аустенитных сталей и ее особенности фото

Аустенитная сталь повышает свою жаропрочность (а заодно и механическую прочность) в тех случаях, когда проходит двойную термообработку, заключающуюся в закалке и следующим за ней старении. Кроме того, практически все аустенитные металлы, которые относят к группе жаропрочных, искусственно старят перед эксплуатацией (то есть выполняют операцию их дисперсионного твердения).

tutmet.ru

Аустенитные нержавеющие стали: структура и свойства

Аустенитные нержавеющие стали – это коррозионностойкие хромоникелевые аустенитные стали, которые в мировой практике известны как стали типа 18-10. Это наименование им дает номинальное содержание в них 18 % хрома и 10 % никеля.

Хромоникелевые аустенитные стали в ГОСТ 5632-72

В ГОСТ 5632-72 хромоникелевые аустенитные стали представлены марками 12Х18Н9Т, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н9, 17Х18Н9, 08Х18Н10, 03Х18Н11.

Роль хрома в аустенитных нержавеющих сталях

Основным элементом, дающим сталям типа 18-10 высокую коррозионную стойкость, является хром. Роль хрома заключается в том, что он обеспечивает способность стали к пассивации. Наличие в стали хрома в количестве 18 % делает ее стойкой во многих окислительных средах, в том числе в азотной кислоте в большом диапазоне, как по концентрации, так и по температуре.

Роль никеля в аустенитных нержавеющих сталях

Легирование никелем в количестве 9-12 % переводит сталь в аустенитный класс. Это обеспечивает стали высокую технологичность, в частности, повышение пластичности и снижение склонности к росту зерна, а также уникальные служебные свойства. Стали типа 18-10 широко применяют в качестве коррозионностойких, жаростойких, жаропрочных и криогенных материалов.

Фазовые превращения в аустенитных нержавеющих сталях

В хромоникелевых аустенитных сталях могут происходить следующие фазовые превращения:

  • выделение избыточных карбидных фаз и σ-фазы при нагреве в интервале в интервале 450-900 ºС;
  • образование в аустенитной основе δ-феррита при высокотемпературном нагреве;
  • образование α-фазы мартенситного типа при холодной пластической деформации или охлаждении ниже комнатной температуры.

Межкристаллитная коррозия в аустенитных нержавеющих сталях

Склонность стали к межкристаллитной коррозии проявляется в результате выделения карбидных фаз. Поэтому при оценке коррозионных свойств стали важнейшим фактором является термокинтетические параметры образования в ней карбидов.

Склонность к межкристаллитной коррозии закаленной стали типа 18-10 определяется, в первую очередь, концентрацией углерода в твердом растворе. Повышение содержания углерода расширяет температурный интервал склонности стали к межкристаллитной коррозии.

Сталь типа 18-10 при выдержке в интервале 750-800 ºС становится склонной к межкристаллитной коррозии:

  • при содержании углерода 0,084 % — уже   в течение 1 минуты;
  • при содержании углерода 0,054 % — в течение 10 минут;
  • при содержании углерода 0,021 5 – через более чем 100 минут.

С уменьшением содержания углерода одновременно снижается температура, которая соответствует минимальной длительности изотермической выдержки до начала межкристаллитной коррозии.

Сварка аустенитных нержавеющих сталей

Необходимую степень стойкости стали против межкристаллитной коррозии, позволяющей выполнять сварку достаточно толстых сечений, обеспечивает содержание углерода в стали типа 18-10 не более 0,03 %.

Межкристаллитная коррозия при 500-600 ºС

Снижение содержания углерода даже до 0,006 % не обеспечивает полной стойкости сталей типа 18-10 к межкристаллитной коррозии при 500-600 ºС.  Это представляет опасность при длительной службе металлоконструкций в этом интервале температур.

Стабилизация стали титаном и ниобием

При введении в хромоникелевую сталь типа 18-10 титана и ниобия, которые способствуют образования карбидов, меняются условия выделения карбидных фаз. При относительно низких температурах 450-700 ºС преимущественно выделяются карбиды типа Cr23C6, которые и дают склонность к межкристаллитной коррозии. При температурах выше 700 ºС преимущественно выделяются специальные карбиды типа TiC или NbC. При выделении только специальных карбидов склонности к межкристаллитной коррозии не возникает.

Азот в аустенитных нержавеющих сталях

Азот, как и углерод, имеет переменную растворимость в аустените. Азот может образовывать при охлаждении и изотермической выдержке самостоятельные нитридные фазы или входить в состав карбидов, замещая в них углерод. Влияние азота на склонность к межкристаллитной коррозии хромоникелевых аустенитных сталей значительно слабее, чем у углерода, и начинает проявляться только при содержании его более 0,10-0,15 %. Вместе с тем, введение азота повышает прочность хромоникелевой аустенитной стали. Поэтому на практике применяют в этих сталях небольшие добавки азота.

Влияние содержания хрома

С повышением концентрации хрома растворимость углерода в хромоникелевом аустените уменьшается, что облегчает выделение в нем карбидной фазы. Это, в частности, подтверждается снижением ударной вязкости стали с повышением содержания хрома, что связывают с образованием карбидной сетки по границам зерен.

Вместе с тем, повышение концентрации хрома в аустените приводит к существенному снижению склонности стали к межкристаллитной коррозии. Это объясняют тем, что хром существенно повышает коррозионную стойкость стали. Более высокая концентрация хрома в стали дает меньшую степень обеднения им границ зерен при выделении там карбидов.

 Влияние содержания никеля

Никель снижает растворимость углерода в аустените и тем самым снижает ударную вязкость стали после отпуска и повышает ее склонность к межкристаллитной коррозии.

Влияние легирующих элементов на структуру стали

По характеру влияния легирующих и примесных элементов на структуру хромоникелевых аустенитных сталей при высокотемпературных нагревах их разделяют на две группы:1) ферритообразующие элементы: хром, титан, ниобий, кремний;2) аустенитообразующие элементы: никель, углерод, азот.

Дельта-феррит в хромомолибденовой аустенитной стали

Присутствие дельта-феррита в структуре аустенитной хромоникелевой стали типа 18-10 оказывает отрицательное влияние на ее технологичность при горячей пластической деформации – прокатке, прошивке, ковке, штамповке.

Количество феррита в стали жестко лимитируется соотношением в ней хрома и никеля, а также технологическими средствами. Наиболее склонна к образованию дельта-феррита группа сталей типа Х18Н9Т (см. также Нержавеющие стали). При нагреве этих сталей до 1200 ºС в структуре может содержаться до 40-45 % дельта-феррита. Наиболее стабильными являются стали типа Х18Н11 и Х18Н12, которые при высокотемпературном нагреве сохраняют практически чисто аустенитную структуру.

Мартенсит в хромоникелевых аустенитных  сталях

В пределах марочного состава в сталях типа Х18Н10 хром, никель, углерод и азот способствуют понижению температуры мартенситного превращения, которое вызывается охлаждением или пластической деформацией.

Влияние титана и ниобия может быть двояким. Находясь в твердом растворе, оба элемента повышают устойчивость аустенита в отношении мартенситного превращения. Если же титан и ниобий связаны в карбонитриды, то они могут несколько повышать температуру мартенситного превращения. Это происходит потому, что аустенит в этом случае обедняется углеродом и азотом и становится менее устойчивым. Углерод и азот являются сильными стабилизаторами аустенита.

Термическая обработка хромоникелевых аустенитных  сталей

Для хромоникелевых аустенитных сталей возможны два вида термической обработки:

  • закалка и
  • стабилизирующий отжиг.

Параметры термической обработки отличаются для нестабилизированных сталей и сталей, стабилизированных титаном или ниобием.

Закалка является эффективным средством предупреждения межкристаллитной коррозии и придания стали оптимального сочетания механических и коррозионных свойства.

Стабилизирующий отжиг закаленной стали переводит карбиды хрома:

  • в неопасное для межкристаллитной коррозии состояние для нестабилизированных сталей;
  • в специальные карбиды для стабилизированных сталей.

Закалка аустенитных хромоникелевых сталей

В сталях без добавок титана и ниобия под закалкой понимают нагрев выше температуры растворения карбидов хрома и достаточно быстрое охлаждение, фиксирующее гомогенный гамма-раствор. Температура нагрева под закалку с увеличением содержания углерода возрастает. Поэтому низкоуглеродистые стали закаливаются с более низких температур, чем высокоуглеродистые. В целом интервал температуры нагрева составляет от 900 до 1100 ºС.

Длительность выдержки стали при температуре закалки довольно невелика. Например, для листового материала суммарное время нагрева и выдержки при нагреве до 1000-1050 ºС обычно выбирают из расчета 1-3 минуты на 1 мм толщины.

Охлаждение с температуры закалки должно быть быстрым. Для нестабилизированных сталей с содержанием углерода более 0,03 % применяют охлаждение в воде. Стали с меньшим содержанием углерода и при небольшом сечении изделия охлаждают на воздухе.

Стабилизирующий отжиг аустенитных хромоникелевых сталей

В нестабилизированных сталях отжиг проводят в интервале температур между температурой нагрева под закалку и максимальной температуры проявления межкристаллитной коррозии. Величина этого интервала в первую очередь зависит от содержания хрома в стали и увеличивается с повышением его концентрации.

В стабилизированных сталях отжиг проводят для перевода углерода из карбидов хрома в специальные карбиды титана и ниобия. При этом освобождающийся хром идет на повышение коррозионной стойкости стали. Температура отжига обычно составляет 850-950 ºС.

Стойкость аустенитных хромоникелевых сталей к кислотам

Способность к пассивации обеспечивает хромоникелевым аустенитным сталям достаточно высокую стойкость в азотной кислоте. Стали 12Х18Н10Т, 12Х18Н12Б и 02Х18Н11 имеют первый балл стойкости:

  • в 65 %-ной  азотной кислоте при температуре до 85 ºС;
  • в 80 %-ной азотной кислоте при температуре до 65 ºС;
  • 100 %-ной серной кислоте при температуре до 65 ºС;
  • в смесях азотной и серной кислот: (25 % + 70 %) и 10 % + 60 %) при температуре до 70 ºС;
  • в 40 %-ной фосфорной кислоте при 100 ºС.

Аустенитные хромоникелевые стали имеют также высокую стойкость к растворах органических кислот — уксусной, лимонной и муравьиной, а также в щелочах КОН и NaOH.

Источник: Ульянин Е.А. Коррозионностойкие стали сплавы, 1991.

 

steel-guide.ru

Нержавеющая сталь - аустенитный класс

Нержавеющая сталь - аустенитный класс

Cтраница 1

Нержавеющие стали аустенитного класса пригодны только при сравнительно высоком содержании в них других легирующих компонентов, - в первую очередь молибдена. Исследование ряда нержавеющих сталей установило, что наиболее стойкой является никельхромомолибденовая сталь с медью ( 18 % Ni; 8 % Сг; 4 % Мо; 4 % Си), потеря веса которой при самых тяжелых условиях работы - 0 1 г / м2 - час. Эта сталь хорошо сваривается, но требует термической обработки шва.  [1]

Нержавеющие стали аустенитного класса обладают хорошей свариваемостью всеми существующими методами сварки, хорошо деформируются в холодном и горячем состоянии и удовлетворительно обрабатываются резанием.  [2]

Нержавеющие стали аустенитного класса, типа 18 - 8, в состав которых входят никель и хром, являются стойкими при любых относительных влажностях. Они могут эксплуатироваться без дополнительной защиты против коррозии как в помещениях, так и в атмосфере наружного воздуха. Эти стали широко применяются для архитектурного оформления монументальных зданий, памятников и пр. При правильном уходе они не обнаруживают признаков коррозии в течение многих лет.  [3]

Нержавеющие стали аустенитного класса, в частности стали типа H8HIOT, XI8HII, XI7HI3M2T, ХН28МЗДЗТ и др., являются, как правило, надежным конструкционным материалом для большинства сред химических производств. Однако не во всех проектных и технологических решениях учитывается склонность нержавеющих сталей к коррозионному растрескиванию ( КР), приводящему к быстрой по-тере герметичности трубопроводов, емкостного и реакционного оборудования и других изделий. Экспертная оценка секции Коррози-онностойкие металлы и сплавы специалистами межведомственного совета по коррозии при ГКНТ СССР показала, что от 20 до 40 % случаев преждевременного выхода из строя оборудования из нержавеющих сталей в средах химических производств связано с коррозионным растрескиванием.  [4]

Нержавеющие стали аустенитного класса обладают хорошей свариваемостью всеми существующими методами сварки, хорошо деформируются в холодном и горячем состоянии и удовлетворительно обрабатываются - резанием.  [5]

Нержавеющие стали аустенитного класса легко отделяются от других сталей, но между собой разделить их трудно, так как разница в трибоэффекте ничтожно мала даже для сталей, резко отличающихся по составу.  [6]

Нержавеющая сталь аустенитного класса подвержена межкристалл и тн о и ( интеркристаллитной) коррозии. Карбиды М2зС6 при нагреве до 1000 С растворяются в аустените, а при охлаждении выделяются по границам зерен. Эти карбиды и аустенит имеют различные электрохимические потенциалы, что и вызывает усиленную коррозию в месте контакта двух фаз.  [7]

Наиболее распространенной нержавеющей сталью аустенитного класса является сталь Х18Н9Т, содержащая не более 0 12 % С. Титан в эту сталь вводят в таком количестве ( до 0 7 %), чтобы связать углерод в стойкие карбиды титана и тем самым предотвратить образование карбидов хрома. При образования этих карбидов границы зерен обедняются хромом и сталь становится склонной к межкристаллитной коррозии, которая приводит к катастрофическому падению прочности.  [8]

Для нержавеющих сталей аустенитного класса применяется также пайка твердым припоем с нагревом ацетплено-кислородным пламенем или другим способом. Имеется большой выбор твердых припоев; из них необходимо применять те, которые по своим антикоррозионным свойствам идентичны основному металлу.  [9]

Преимущества нержавеющих сталей аустенитного класса с очень низким содержанием углерода ( 0 02 %) по сравнению со сталями стабилизированными, в состав которых входят карбидо-образующие элементы титан и ниобий, состоят в том, что повышается сопротивление стали не только межкристаллитной и ножевой коррозии, но и общей коррозии. В связи с отсутствием карбидных и карбонитридных включений сталь приобретает более высокие пластические свойства, высокую способность к полировке.  [10]

У нержавеющих сталей аустенитного класса типа Х18Н9Т при обычных методах разливки в изложницы, особенно в случае крупных слитков, наблюдается значительное увеличение количества ферритной фазы по мере приближения от периферии к центру слитка в связи с большей дендритной ликвацией при уменьшении скорости кристаллизации. Частицы ферритной фазы в осевой части слитка более крупные.  [11]

В нержавеющих сталях аустенитного класса межкристаллитная коррозия обнаруживается при неправильной термической обработке вследствие замедленного охлаждения или в результате вторичного нагрева при температуре 500 - 850 и при сварке. В алюминиевомедных сплавах после искусственного старения ( нагрев после закалки до 150) также обнаруживается межкристаллитная коррозия.  [12]

Термическая обработка нержавеющих сталей аустенитного класса сравнительно проста и заключается в закалке в воде от 1050 - 1100 С. Нагрев до этих температур вызывает растворение карбидов хрома ( М23С6), а быстрое охлаждение фиксирует состояние пересыщенного твердого раствора. Медленное охлаждение недопустимо, так как при этом, как и при отпуске, возможно выделение карбидов, приводящее к ухудшению пластичности и коррозионной стойкости. Кроме того, при закалке происходят рекристаллизационные процессы, устраняющие последствия пластического деформирования, которому часто подвергаются нержавеющие аустенитные стали. В результате закалки твердость этих сталей не повышается, а снижается, гшэтому для аустенитных нержавеющих сталей закалка является умягчающей термической операцией.  [14]

Изготовление днищ из нержавеющей стали аустенитного класса производится в холодном состоянии, но для снятия внутренних напряжений необходимо каждое днище перед приваркой к обечайке подвергнуть термической обработке. Термообработка должна проводиться в печах равномерным нагревом до температуры 950 - 1150 с последующим быстрым охлаждением.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Аустенитная сталь - Большая Энциклопедия Нефти и Газа, статья, страница 1

Аустенитная сталь

Cтраница 1

Аустенитные стали, содержащие менее 0 03 % с углерода, не склонны к межкристаллитной коррозии.  [1]

Аустенитные стали с повышенным содержанием никеля проявляют наименьшую склонность к коррозионному растрескиванию. В хлоридных средах весьма эффективна замена хромоникелевой стали сплавами никеля, в частности инконелем. Иногда выгодно ( как и в случае точечной коррозии) в растворах хлоридов вместо высоколегированных хромоникелевых сталей применять обычные углеродистые стали, не склонные к коррозионному растрескиванию в этих средах, несмотря на повышенную, но гораздо менее опасную равномерную коррозию. Почти все чистые металлы нечувствительны к коррозионному растрескиванию. Сплавы высокой чистоты, получаемые вакуумной плавкой, обнаруживают особенно высокое сопротивление этому виду коррозии.  [2]

Аустенитные стали, в которых диффузия водорода затруднена, хорошо сопротивляются водородной коррозии в большинстве сред.  [3]

Аустенитные стали отличаются от ферритных не только высокой вязкостью.  [4]

Аустенитные стали при высоких температурах имеют более высокую склонность к хрупким разрушениям. При этом минимальная пластичность при 550 - 600 С может доходить до долей процента. Наименьшую пластичность в этом интервале температур имеют высокожаропрочные сплавы на никелевой основе. Наоборот, высокохромистые мартенситные стали имеют наиболее высокую длительную пластичность при высоких температурах.  [5]

Аустенитные стали, упрочняемые термической обработкой, применяются в состоянии закалки ( нормализации) с последующей стабилизацией. Их упрочнение создается благодаря выделению карбидных, карбонитридных и особенно интерметаллидных фаз. Способность к старению обусловлена введением таких элементов, как титан, ниобий и алюминий в количествах, превышающих предел растворимости. Жаропрочность этих сталей заметно выше, чем у гомогенных сталей, и при рациональном легировании они могут длительно работать под напряжением до 700 С.  [6]

Аустенитные стали имеют низкую теплопроводность и высокий температурный коэффициент линейного расширения, что обусловливает перегрев металла в зоне сварки и возникновение значительных деформаций изделия. Основные трудности сварки рассматриваемых сталей и сплавов обусловлены высокой степенью легирования и разнообразием условий эксплуатации сварных конструкций.  [7]

Аустенитные стали и сплавы малочувствительны к надрезу при высокотемпературных испытаниях. Следует подчеркнуть, что некоторые аустенитные сплавы, как указывает Ф. Ф. Химушин, обладают повышенной чувствительностью к надрезу. Причем в большинстве случаев максимальная чувствительность к надрезу совпадает с интервалом температур, при которых наблюдается наибольшее охрупчивание данного сплава.  [9]

Аустенитные стали, в большинстве своем, не претерпевают видимых фазовых превращений при воздействии на них сварочного термического цикла. Вследствие этого околошовная зона хро-моникелевых сталей имеет менее сложное строение, чем зона при сварке обычных конструкционных сталей.  [10]

Аустенитные стали и сплавы работают в условиях самых различных температур, нагрузок и сред. Поэтому и к сварным соединениям этих сталей и сплавов предъявляются самые разнообразные требования, в зависимости от назначения сварной конструкции. Получение заданных механических свойств, требуемой жаропрочности, стойкости сварных швов против жидкостной или газовой коррозии определяется, естественно, прежде всего композицией шва, его структурой и термической обработкой. Но очень многое зависит и от технологии и техники сварки.  [11]

Аустенитные стали легированы большим количеством хрома и никеля для получения структуры аустени-та.  [12]

Аустенитные стали менее склонны к росту зерна, но деформация, так же как и полуферритных и ферритных сталей, в конце прокатки должна быть достаточной, а температура не ниже 850 - 900 С.  [13]

Аустенитные стали обладают пониженной температурой плавления ( 1400 С), более низкой теплопроводностью и высоким коэффициентом линейного расширения, чем углеродистые стали. Поэтому при сварке этих сталей расплавление идет быстрее с большим перепадом температуры от сварного шва к основному металлу. Нестабилизированные титаном или ниобием стали типа 18 - 8 ( ООХ18Н10, ОХ18Н10, Х18Н9, 2X18Н9) при сварке приобретают склонность к межкристаллитной коррозии и тем больше, чем выше содержание углерода ( гл. Стабилизированные стали не склонны или в значительно меньшей степени склонны к межкристаллитной коррозии, но при повышенном содержании углерода они могут приобретать склонность к поражению ножевой коррозией в концентрированной азотной кислоте ( гл. Все это необходимо учитывать и особенно следить за скоростями сварки и охлаждения при сварке сталей первой группы. В тех случаях, когда требуется особо высокая коррозионная стойкость, сварные изделия из нестабилизированных сталей следует подвергать закалке с 1050 - 1150 С с последующим быстрым охлаждением. Когда такая термическая обработка исключается, следует применять сталь 18 - 8 с очень низким содержанием углерода ( 0 05 или 0 03 % С) или стабилизированные стали.  [14]

Аустенитные стали - аустенитизация при 1020 - 1070 С, закалка в воде или на воздухе.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Свойство - аустенитная сталь - Большая Энциклопедия Нефти и Газа, статья, страница 1

Свойство - аустенитная сталь

Cтраница 1

Свойства аустенитных сталей вообще и хромоникелесых аусте-нитных жаропрочных сталей в частности во многом определяют выбор способов их сварки, сварочных материалов и технологии сварки.  [1]

Свойства аустенитных сталей типа 18 - 8 при повышенных температурах могут быть характеризованы данными, приведенными на фиг.  [2]

Разница в свойствах ферритных и аустенитных сталей в отношении коррозии при механических напряжениях вызывает удивление.  [3]

Неметаллические включения оказывают заметное влияние на свойства аустенитных сталей и сварных швов. При ручной сварке аустенитными электродами с основным покрытием и при дуговой сварке в атмосфере защитных газов наплавленный металл сравнительно мало загрязнен неметаллическими включениями. Исключение составляет газоэлектрическая сварка в техническом аргоне, когда металл шва содержит большое количество нитридов. Совершенно иная картина наблюдается при сварке под флюсами-силикатами и при сварке в углекислом газе.  [4]

Между тем деформационное старение аустенита может оказывать весьма существенное влияние на свойства аустенитных сталей в процессе эксплуатации. Установлено, что явление деформационного старения присуще как чистым металлам с ГЦК-решет-жой - никелю, алюминию, так и некоторым сплавам.  [5]

В последние годы выполнены исследования по изучению влияния бора [49] на структуру и свойства аустенитной стали с высоким содержанием хрома и никеля.  [7]

Аустенито-ферритные стали обладают рядом особенностей, к которым относятся более высокие прочностные свойства при комнатных температурах по сравнению со свойствами аустенитных сталей [ 49, 230 - 2311 после закалки с 1000 - 1150 - С, меньшие значения пластичности и ударной вязкости. Прочность и твердость могут быть еще несколько повышены за счет дополнительного старения при 500 - 750 С вследствие процессов дисперсионного твердения, протекающих в обеих фазах.  [8]

Концентрация углерода в результате дегомогенизации при очень высокой температуре, возможно, происходит быстрее в межфазных областях, окружающих ферритные пространства. Мы предполагаем изучить свойства аустенитных сталей с большим содержанием никеля ( стали г. 18 % хрома и 20 % никеля), в которых, несомненно, не содержится никаких следов дельта-феррита. Таким путем мы выясним, может ли ожевая коррозия происходить в аустенитах, абсолютно не содержащих дельта-феррита.  [9]

Наряду с этим, установлена нецелесообразность легирования некоторых марок сталей присадкой небольших количеств ниобия. Так, по А. М. Борздыка [297], легирование ниобием, при отношении содержания ниобия к содержанию углерода близкому к 2, средпеуглеродиетой ( 0 5 % С) хромоникельвольфрамовой стали не дает эффекта. Причину такого влияния ниобия этот исследователь видит в том, что теплоустойчивые свойства аустенитной стали зависят не столько от общего содержания в стали ниобия, сколько от соотношения между ниобием и углеродом. Этот исследователь считает, что вольфрам как упрочняющий элемент может быть заменен в жаростойкой хромоникелевой стали ниобием, 1 атомн.  [10]

Он установил, что поглощение азота происходит во всем интервале температур. Об от-жоте в атмосфере чистого водорода и происходящих при этом изменениях свойств аустенитных сталей сообщают Роач с сотрудниками. Первые соображения об отжиге высоколегированных инструментальных сталей [2] указывают на то, что при отжиге в атмосфере аргона, с одной стороны, устраняется нежелательное селективное обезуглероживание поверхности и, с другой стороны, уменьшается обеднение поверхности хромом и другими элементами.  [11]

Стали аустенитного класса на марганцовистой основе склонны к образованию трещин при нагревании и давлении, отличаются плохой свариваемостью, при медленном охлаждении и отпуске при 300 - 400 С структура стали переходит в мартенсит. Однако эта сталь отличается высокой износостойкостью. Твердость металла на поверхностях трения в местах изнашивания повышается в процессе работы звеньев и поддерживается в пределах от zoo до 500 НВ при высокой пластичности, что близко к твердости закаленной стали 45, пластичность которой значительно ниже. Такое свойство аустенитной стали способствует повышению износостойкости в абразивной среде при ударных нагрузках.  [12]

Страницы:      1

www.ngpedia.ru

Аустенит - это что такое?

Термическая обработка стали – это мощнейший механизм влияния на ее структуру и свойства. Он основывается на видоизменениях кристаллических решеток в зависимости от игры температур. В различных условиях в железоуглеродистом сплаве могут присутствовать феррит, перлит, цементит и аустенит. Последний играет основную роль во всех термических преобразованиях в стали.

Определение

Сталь – это сплав железа и углерода, в котором содержание карбона составляет до 2,14% теоретически, однако технологически применимая содержит его в количестве не более 1,3%. Соответственно, все структуры, которые образовываются в ней под влиянием внешних воздействий, также являются разновидностями сплавов.

Теория представляет их существование в 4 вариациях: твердый раствор проникновения, твердый раствор исключения, механическая смесь зерен или химическое соединение.

Аустенит – это твердый раствор проникновения атома углерода в гранецентрическую кубическую кристаллическую решетку железа, именуемую как γ. Атом карбона внедряется в полость γ-решетки железа. Его размеры превосходят соответствующие поры между атомами Fe, что объясняет ограниченность прохождения их сквозь «стенки» основной структуры. Образуется в процессах температурных превращений феррита и перлита при повышении тепла выше 727˚С.

аустенит - это

Диаграмма железоуглеродистых сплавов

График, именуемый диаграммой состояния железо-цементит, построенный экспериментальным путем, представляет собой наглядную демонстрацию всех возможных вариантов преобразований в сталях и чугунах. Конкретные температурные значения для определенного количества углерода в сплаве образуют критические точки, в которых происходят важные структурные изменения в процессах нагревания или охлаждения, они же формируют критические линии.

Линия GSE, которая содержит точки Ac3 и Acm, отображает уровень растворимости карбона при повышении уровня тепла.

Таблица зависимости растворимости углерода в аустените от температуры

Температура, ˚С

900

850

727

900

1147

Примерная растворимость С в аустените, %

0,2

0,5

0,8

1,3

2,14

Особенности образования

Аустенит – это структура, которая формируется в процессе нагревания стали. При достижении критической температуры перлит и феррит образуют целостное вещество.

Варианты нагревания:

  1. Равномерное, до достижения необходимого значения, непродолжительная выдержка, охлаждение. В зависимости от характеристик сплава, аустенит может быть как полностью сформирован, так и частично.
  2. Медленное повышение температуры, длительный период поддержания достигнутого уровня теплоты с целью получения чистого аустенита.

Свойства полученного разогретого материала, а также того, который будет иметь место в результате охлаждения. Очень многое зависит от уровня достигнутого тепла. Важно не допустить перегрев или перепал.

аустенит цементит

Микроструктура и свойства

Каждой из фаз, характерных для железоуглеродистых сплавов, свойственно собственное строение решеток и зерен. Структура аустенита – пластинчатая, имеющая формы, близкие и к игольчатому виду, и к хлопьевидному. При полном растворении углерода в γ-железе, зерна имеют светлую форму без наличия темных цементитных включений.

Твердость составляет 170-220 НВ. Теплопроводность и электропроводность на порядок ниже, чем у феррита. Магнитные свойства отсутствуют.

Варианты охлаждения и его скорости приводят к образованию различных модификаций «холодного» состояния: мартенсита, бейнита, троостита, сорбита, перлита. Они имеют похожую игольчатую структуру, однако отличаются дисперсностью частиц, размером зерен и цементитных частиц.

Влияние охлаждения на аустенит

Распад аустенита происходит в тех же критических точках. Результативность его зависит от следующих факторов:

  1. Скорость охлаждения. Влияет на характер углеродных включений, формирования зерен, образования итоговой микроструктуры и ее свойств. Зависит от среды, которая используется в качестве охладителя.
  2. Наличие изотермической составляющей на одном из этапов распада – при понижении до определенного температурного уровня, поддерживается стабильное тепло некоторый период времени, после чего продолжается быстрое охлаждение, или же оно происходит вместе с нагревательным устройством (печью).

Таким образом, выделяют непрерывное и изотермическое превращения аустенита.

диаграмма превращения аустенита

Особенности характера преобразований. Диаграмма

С-образный график, который отображает характер изменений микроструктуры металла во временном интервале, в зависимости от степени изменения температур – это диаграмма превращения аустенита. Реальное охлаждение непрерывно. Возможны лишь некоторые фазы принудительного удержания тепла. График описывает изотермические условия.

Характер может быть диффузионный и бездиффузионный.

При стандартных скоростях снижения тепла изменение аустенитного зерна происходит диффузионно. В зоне термодинамической неустойчивости атомы начинают перемещаться между собой. Те, которые не успевают внедриться в решетку железа, формируют цементитные включения. К ним присоединяются соседние частицы карбона, высвободившиеся из своих кристаллов. Цементит формируется на границах распадающихся зерен. Очищенные кристаллы феррита образовывают соответственные пластины. Формируется дисперсная структура – смесь зерен, размер и концентрация которых зависят от стремительности охлаждения и содержания карбона в сплаве. Образуется также перлит и его промежуточные фазы: сорбит, троостит, бейнит.

При значительных скоростях снижения температур распад аустенита не имеет диффузионного характера. Происходят комплексные искажения кристаллов, внутри которых все атомы одновременно смещаются в плоскости, не меняя расположения. Отсутствие диффузионности способствует зарождению мартенсита.

Влияние закалки на особенности распада аустенита. Мартенсит

Закалка – это вид термической обработки, суть которого заключается в быстром нагревании до высоких температур выше критических точек Ac3 и Acm, после чего следует быстрое охлаждение. Если снижение температуры происходит с помощью воды со скоростью больше 200˚С за секунду, то образуется твердая игольчатая фаза, имеющая название мартенсит.

Он являет собой пересыщенный твердый раствор проникновения карбона в железо с кристаллической решеткой типа α. Вследствие мощных перемещений атомов она искажается и формирует тетрагональную решетку, что и выступает причиной упрочнения. Сформированная структура имеет больший объем. В результате этого кристаллы, ограниченные плоскостью, сжимаются, зарождаются игольчатые пластины.

Мартенсит – прочный и очень твердый (700-750 НВ). Образуется исключительно в результате высокоскоростной закалки.

превращения аустенита

Закалка. Диффузионные структуры

Аустенит – это формирование, из которого могут быть искусственно произведены бейнит, троостит, сорбит и перлит. Если охлаждение закалки происходит на меньших скоростях, осуществляются диффузионные превращения, их механизм описан выше.

Троостит – это перлит, для которого характерна высокая степень дисперсности. Формируется при уменьшении тепла 100˚С за секунду. Большое количество мелких зерен феррита и цементита распределяется по всей плоскости. «Закаленному» свойственен цементит пластинчатой формы, а троостит, полученный в результате последующего отпуска, имеет зернистую визуализацию. Твердость – 600-650 НВ.

Бейнит – это промежуточная фаза, которая являет собой еще более дисперсную смесь кристаллов высокоуглеродистого феррита и цементита. По механическим и технологическим свойствам уступает мартенситу, но превышает троостит. Образуется в температурных интервалах, когда диффузия невозможна, а силы сжатия и перемещения кристаллической структуры для превращения в мартенситную – недостаточно.

Сорбит – крупнодисперсная иглообразная разновидность перлитных фаз при охлаждении со скоростью 10˚С за секунду. Механичесие свойства занимают промежуточное положение между перлитом и трооститом.

Перлит – это совокупность зерен феррита и цементита, которые могут быть зернистой или пластинчатой формы. Формируется в результате плавного распада аустенита со скоростью охлаждения 1˚С за секунду.

Бейтит и троостит – более относятся к закалочным структурам, тогда как сорбит и перлит могут формироваться и при отпуске, отжиге и нормализации, особенности которых определяют форму зерен и их размер.

изотермическое превращение аустенита

Влияние отжига на особенности распада аустенита

Практически все виды отжига и нормализации основаны на взаимообратном превращении аустенита. Полный и неполный отжиг применяют к доэвтектоидным сталям. Детали нагревают в печи выше критических точек Ac3 и Ас1 соответственно. Для первого типа характерно наличие длительного периода выдержки, который обеспечивает полное преобразование: феррит-аустенит и перлит-аустенит. После чего следует медленное охлаждение заготовок в печи. На выходе получают мелкодисперсную смесь феррита и перлита, без внутренних напряжений, пластичную и прочную. Неполный отжиг менее энергоемкий, изменяет только строение перлита, оставляя феррит практически без изменений. Нормализация подразумевает более высокую скорость снижения температур, однако и более крупнозернистую и менее пластичную структуру на выходе. Для стальных сплавов с содержанием углерода от 0,8 до 1,3% при охлаждении в рамках нормализации происходит распад по направлению: аустенит-перлит и аустенит-цементит.

Еще одним видом термической обработки, который основан на структурных превращениях, является гомогенизация. Он применим для крупных деталей. Подразумевает абсолютное достижение аустенитного крупнозернистого состояния при температурах 1000-1200˚С и выдержку в печи в период до 15 часов. Изотермические процессы продолжаются медленным охлаждением, которое способствует выравниванию структур металла.

перлит аустенит

Изотермический отжиг

Каждый из перечисленных способов влияния на металл для упрощения понимания рассматривается как изотермическое превращение аустенита. Однако каждый из них лишь на определенном этапе имеет характерные особенности. В реальности же изменения происходят при стабильном снижении тепла, скорость которого определяет результат.

Один из способов, наиболее близкий к идеальным условиям, - изотермический отжиг. Его суть также состоит в нагреве и выдержке до полного распада всех структур в аустенит. Охлаждение реализовывается в несколько этапов, что способствует более медленному, более длительному и более термически стабильному его распаду.

  1. Стремительное понижение температуры до значения на 100˚С ниже точки Ас1.
  2. Принудительное удержание достигнутого значения (помещением в печь) длительное время до полного завершения процессов образования ферритно-перлитных фаз.
  3. Охлаждение на спокойном воздухе.

Метод применим и для легированных сталей, для которых характерно наличие остаточного аустенита в охлажденном состоянии.

Остаточный аустенит и аустенитные стали

Иногда возможен неполный распад, когда имеет место остаточный аустенит. Это может произойти в следующих ситуациях:

  1. Слишком быстрое охлаждение, когда полный распад не происходит. Является структурной составляющей бейнита или мартенсита.
  2. Сталь высокоуглеродистая или низколегированная, для которой усложнены процессы аустенитных дисперсных превращений. Требует применения особенных способов термообработки, как, к примеру, гомогенизация или изотермический отжиг.

Для высоколегированных – отсутствуют процессы описываемых преобразований. Легирование стали никелем, марганцем, хромом способствует формированию аустенита как основной прочной структуры, которая не требует дополнительных влияний. Аустенитные стали отличаются высокой прочностью, коррозионной стойкостью и жаростойкостью, жаропрочностью и устойчивостью к сложным агрессивным условиям работы.

остаточный аустенит

Аустенит – это структура, без образования которой невозможно ни одно высокотемпературное нагревание стали и которая участвует практически во всех способах ее термической обработки с целью улучшения механических и технологических свойств.

fb.ru