Как работает машина на дровах. Двигатель на дровах


Газогенератор — Энциклопедия журнала "За рулем"

Газогенератор

Газогенератор – это установка для получения горючего газа из твердого топлива. В качестве твердого топлива, как правило, применяются местные ресурсы: уголь, торф, древесина, солома, а так же отходы деревообрабатывающих производств. Превращение твердого топлива в газообразное называется «газификацией» и заключается в сжигании топлива с поступлением количества кислорода воздуха или водяного пара, недостаточном для полного сгорания. Сегодня газогенераторные установки используют для получения пара, или горячего воздуха для различных технологических процессов, а так же в составе отопительных систем. Однако в 30-е – 40–е годы прошлого века газогенераторы с успехом применяли на транспорте: массовая эксплуатация автомобилей на древесных чурках обещала сберечь жидкое топливо для более важных нужд - тонны сэкономленного бензина можно было направить в вооруженные силы или авиацию.

Fiat-15Ter.jpg

В 1923 году профессором Наумовым была разработана газогенераторная установка для 3-тонного грузовика, способная работать на древесном угле или на антраците. Установка была испытана в стационарных условиях совместно с 4-цилиндровым бензиновым двигателем Berliet L 14 мощностью 35 л.с. В 1928 году FIAT-15Ter с газогенератором Наумова совершил пробег по маршруту Ленинград – Москва – Ленинград. Первая половина 30-х годов отмечена многочисленными исследованиями, направленными на выявление оптимальной конструкции газогенераторной установки. Статьи об испытательных автопробегах и новых разработках постоянно появлялись в прессе, в том числе и в журнале «За Рулем».В подавляющем большинстве это были установки для грузового транспорта, что не удивительно – ведь основной транспортной единицей народного хозяйства в период индустриализации являлся грузовик, а не легковой автомобиль. Тем не менее, следует упомянуть созданный в 1935 году ГАЗ-А с газогенераторной установкой Автодор – III, а также ГАЗ-М1 с газогенератором НАТИ-Г12, на котором в сентябре 1938 года был установлен рекорд скорости для газогенераторного автомобиля 60,96 км/ч. Первым серийным газогенераторным автомобилем являлся ЗИС-13, но подлинно массовыми «газгенами» стали ГАЗ-42, ЗИС-21 и УралЗИС-352. Горение углерода топлива можно описать следующим образом: С + О2 = СО2 - это полное сгорание топлива, которое сопровождается выделением углекислого газа СО2;и С + (1/2)О2 = СО - это неполное сгорание, в результате которого образуется горючий газ – оксид углерода СО.Оба этих процесса происходят в так называемой «зоне горения» газогенератора.Оксид углерода СО образуется также при прохождении углекислого газа СО2 сквозь слой раскаленного топлива:С + СО2 = 2СОВ процессе участвует часть влаги топлива (или влага, подведенная извне) с образованием углекислого газа СО2, водорода Н2, и горючего оксида углерода СО.С + Н2О = СО + Н2СО + Н2О = СО2 + Н2Зону, в которой протекают три описанных выше реакции называют «зоной восстановления» газогенератора. Обе зоны – горения и восстановления – несут общее название «активная зона газификации».Примерный состав газа, полученного в газогенераторе обращенного процесса газификации при работе на древесных чурках абсолютной влажностью 20%, следующий (в % от объема):- водород Н2 16,1%;- углекислый газ СО2 9,2%;- оксид углерода СО 20,9%;- метан СН4 2,3%;- непредельные углеводороды СnHm (без смол) 0,2%;- кислород О2 1,6%;- азот N2 49,7%Итак, генераторный газ состоит из горючих компонентов (СО, Н2, СН4, СnHm) и балласта (СО2, О2, N2, Н2О)

Топливо для газогенераторовВ качестве твердого топлива в газогенераторных установках могут быть использованы древесные чурки, древесный уголь, торф, бурый уголь, каменный уголь.На территории СССР наиболее распространенным и доступным твердым топливом была древесина, по этому большую часть газогенераторного транспорта составляли автомобили с установками, работающими на древесных чурках.Главные критериями качества топлива являлись порода древесины, абсолютная влажность и размеры чурок. Приоритет был отдан древесине твердых пород: березе, буку, грабу, ясеню, клену, вязу, лиственнице. Древесину мягких пород допускалось использовать лишь совместно с твердыми в соотношении 50/50. Сосновые чурки использовались без добавления древесины мягких пород. Для газификации в автомобильных газогенераторах древесину распиливали на чурки длиной от 4 до 7 см, и шириной и высотой от 3 до 6 см. Абсолютная влажность готового твердого топлива не более 22%.Менее распространены были древесно-угольные газогенераторные установки. Для их эксплуатации рекомендовалось использовать угли древесины твердых пород. Угли древесины мягких пород, склонные к крошению, допускалось применять с добавлением не менее 50% углей древесины твердых пород. Размер кусков древесного угля для газогенераторов поперечного процесса - от 6 до 20 мм, для других типов генераторов – от 20 до 40 мм.В зависимости от содержания смол и золы твердые сорта топлив для газогенераторов разделяли на смолистые (битуминозные) малозольные (золы до 4%) и многозольные (золы более 4%), а также на безсмольные, или тощие (небитуминозные) малозольные (золы до 4%) и многозольные (золы более 4%). Для разных видов топлива были разработаны газогенераторы соответствующих типов:- газогенераторы прямого процесса газификации;- газогенераторы обращенного (обратного, или «опрокинутого») процесса газификации;- газогенераторы поперечного (горизонтального) процесса газификации.

Типы газогенераторов

Газогенераторы прямого процесса газификацииОсновным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С. В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя. Подача водяного пара в газогенератор должна производиться пропорционально количеству сжигаемого в газогенераторе топлива. Существовало несколько способов регулировки подачи пара в камеру газификации:- механический способ, когда вода подавалась в испаритель газогенератора с помощью насоса, приводимого в действие от двигателя и имевшего перепускной кран, который был связан с дроссельной заслонкой. Таким образом, количество воды, подаваемой в газогенератор, изменялось в зависимости от числа оборотов и нагрузки двигателя;- термический способ, когда в испарителе, расположенном вблизи зоны горения, поддерживался с помощью поплавкового устройства необходимый уровень воды, а количество образующегося пара изменялось в зависимости от нагрева испарителя, то есть в зависимости от температуры в зоне горения;- гидравлический способ, когда расход воды регулировался иглой, перекрывавшей сечение жиклера, и связанной с мембраной, на которую действовала разность давлений до и после диафрагмы, установленной в газопроводе, соединявшим газогенераторную установку с двигателем;- пневматический способ, при котором вода подавалась в испаритель газогенератора вместе с воздухом, засасываемым через обычный карбюратор.

В конструкции газогенератора ЦНИИАТ-АГ-2 был использован принцип центрального подвода воздуха и центрального отбора газа. Газогенератор состоял из корпуса, конической камеры газификации и зольника. Верхняя часть корпуса служила бункером для топлива и имела цилиндрический бак для воды. Трубка для подачи воды располагалась внутри газогенератора, бак подогревался теплом сгорающего топлива. Это обеспечивало надежную работу установки в зимнее время. Камера газификации представляла собой горловину конической формы, которая снизу была окружена рубашкой, заполненной водой для образования водяного пара. Необходимый уровень воды в рубашке поддерживался при помощи поплавкового устройства. Количество образовавшегося пара изменялось в зависимости от теплового режима газогенератора.

Воздух, засасываемый в газогенератор через подогреватель, смешивался с паром и поступал в камеру газификации через щель, образованную рубашкой и поворотной плитой. При вращении плиты рукояткой, расположенной снаружи под днищем газогенератора, ребра, имеющиеся на плите, срезали шлак и сбрасывали его в зольник.Установки прямого процесса газификации не получили распространения, так как, во-первых, были непригодны для газификации самого распространенного твердого топлива - древесины, а во-вторых, потому что приспособления, необходимые для хранения, дозировки и испарения воды существенно усложняли конструкцию газогенератора.

Газогенераторы обращенного (опрокинутого) процесса газификации.Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля. В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.

Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы). Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7. Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора. Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10. Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки. На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации. Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.

Камера газогенератора НАТИ-Г-15), изготовленная из 12-миллиметровой листовой стали, имела вид усеченного конуса. В средней части газогенератора была смонтирована воздухоподводящая фурма. Она представляла собой чугунную отливку грушевидной формы. Внутри отливки – лабиринт для подвода воздуха в газогенератор. В нижней части камеры газификации располагалась колосниковая решетка, которую вынимали через зольниковый люк при чистке и разгрузке газогенератора. Образовавшийся в камере газификации газ проходил сквозь колосниковую решетку, поднимался вверх между корпусом газогенератора и камерой и отсасывался через газоотборный патрубок. Газогенератор был предназначен для работы на крупном древесном угле, с размером кусков 20 мм – 40 мм.Газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках, получили наибольшее распространение.

Газогенераторы поперечного (горизонтального) процесса газификации. В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива. Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.

Газогенератор представлял собой цилиндрический бункер, нижняя часть которого, выполненная из листовой стали толщиной 6 – 8 мм, образовывала камеру газификации. В верхней части бункера был расположен люк для загрузки топлива.

Скорость дутья определялась проходным сечением воздухоподводящей фурмы. Фурма служила наиболее ответственной и сложной деталью газогенератора. Она была глубоко погружена в слой топлива и находилась в зоне высокой температуры – непосредственно около носка фурмы температура достигает 1200 – 1300 С. Высокие температурные нагрузки требовали применять водяное охлаждение фурмы. Конструктивно охлаждение фурмы являлось частью системы водяного охлаждения двигателя, или представляло собой самостоятельную систему, питаемую от отдельного бачка.

Воздухоподводящая фурма газогенератора НАТИ-Г-21 состояла из бронзового корпуса 1 и медных трубок 2 и 3 диаметром 20 и 40 мм, образующих водяную рубашку. Тыльная часть наружной трубки 3 была приварена к корпусу 1 фурмы, а носовая часть обварена медью и соединялась с внутренней трубкой 2, свободный конец которой при нагревании фурмы мог перемещаться в сальнике 4. Затяжкой накидной гайки 5 обеспечивалась герметичность водяной рубашки. Вода подавалась через нижний штуцер корпуса фурмы и после прохождения водяной рубашки отводилась через верхний штуцер. Для того чтобы поток воды достиг носка фурмы, к наружной поверхности внутренней трубки параллельно ее оси были приварены две перегородки, направлявшие поток воды к носу фурмы.

Другой важной деталью газогенераторов поперечного процесса газификации служила газоотборная решетка. Газоотборную решетку изготавливали из простой углеродистой или легированной стали толщиной 8 – 12 мм. Ее штамповали в виде изогнутого листа с отбортованными краями или изготавливали в виде плоской пластины. В последнем случае для монтажа решетки в газогенераторе предусматривали специальное гнездо. Отверстия в решетке для прохода газа делали круглыми, диаметром 10 – 12 мм, с раззенковкой со стороны выхода газа. Иногда отверстия делали овальными; в этом случае большая ось овала располагалась горизонтально, что позволяло увеличить проходное сечение без опасности проскакивания за решетку кусков угля (при наклонном расположении решетки).Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.

Принцип работы автомобильной газогенераторной установки

Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.

Охлаждение и грубая очистка газа

На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.

Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.

В качестве простейшего очистителя использовался циклон. Газ поступал в очиститель через патрубок 1, распологавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3. Ударившись о стенки, частицы падали в пылесборник 6. Отражатель 4 препятствовал возвращению частиц в газовый поток. Очищенный газ выходил из циклона через газоотборный патрубок 2. Удаление осадка осуществлялось через люк 5.

Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя. Грубый очиститель-охладитель состоял из металлического кожуха 1, снабженного съемной крышкой 2. Внутри кожуха были установлены пластины 3 с большим количеством мелких отверстий, расположенных в шахматном порядке. Газ, проходя через отверстия пластин, менял скорость и направление, а частицы, ударяясь о стенки, оседали на них или падали вниз.

Грубые охладители-очистители последовательно соединяли в батареи из нескольких секций, причем каждая последующая секция имела большее количество пластин. Диаметр отверстий в пластинах от секции к секции уменьшался (РИСУНОК 5Г).

Фильтры тонкой очистки

Для тонкой очистки газа чаще всего применяли очистители с кольцами. Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали. Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц. Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя. Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса. Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.

Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.

Вентилятор розжига

В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод. Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.

Смеситель

Образование горючей смеси из генераторного газа и воздуха происходило в смесителе. Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха. Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха. Эжекционные смесители б и в различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.

Методы уменьшения потерь мощности двигателей газогенераторных автомобилей

Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки.Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.

Эксплуатация автомобилей с газогенераторными установками

Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях. Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке. Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель.При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» - стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель. Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя. При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя.В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок. Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра.Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.

Дополнительные материалы:

За Рулем 1931 № 20 Автомобили на дровахЗа Рулем 1933 № 16 Автомобили на дровахЗа Рулем 1934 № 17 Газогенератор профессора КарповаЗа Рулем 1935 № 1 Пробег газогенераторных автомашинЗа Рулем 1935 № 2 Новый четырехосный газогенераторный автобусЗа Рулем 1935 № 3 Первый автодоровский газогенераторЗа Рулем 1935 № 14 Новый газогенератор для автомобиля ГАЗ-АА

wiki.zr.ru

Автомобиль на дровах: как он работает?

Это похоже на анекдот. Но тем, кто работал на лесоповале в тайге в 30-х, было не до смеха. Нет бензина — ехали на дровах. Да и по сей день эта технология до сих пор используется. Как устроены такие авто? Разбираем в деталях.Оговоримся сразу: если автомобиль ездит на дровах, это не значит, что он — паровоз без рельсов. Низкий КПД паровой машины с ее отдельной топкой, котлом и цилиндрами двойного-тройного расширения оставил паровые автомобили в числе забытой экзотики. А сегодня мы поговорим о «дровяном» транспорте с привычными нам ДВС, моторами, сжигающими топливо внутри себя.

Разумеется, затолкать дрова (или нечто подобное) в карбюратор вместо бензина пока еще никому не удавалось, а вот идея прямо на борту авто получать из древесины горючий газ и подавать его в цилиндры как топливо прижилась на долгие годы. Речь идет о газогенераторных автомобилях, машинах, чей классический ДВС работает на генераторном газе, который получают из древесины, органических брикетов, или угля. От привычного жидкого топлива, кстати, такие машины тоже не отказываются — они способны работать и на бензине.

Святая простота

Генераторный газ — это смесь газов, состоящая в основном из окиси углерода СО и водорода Н2. Получить такой газ можно, сжигая размещенную толстым слоем древесину в условиях ограниченного количества воздуха. На этом несложном принципе работает и автомобильный газогенератор, простой по сути агрегат, но громоздкий и конструктивно осложненный дополнительными системами.

Также, помимо собственно производства генераторного газа, автомобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Соответственно, конструктивно классическая установка включает в себя сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения процесса розжига и трубопроводы.

НПЗ вожу с собой

Простейший газогенератор имеет вид вертикального цилиндра, в который почти доверху загружается топливо — дрова, уголь, торф, прессованные пеллеты и т.п. Зона горения расположена внизу, именно здесь, в нижнем слое горящего топлива создается высокая температура (до 1 500 градусов по Цельсию), необходимая для выделения из более верхних слоев будущих компонентов топливной смеси — окиси углерода СО и водорода Н2. Далее горячая смесь этих газов поступает в охладитель, который снижает температуру, повышая таким образом удельную калорийность газа. Этот довольно крупный узел обычно приходилось помещать под кузовом машины. Расположенный следом по ходу газа фильтр-очиститель избавляет будущую топливную смесь от примесей и золы. Далее газ направляется в смеситель, где соединяется с воздухом, и окончательно приготовленная смесь направляется в камеру сгорания двигателя автомобиля.

Как видите, система производства топлива прямо на борту грузовика или легковушки занимала довольно много места и немало весила. Но игра стоила свеч. Благодаря собственному — и к тому же дармовому — топливу свой автономный транспорт могли себе позволить предприятия, расположенные за сотни и тысячи километров от баз снабжения ГСМ. Это достоинство долго не могло затмить все недостатки газогенераторных автомобилей, а их было немало:

— существенное сокращение пробега на одной заправке;— снижение грузоподъемности автомобиля на 150-400 кг;— уменьшение полезного объема кузова;— хлопотный процесс «дозаправки» газового генератора;— дополнительный комплекс регламентных сервисных работ;— запуск генератора занимает от 10-15 минут;— существенное снижение мощности двигателя.

В тайге заправок нет

Древесина всегда являлась основным топливом для газогенераторных автомобилей. В первую очередь, конечно, там, где дров в избытке, — на лесозаготовках, в мебельном и строительном производстве. Традиционные технологии лесопереработки при промышленном использовании древесины в эпоху расцвета «газгенов» около 30% от массы леса отпускали в отходы. Их и использовали как автомобильное топливо. Интересно, что правилами эксплуатации отечественных «газгенов» строжайше запрещалось использование деловой древесины, так как и отходов лесной промышленности было с избытком. Для газогенераторов годились как мягкие, так и твердые породы дерева.

Единственное требование — отсутствие на чурках гнили. Как показали многочисленные исследования, проведенные в 30-е годы в Научном автотракторном институте СССР, лучше всего в качестве топлива подходят дуб, бук, ясень и береза. Чурки, которыми заправлялись котлы газогенераторов, чаще всего имели прямоугольную форму со стороной 5-6 сантиметров. Сельскохозяйственные отходы (солома, лузга, опилки, кора, шишки и пр.) прессовали в специальные брикеты и также «заправляли» ими газогенераторы.

Главным недостатком «газгенов», как мы уже говорили, можно считать малый пробег на одной заправке. Так, одной загрузки древесными чурками советским грузовикам (см. ниже) хватало не более чем на 80-85 км пробега. Учитывая, что «заправляться» руководство по эксплуатации рекомендует при опустошении бака на 50-60%, то и вовсе пробег между заправками сокращается до 40-50 км. Во-вторых, сама установка, вырабатывающая генераторный газ, весит несколько сотен килограммов. К тому же двигатели, работающие на таком газе, выдают на 30-35% меньше мощности, чем их бензиновые аналоги.

Для сохранения тяговых характеристик, в особенности это касалось грузовиков, при снизившейся мощности двигателя передаточные числа трансмиссии делали более высокими. Скорость движения падала, но для автомобилей, использующихся в лесной глуши и прочих пустынных и отдаленных районах это не имело решающего значения. Чтобы компенсировать изменившуюся из-за тяжелого газогенератора развесовку, в некоторых машинах усиливали подвеску.

Помимо того, из-за громоздкости «газового» оборудования отчасти приходилось перекомпоновывать автомобиль: менять, сдвигать грузовую платформу или урезать кабину грузовика, отказываться от багажника, переносить выхлопную систему.

Золотая эра «газгена» в СССР и за границейЭра расцвета газогенераторных автомобилей пришлась на 30-40-е года прошлого века. Одновременно в нескольких странах с большими потребностями в автомобилях и малыми разведанными запасами нефти (СССР, Германия, Швеция) инженеры крупных предприятий и научных институтов взялись за разработку автотранспорта на дровах. Советские специалисты больше преуспели в создании грузовых автомобилей.С 1935 года и до самого начала Великой Отечественной войны на разных предприятиях Министерства лесной промышленности и ГУЛАГа (Главное Управление ЛАГерей, увы, реалии той поры) «полуторки» ГАЗ-АА и «трехтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими заводами-изготовителями машин. Например, советские автоисторики приводят цифру 33 840 — столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве выпущено более 16 тыс. единиц.За довоенное время советскими инженерами было создано более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны серийными заводами были подготовлены чертежи упрощенных установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 70-х годов ХХ века.

В Германии во время Второй Мировой войны наблюдался острый дефицит бензина. КБ двух компаний (Volkswagen и Mercedes-Benz) получили задание разработать газогенераторные версии своих популярных компактных машин. Обе фирмы в довольно сжатые сроки справились с поставленной задачей. На конвейер встали Volkswagen Beetle и Mercedes-Benz 230. Интересно, что у серийных авто дополнительное оборудование даже не выступало за стандартные габариты «легковушек». В Volkswagen пошли еще дальше и создали опытный образец «дровяного» армейского Volkswagen Тур 82 («кюбельваген»).

Дровяные машины сегодняК счастью, главное достоинство газогенераторных автомобилей — независимость от сети АЗС, сегодня стало малоактуальным. Однако в свете современных экологических веяний на первый план вышло другое достоинство автомобилей на дровах — работа на возобновляемом топливе без какой-либо его химической подготовки, без дополнительной траты энергии на производство топлива. Как показывают теоретические расчеты и практические испытания, мотор на дровах меньше вредит атмосфере своими выбросами, чем аналогичных двигатель, но уже работающий на бензине или солярке. Содержание выхлопных газов очень схоже с выбросами ДВС, работающих на природном газе.

И тем не менее тема с автомобилями на дровах утратила свою былую популярность. Забыть о газогенераторах не дают в основном инженеры-энтузиасты, которые ради экономии на топливе или в качестве эксперимента переоборудуют свои личные машины для работы на генераторном газе. На постсоветском пространстве есть удачные примеры «газгенов» на базе легковушек АЗЛК-2141 и ГАЗ-24, грузовика ГАЗ-52, микроавтобуса РАФ-2203 и пр. По словам конструкторов, их творения могут проезжать на одной заправке до 120 км со скоростью 80-90 км/ч.

К примеру, переведенный житомирскими инженерами в 2009 году на дрова ГАЗ-52 расходует около 50 кг древесных чурок на 100 км пробега. По словам конструкторов, подкидывать дровишки нужно каждые 75-80 км. Газогенераторная установка традиционно для грузовиков расположилась между кабиной и кузовом. После розжига топки должно пройти около 20 минут, прежде чем ГАЗ-52 сможет начинать движение (в первые минуты работы генератора выработанный им газ не имеет нужных горючих свойств). По расчетам разработчиков, 1 км на дровах обходится в 3-4 раза дешевле, чем на дизельном топливе или бензине.Как вам такая заправка лет через ннадцать? Ресурс возобновляемый, так что нет ничего невозможного...

Единственная на сегодняшний день страна, в которой массово используются автомобили на дровах, — это Северная Корея. В связи с тотальной мировой изоляцией там наблюдается определенный дефицит жидкого топлива. И дрова снова приходят на выручку тем, кто оказался в нелегком положении.Дубовых, пожалуйста, до полного.

p-i-f.livejournal.com

Автомобили на дровах - миф или реальность?

Задолго до появления бензина в качестве топлива для ДВС использовали газ! К примеру, читаем у Жюль Верна: "…он прикрутил газовый рожок…". Горел в этом осветительном приборе, конечно же, не природный, а "светильный газ", - продукт сухой перегонки твердого топлива, получавшийся в газовых генераторах. На нем же работали первые двигатели внутреннего сгорания, в ту пору еще стационарные. Правда, мобильные газогенераторы удалось создать только в период между первой и второй мировыми войнами, да и вырабатываемый ими газ по составу заметно отличался от светильного. Но в качестве топлива вполне годился.

Сегодня аббревиатура "ГазГен" абсолютному большинству людей не говорит ровным счетом ничего. И только немногие любители истории техники знают, что существовали автомобили, у которых в качестве топлива использовались древесные чурки. А ведь было время, когда на вопрос "что такое газген?" попросту тыкали пальцем: во-он поехал! И слово это вовсе не считалось аббревиатурой. Некоторые люди почему-то убеждены, что газгены, обходившиеся чурками вместо бензина, были исключительным атрибутом советской нищеты. В действительности этот вид топлива был распространен по всему миру.Автомобили на дровахГаз используемый для этих автомобилей каждый из нас неоднократно видел. Если в костер подбросить много дров, то из него начинает идти обильный белесый дым. Это он и есть - так называемый пиролизный газ! Когда костер разгорается, дым исчезает в пламени - газ сгорает. По составу он представляет собой довольно сложную смесь, основу которой составляют окись углерода, водород, метан и водяной пар. Понятно, что в том виде, в котором светильный газ образуется в костре, он не пригоден в качестве моторного топлива, в первую очередь из-за сильной загрязненности твердыми частицами. Газогенераторная установка готовит намного более чистый и качественный продукт. 

 

В Советском Союзе в начале двадцатых проводились конкурсные испытания газогенераторных автомобилей, а первым среди наших соотечественников установил генератор на автомобиль ленинградский профессор В. С. Наумов в 1927 г. Научный автотракторный институт (НАТИ) начал заниматься автомобильными газогенераторами в 1928 г., проводя опыты с иностранными моделями Пип и Имберт-Дитрих. 5 марта 1930 г. решением Президиума ВСНХ тракторный отдел ВИСХОМа и газогенераторная лаборатория института древесины и орглеса переводятся в НАМИ. 25 марта в институте из подотдела создается газогенераторный отдел. Разворачиваются работы по применению твердого топлива для автотракторных двигателей, ведется проектирование, постройка и испытания газогенераторных установок для речных катеров и других нужд народного хозяйства.

Первый построенный газогенератор НАТИ-1 работал на обычных дровах. В 1932 г. изготовлена установка НАТИ-3, созданная в тракторном отделе и предназначенная для моторного катера с двигателем ХТЗ или СТЗ. Тогда же появилась и первая автомобильная установка. Она была создана при поддержке общества Автодор. Установка называлась "Автодор-П" и была конструирована инженером И. Мезиным при участии активистов-автодоровцев инженера НАТИ А. Пельцера и Друяна. "Автодор-П" представляла собой газогенератор цельнометаллической конструкции с фурменной подачей воздуха по периферии топливника. Смеситель установки целиком заимствован с НАТИ-3. По типу "Автодор-П" С. Мезин спроектировал в НАТИ две установки: НАТИ-11 для ГАЗ-АА и НАТИ-10 для ЗИС-5. После испытаний в начале 1936 г. НАТИ-11 была передана для серийного производства заводу "Свет шахтера", выпускавшему до этого шахтерские лампы. 

Автомобили на дровах

Приобретенный в этой работе опыт позволил создать более совершенные конструкции. http://russnp.ru/ дает Вам возможность узнать об этом поподробнее. Одной из них стала установка НАТИ-Г14, созданная под руководством С.Г. Коссова. Ее серийное производство под руководством инженера НАТИ Н.Г. Юдашкина было налажено на Горьковском автозаводе для автомобиля ГАЗ-42. Он же ранее разработал и организовал производство газовой версии двигателя ГАЗ-А. В проект газогенераторной установки был внесен ряд изменений с учетом технологий ГАЗа, оборудование которого, рассчитанное на массовое производство, резко отличается от оборудования завода "Комета", где эти установки выпускались раньше. С 1939 по 1946 г. было изготовлено 33840 ГАЗ-42.

В 1936 г. была выпущена партия автомобилей ЗИС-13. Их газогенераторные установки отличались размерами и конструкцией отдельных агрегатов, их размещением на шасси и количеством секций грубых очистителей-охладителей. Так, камера сгорания изготавливалась из жаропрочной хромоникелевой стали, но никель в ту пору импортировался и был дорог. ЗИС-13 отличался 12-вольтовой электропроводкой вместо стандартных 6 В. Повышенное напряжение потребовалось в связи с увеличением мощности стартера из-за большей степени сжатия газового двигателя и наличия мощной воздуходувки. В конце 1938 г. стали выпускаться газогенераторные машины ЗИС-21.

Схема газогенератора проста. Загруженное в газогенератор топливо поджигается через воздушный клапан при помощи факела. Воздух, необходимый для газификации,  через фурменные отверстия, благодаря разрежению, создаваемому всасывающим действием двигателя попадает в камеру. Причем его количество должно быть недостаточно для полного сгорания топлива. Углерод топлива соединяется с кислородом воздуха, образуя углекислый газ (СО2) и окись углерода (СО). Далее они попадают в зону восстановления, где проходит через слой раскаленного угля, лежащего на колосниковой решетке. В результате негорючий СО2 превращается в горючий СО. Входящий в состав топлива водород частично соединяется с кислородом, образуя воду, которая присоединяется к влаге топлива, а остальной выделяется в чистом виде.

Автомобили на дровах

 Под влиянием высоких температур в камере газификации часть влаги соединяется с углеродом, образуя окись углерода и водород. Окись углерода вместе с ранее образованной и полученной в результате восстановления углекислого газа переходит в состав генераторного газа. Водород же, полученный в результате разложения воды, суммируется со свободным водородом, причем часть этого водорода переходит в состав генераторного газа, а другая часть вступает в химическую реакцию с углеродом топлива, образуя метан. Теоретически весь кислород воздуха должен израсходоваться при газификации, однако в действительности часть его сохраняется и переходит в состав генераторного газа. Вода, не разложившаяся при газификации, переходит в генераторный газ в виде пара.

В слое топлива, находящегося непосредственно над зоной горения, происходит процесс сухой перегонки топлива, т. е. нагрев без доступа воздуха. Продуктами сухой перегонки являются древесный уголь или кокс, а также летучие вещества, смолы и влага, выходящие в газо- и парообразном состоянии. Все продукты сухой перегонки в описанном типе генератора целиком проходят через зону горения и восстановления, где подвергаются процессам газификации, несколько более сложным, чем описано, но дающим те же основные продукты. Над зоной сухой перегонки находится зона подсушки, где происходит высыхание топлива. При выходе из генератора газ имеет высокую температуру и засорен золой и частицами угля. В таком виде он не может использоваться в двигателе и перед поступлением в цилиндры должен быть очищен и охлажден.

Топливом для газогенераторов могут служить дрова, торф, бурый каменный и древесный уголь, антрацит, брикеты из растительных отходов и т. п. Все топлива разделяются на два класса: битуминозные, или с высоким содержанием смол и летучих соединений (дрова, торф, бурый уголь, брикеты из соломы и др.), и небитуминозные (древесный уголь, каменноугольный кокс, антрацит и др.). Двигатель внутреннего сгорания может работать только на безсмольном газе, но все легкодоступные топлива - дрова, торф, бурый уголь образуют смолы, к тому же каждое топливо имеет свои особенности. Все это ставит перед конструкторами трудноразрешимые задачи при кажущейся простоте и доступности процесса.Автомобили на дровах

По удобству пользования и другим эксплуатационным параметрам древесина является одним из самых заманчивых видов топлива, причем наиболее подходят твердые породы - дуб, бук, береза и др., обеспечивающие получение наиболее прочного древесного угля. Применение мягких пород менее желательно, поскольку они дают большее количество твердых частиц, забивающих агрегаты очистки и проходы для газа. На процесс образования газа сильно влияют размеры и влажность древесных чурок. Свежесрубленное дерево не годится в качестве газогенераторного топлива из-за высокой влажности. Поэтому древесину предварительно сушат. Естественная сушка на открытом воздухе идет очень медленно, и лишь через полтора-два года влажность снижается до 15 - 20%, приемлемых для газификации. Газогенераторная установка НАМИ-Г78 позволяла использовать чурки с повышенной до 40% влажностью, для чего на двигатель автомобиля устанавливалась специальная воздуходувка. Мощность двигателя при этом снижалась с 46 до 36 л. с.Торф по свойствам наиболее близок к древесине, но имеет большую зольность, менее прочен и легче. Малозольный торф может использоваться в газогенераторах, предназначенных для работы на древесных чурках. Торф с более высоким образованием золы, как и бурый уголь, требуют особой конструкции камеры сгорания. Кроме этого, высокая зольность обуславливает постепенное снижение мощности двигателя в процессе работы. Газ, получаемый из торфа и бурого угля, содержит также повышенное количество смолы, что нужно иметь в виду при обслуживании установки и двигателя. Весьма нежелательной примесью к бурому углю является сера, которая попадает в газ. В результате ее взаимодействия с конденсатом образуется серная кислота, разрушающая металлические детали установки и двигателя.

Обычно древесный уголь употреблялся только для розжига основного топлива в газогенераторе при первоначальном пуске. Он является очень хорошим топливом, но его использование в обычных установках недопустимо, так как возникают перегрев газогенератора и прогары. Для него НАТИ разработал установки Г21 и Г23, для ГАЗ-43 и ЗИС-31 соответственно. 

Автомобили на дровах

Эти установки проще и легче работающих на чурках - масса НАТИ-Г21 составляла 250 кг, а НАТИ-Г23 - 310 кг. Они расходовали примерно в полтора раза меньше по массе топлива, их розжиг происходил за 3 - 4 мин. Однако очистку их газогенераторов, а также очистителя-охладителя приходилось делать через каждые 250 км пробега, в то время как у древесно-чурочных газогенераторов через каждые 1000 км. В марте 1939 г. Советское правительство поставило перед машиностроителями задачу: "Перевести на газогенератор все машины на лесозаготовках, а также значительную часть тракторного парка сельского хозяйства и автомобильного парка".

 Военные операции съедали основную массу производимого в стране топлива. Только в боевых действиях против Финляндии было задействовано около 100 тыс. автомобилей. Тем временем по выпуску грузовиков и мощных гусеничных тракторов СССР вышел на первое место в Европе.

 Экономику страны постоянно лихорадило, топлива для автотранспорта катастрофически не хватало. Война лишь довела ситуацию до логического конца. В военные годы ЗИС-21 и ГАЗ-42 эксплуатировались не только в тылу, но и на фронтах. В частности, половина транспортных автомобилей блокадного Ленинграда, Ленинградского фронта и Краснознаменного Балтийского флота была оснащена газогенераторными установками. 

Автомобили на дровах

Для установки на обычные грузовики были разработаны установки НАТИ-Г69 для ЗИС-5 и НАТИ-Г59 для ГАЗ-АА. К концу войны в СССР эксплуатировалось 200 тыс. газогенераторных автомобилей, тракторов, передвижных электростанций, катеров, мотовозов и других установок. Во время Второй мировой войны газогенераторные автомобили получили также распространение в Германии, Франции, Великобритании, Швеции, Финляндии, Китае, Японии, Австралии, Индии.

Эксплуатация газогенераторных машин осложнялась нехваткой кондиционного топлива из-за отсутствии достаточного количества топливозаготовительных баз, хотя решение об их строительстве было принято еще до войны. Вдобавок они нередко поставляли чурки повышенной влажности, что вело к выходу из строя дорогостоящего газогенераторного оборудования.После войны Уральский автомобильный завод в 1946 - 1952 гг. выпускал модернизированный УралЗИС-21А, а с 1952 г. УралЗИС-352 с установкой НАМИ-Г78. С 1953 г. Минский тракторный завод выпускал трелевочный трактор КТ-352Т. Это были последние серийные машины на газогенераторах.

В наши дни "кулибины" разных стран в ощущении резкого удорожания традиционного бензина вновь обратились к идеям и разработкам прошлого.

Автомобили на дровах

 Учитывая стоимость дров и цену на товарный древесный уголь высказываются вполне заманчивые бизнес предложения, как например:

 "Покупаем дрова, заправляем ими газогенератор в своем авто, ездим куда хотим пока выделяется газ, потом вынимаем готовый древесный уголь (вместо него закладываем новые дрова) и этот уголь продаем!

Причем продаем уголь значительно дороже, чем покупали дрова." Вот это бизнес!?

Современные технологии брикетирования отходов позволяют унифицировать "деревянное" топливо. Благодаря этому мы можем делать брикеты (гранулы, пелеты) любого размера и практически из любого органического сырья - солома, лузга подсолнечника, стебли кукурузы и т.д. На выходе же получаем движущийся транспорт с параллельным изготовлением высококачественного древесного угля!

Помните эпохальный фантастический фильм - "Назад в будущее" с незабываем автомобилем DeLorean в качестве машины времени? Как же эта газогенераторная установка напоминает работу ядерного "флуксуатора" на банановых шкурках и других отходах!

Как знать? Возможно не так далеко и это "будущее"!

uglezhog.ru

Автомобиль на дровах? в России — CARobka.ru

С момента начала производства автомобилей люди начали задумываться о разных источниках энергии. Первые автомобили, ввиду отсутствия альтернатив, работали на пару, затем появились редкие образцы автомобилей, работающие на основе электроэнергии, и только спустя десятки лет был изобретен двигатель внутреннего сгорания.

Однако поиски новых источников энергии для автомобилей не оканчиваются и по сегодняшний день. Инженеры преследуют разные цели: одних заботят экологические аспекты, другие грезят разрушить нефтяную монополию. Но в большинстве своем изобретатели ищут более экономичный вид энергии.

Многократно в различных источниках проскальзывали новости об умельцах из глубинки, которые дорабатывали свои авто для движения на основе спиртосодержащих продуктов или подсолнечного масла. Сегодня же речь пойдет о газогенераторах, основанных на горении. Хотя уже в 30-х годах люди пользовались этой технологией, сегодня находится масса любителей данной альтернативы ДВС.

Как это работает?

В транспортное средство устанавливается специальный газогенератор, в котором под воздействием высокой температуры происходит сложный термохимический процесс, в результате которого топливо расщепляется на простейшие элементы, делящиеся на полезный газ — этилен (C2h5), метан, угарный газ, водород, и бесполезный — азот, двуокись углерода.

После процесса расщепления в топке происходит охлаждение, фильтрация газа и его поступление в ДВС.

Что может быть использовано как топливо?

В основном используются дрова или древесный уголь, но список не ограничивается ими. Пластик, резина, полиэтилен, тряпичная ветошь, различный мусор, помёт и многие другие виды отходов могут войти в состав топлива (конечно, расход топлива и состав газа меняются в зависимости от продуктов сгорания). Любители утверждают, что благодаря работе их автомобилей придорожная полоса оказывается очищенной от разного рода мусора.

Учитывая стоимость дров и древесного угля, нельзя забывать о различных отходах производств, которые могут быть использованы как топливо, — лузга семечек, скорлупа орехов, стержни кукурузы, отработанный кофе после кофемашин, сено, торф, разновидности угля.

Какова реальная экономия, расход топлива?

Пожалуй, самый волнующий вопрос. В среднем при расходе автомобиля 10 л бензина на 100 км потребление газогенератора составляет 20 кг дров. При этом мощность снижается всего на 4% по сравнению с бензином, а значит двигатель также может выдавать необходимую скорость.

Таким образом, 1 литр бензина = 2–3 килограмма дров. Стоимость килограмма дров примерно в 3 раза меньше, чем стоимость литра бензина, поэтому на этапе расчета экономии разница не ощутима. Однако она имеется.

Каково время запуска газогенератора?

На запуск двигателя на древесном угле требуется от 10 до 30 секунд, на дровах (и мусоре) — от 5 до 15 минут.

А не погубит ли такой газ ДВС?

Октановое число газа, получаемого таким способом, — 110–120, что снижает детонацию и в целом менее разрушительно влияет на двигатель. Газ не смывает масляную плёнку, в результате чего работа двигателя становится более тихой и ровной. Однако при неправильно организованной фильтрации газа (изначально в 1м3 газа около 3 грамм пыли) пыль может действовать деструктивно на поршни. Поэтому важнейшими этапами при разработке газогенератора является продуманная система фильтрации и охлаждения (по результатам экспериментов было выяснено, что при увеличении температуры газа с 20 до 70 градусов Цельсия мощность ДВС падает на 25%).

Вредные выхлопы, вырубка леса и прочие вопросы экологии

При сжигании только органических веществ количество вредных выбросов будет стремиться к нулю — в результате работы двигателя ничего, кроме углекислого газа, на выходе не будет. По результатам исследований, проводимых в Европе, такие автомобили в десятки раз экологичнее транспортных средств, движущихся на бензине или газу. Так происходит из-за того, что процесс генерации газа происходит на очень высоких температурах (до 1 000 градусов Цельсия), ввиду чего топливо расщепляется на простейшие элементы.

Вопрос вырубки леса также беспокоит многих, кто сталкивается с газогенераторами. Хочется заметить, что для обеспечения таких автомобилей топливом не обязательно вырубать лес. Многие приверженцы этой технологии пользуются ветками и дровами от умерших деревьев, которых много и в наших лесополосах. Таким образом, бесплатный сухостой и валежник также могут быть использованы как топливо. Кроме того, производство бензина наносит гораздо больший вред окружающей среде, поэтому даже при вырубке леса уровень полезности последнего метода гораздо выше. Конечно, ни на одной заправке вам не предложат отсыпать дров или угля как топлива, поэтому газогенератор подходит далеко не всем.

Кому подходит газогенератор?

В первую очередь жителям глубинки, где сложно найти/дорого стоит топливо (бензин или газ). Однако у жителей городов также часто есть потребность в газогенераторах (по разным причинам).

Например, житель Англии, Колин Дэвисон, с друзьями проехал всю Англию (а это 2 575 км), заправляя свой автомобиль отходами кофе! Маршрут был проложен между 37 кофейными магазинами, в которых они брали отработанное кофе, в результате чего их путешествие было занесено в книгу рекордов Гиннесса. Максимальная скорость — 105 км/час.

Йохан Линель, житель Швеции, проехал всю Швецию (5 420 км) за 20 дней на дровах. Расход топлива составил 7 куб. метров древесины. При этом максимальная скорость составляла до 150 км/час.

Житель Украины, Андрей Лагунов, пошел ещё дальше — он сделал курс «Авто на дровах своими руками», а также собрал множество информации о газогенераторах и их владельцах. Любой желающий, по словам Андрея, может сделать газогенератор своими руками за несколько дней, потратив на его создание менее 50$.

Вывод

Если верить информации, что запасов нефти хватит человечеству на 30–40 лет, то поиск альтернативных видов энергии можно считать оправданным. Количество древесины, необходимой для повсеместного перехода населения на такой метод, невообразимо велико.

В любом случае, главное — чтобы люди использовали новые технологии по мере необходимости и продолжали поиски, ведь любая новая разработка (или улучшение старой технологии) благотворно воздействует на эффективность процессов нашей жизнедеятельности.

А для тех, кто интересуется электромобилями, у нас тоже есть интересная публикация.

carobka.ru

расход, пробег, запуск, фильтрация, октановое число газа, влияние на двигатель / СоХабр

После написания первой статьи поступили вопросы от хабросообщества на которые я тут отвечу + добавлю от себя массу интересного. Начнем.

1. Сколько кг дров нужно для пробега 100км

Автомобиль жигули — «четверка» объем двигателя 1.5л, 76 лошадиных сил, коэффициент наполнения цилиндров 0.75. Потребляет на 100 км около 10 литров бензина (старые автомобили) и 20 кг дров в час если ехать со скоростью 100км в час непрерывно. Если ехать с меньшей скоростью и меньшими чем 3000 оборотов — расход меньше.Автомобиль Волга Газ 24 — «членовоз» объем двигателя 2.4 л, 105 лошадиных сил, коэффициент наполнения цилиндров 0.83. Потребляет на 100 км около 13-15 литров бензина (старые автомобили) и 36 кг дров в час если ехать со скоростью 100км в час непрерывно и оборотами 3000 двигателя.

Автомобиль ЗИЛ с объемом двигателя 6,0л, 150 лошадиных сил, коэффициент наполнения цилиндров 0,95. Потребляет на 100 км 36 литров бензина и 103 кг дров в час при оборотах двигателя 3000

Автомобиль ОКА с объемом двигателя 0.75л, 35 лошадиных сил Потребляет 4.3 литра на 100км и 10 кг дров в час при оборотах двигателя 3000 коэффициент наполнения цилиндров не нашел, посчитал на 0.75

Теперь когда мы знаем расход дров, мы можем смело посчитать размер бункера для загрузки дров. 1 кг дров порубленных на куски 5х5см имеет коэффициент наполняемости 0.5 и занимает объем бункера 5 литров более мелко порубленное топливо — например щепа имеет коэффициент наполнения 0.35 и занимает объем бункера весом 1 кг на 30% меньший — 3,5 литра. Цифры справедливы для сосны, если применять лучшее топливо: бук, граб, дуб, береза — наполнение бункера еще лучше и в такой же объем войдет больше кг, что значит более долгий пробег, если добавлять еще и пластиковый мусор — пробег еще больше, а расход дров меньше. Например на 1 мешек дров (сосна — вес мешка 13 кг) загруженных дров в ГАЗ 24 можно смело забрасывать 120 пластиковых бутылок объемом 2 литра (6 кг при весе одной бутылки 50 грамм). Что позволит нам на 46% снизить расход дров заменяя пластиковым мусором дровяной. 13 — 100% 6 — х 6х100/13 = 46.15%

Какого размера бункер делать? Умножая 1 кг на 5 литров получаем нужный нам объем бункера. Сколько вы хотите ехать до следующей загрузки топлива: час, два, три? Некоторые делают объем бункера на 500км пробега, как Веса и его ученик.

Сколько времени нужно на запуск? Газогенератор на древесном угле — 10-30 секунд Газогенератор на дровах (и мусоре) — 5-15 минут. Делается это прямо в пути на ходу путем переключения кнопкой топлив. Стоять качегарить и дуть не надо.

Так на сколько же бензин сильнее древесного газа? Любое топливо ценно двумя элементами: углеродом С и водородом Н2 сжигая которое в единицу времени и объема мы получаем теплотворность которая и движет наш автомобиль.

Теплотворность бензина 10572 ккал/кг Теплотворность древесного газа 1000 ккал/кг — (цифра колеблется до 1250 ккал/кг)

Казалось бы в 10 раз! Как оно на дровах еще едет? Но нет, забыли о том что топливо должно превратится в газовоздушную и бензовоздушную смесь. Для горения в цилиндрах нужен еще и кислород. Смесь должна поступать смешанная.

Теплотворность бензовоздушной смеси 860 ккал/кг Теплотворность газовоздушной смеси (древесный газ) 560 ккал/кг — или 64% от бензоводушной.

Цифра 64% на 36% слабее бензовоздушной. Но путем доработок и подключения современных устройств эта цифра снижается вплоть до 0. При чем стоит это не дорого и делается не сложно. Даже во времена СССР эту цифру доводили до 4% потерь от мощности бензинового двигателя.

Какое октановое число у древесного газа и как эксплуатация его сказывается на моторесурсе двигателя? У газогенераторного газа октановое число 110-120 что позитивно сказывается на моторесурсе двигателя снижая детонацию, газ не смывает масляную пленку, двигатель работает тише, ровнее. Вот тут подробно описал тем кто хочет углубиться.

Конечно же если не правильно делать газген, а в 1м3 газа содержится 3г пыли и не умело её фильтровать (не правильно делать фильтра) то все это пойдет в двигатель и будет действовать как наждак на поршни, но если все делать правильно то ни пыли ни смол не попадет в двигатель и его моторесурс будет больше чем указанный в паспорте рассчитанном для бензина.

Как часто выгружать золу? С 1кг дров пропущенном через газогенератор выделяется 1г золы. Сколько кг вы будете жечь в час и посчитайте сколько грамм золы накопиться за час день, месяц эксплуатации при вашем ежедневном пробеге.

Как часто надо менять фильтра? Раньше забивали в фильтра древесную шерсть, опилки и прочее. Сегодня фильтра делаются безсменные — менять ничего не надо.

Как выгодно ездить на дровах? Сколько стоит 1 литр бензина? 1 литр бензина = 2-3 кг дров (зависит от влажности, плотности и пр.).

sohabr.net

Как появились авто на дровах?

Для многих автолюбителей бензин представляется единственным возможным видом топлива для транспортных средств. Но массовое расточительное использование нефти и производимого из нее топлива не только загрязняет воздух вокруг автомобиля, но и способствует разрушению озонового слоя и усугублению парникового эффекта. Нефть, пролитая на грунт, лишает почву полезных плодородных свойств на многие годы. Но больше всего от загрязнения нефтесодержащими продуктами страдают водные запасы земли.

По этой причине не одно десятилетие ученые посвящают поиску альтернативных способов обеспечить работу двигателя авто. Немало успехов было достигнуто в сфере строительства электромобилей. Но, к сожалению, переоборудование и обслуживание такого авто обходиться владельцу в кругленькую сумму. Именно поэтому автомобилисты-любители и экспериментаторы решили вновь вернуться к старому забытому виду топлива для авто – дровам.

Автомобиль на дровах

Когда появился автомобиль на дровах?

Никаким новшеством автомобиль, работающий на дровах, не является. Изобретение классической модели газогенераторного двигателя автомобиля датируется 1900 годом и произошло во Франции. Апогей популярности технологии припадает на первую половину 20 века. Современная конструкция газогенераторного автомобиля, которая не подверглась существенным изменениям по сей день, была разработана немецким ученым Жоржем Эмбер в 20-х годах 20 века. Двигатель на дровах для автомобиля позволял передвигаться на внушительное расстояние и развивать максимально возможную на то время скорость.

Известно, что во времена Второй Мировой войны практически 100% гражданских автомобилей, в том числе автобусов, тракторов, мотоциклов, были оборудованы газогенераторным двигателем. Жидкое топливо изготовлялось исключительно для военной техники и транспорта, поскольку дозаправка газогенераторного двигателя требует больше времени и усилий. В прошлом веке целесообразность использования газогенераторных установок была продиктована экономической необходимостью и доступностью сырья. В настоящее время к экономической выгоде прибавляется забота об экологической безопасности планеты.

На сегодняшний день автомобили, работающие на дровах также популярны во многих странах. Практически весь транспорт в сельской местности Северной Кореи заправляется дровами. Также активной пропагандой газогенераторных двигателей занимается правительство Швеции, Филиппин, Китая и ЮАР. Такое распространение технологии в перечисленных странах обусловлено экономической доступностью твердого топлива для местных жителей и серьезным отношением к сохранению экосистем.

Северокорейский автомобиль с газогенераторной установкой

Принцип действия газогенераторного двигателя

Использовать древесину для образования горючего газа, способного отопить помещение или разогреть кухонную плиту, человечество начало еще в 19 веке. Спустя пол столетия принцип образования газа в специальной емкости стал применяться в автомобильных двигателях внутреннего сгорания. К кузову авто прикрепляли отдельный металлический бак, в который помещали дрова. Процесс интенсивного горения принудительно сдерживали за счет малого содержания кислорода внутри устройства. Таким образом достигалось экономичное использование древесины, стружки или угля. Образованный газ направлялся в камеру двигателя внутреннего сгорания, где преобразовывался в механическую энергию.

Принцип работы газогенераторной установки

Особенностью газогенераторной системы является:

  • Экономичное потребление ресурсов;
  • Отсутствие вредных токсичных выхлопов – продуктами распада являются кислород и двуокись углерода;
  • Невысокая стоимость топлива;
  • Простота конструкции;
  • Несложная система переоборудования.

Технические возможности газогенераторных двигателей

Новая волна внимания к газогенераторным двигателям началась после того, как появились единичные случаи переоборудования нашими соотечественниками собственных авто на дровах производства СССР. Среди наиболее распространенных переделанных марок – ВАЗ, ГАЗ, Лада и другие. Это объясняется тем, что простое и понятное устройство отечественных марок позволяет автомобилистам-любителям, механикам и экспериментаторам достаточно легко переоборудовать авто на дровах своими руками.

По словам успешных владельцев переоборудованных машин, каждый сможет обзавестись новомодной моделью авто на дровах, чертежи которого вполне доступны для конструктора-любителя.

Согласно испытаниям расход твердого топлива составляет 20 килограмм дров на 100 километров. Если использовать древесный уголь, расход сокращается вдвое – всего 1 кг на 100 километров. Если перевести показатели в бензиновый эквивалент, то 2 килограмма дров соответствуют литру жидкого топлива. Но в финансовом плане применение дров экономичней в 4 и более раз. С такими показателями расхода твердого топлива автомобиль способен разогнаться до скорости 100 км/час за полторы минуты.

Современная газогенераторная установка для автомобиля

Конструкционно двигатель газогенераторного автомобиля ничем не отличается. Если же говорить о внешнем виде авто на дровах, на фото четко видно специальную емкость для процесса сжигания дров, прикрепленную к задней части кузова. Также практикуется помещение бака внутри багажника или вместо заднего сидения. Некоторые изобретатели также варьируют место расположения топливных запасов, вплоть до использования прицепа для хранения дров. Такое решение удачно для длительных поездок в пустынных местах.

Преимущества газогенераторных автомобилей

Преимущества говорят сами за себя:

  • Невиданная доселе экономия топлива;
  • Полностью безвредные выхлопы – CO2 и O2;
  • Доступность и невысокая цена дров;
  • Идентичность технических и скоростных показателей при езде на бензине и на дровах;
  • Безопасность для человека;
  • Простота монтажа и эксплуатации.

В реальной ситуации, найти нужное количество дров бывает достаточно нелегко на трассе, если у вас закончилось топливо. Но как альтернативный способ обеспечить работу двигателя внутреннего сгорания газогенераторный способ заслуживает не меньше внимания, чем электрические двигатели. Применение автомобилей на дровах в сельской местности имеет неоспоримое преимущество и целесообразность.

blog-mycar.ru

Как работает машина на дровах

Существуют автомобили, работающие на дровах, углях, торфе. Не знали? На самом деле, это так..

Такие автомобили оснащены специальным устройством, называемым газогенератор. В газогенераторе твердое топливп преобразуется в газообразное, которое потом сжигается в двигателе внутреннего сгорания

История вопроса

Ни одна страна в Европе, кроме России (СССР) и Венгрии в 1930-е годы не могла обеспечить свои потребности в жидком топливе путем добычи нефти, а основным мировым экспортером нефтепродуктов были Соединенные Штаты. Нехватка горючего во время Первой мировой войны стала одним из важных факторов, приведших к поражению Германии, что понимали и ее лидеры. Именно поэтому там в 1920-1930 годы наиболее активно велся поиск заменителей нефтепродуктов. Такие изыскания велись также и в СССР и других европейских странах.

Одним из вариантов экономии бензина было применение газогенераторов, благодаря которым автомобили смогли использовать в качестве топлива древесину, угольные брикеты, торф и подобные виды топлива. В 1938 году в Европе насчитывалось около 9 тысяч автомобилей, работавших на твердом топливе, а к 1941 году их число увеличилось почти в 50 раз.

Газогенератор

А насколько больше нужно топлива?

Бензин легче воды, и 1 литр весит (в зависимости от сорта) около 750 г. Таким образом, бак бензина (50л) будет весить 37,5 кг, и при сгорании этого бензина выделится 1725 Мегаджоулей в виде тепла.

Чтобы получить столько же энергии, сколько выделится при сжигании бака бензина, нам нужно газифицировать и сжечь 36,6242 килограмм углерода, что приблизительно соответствует 92,5 кг исходной древесины.

Созданием газогенераторов мы обязаны Георгу Имберту, который в 1920 сконструировал такой генератор для автомобилей, а потом, в течении всей своей жизни занимался их усовершенствованием и более широким внедрением.

Принцип работы газогенератора основан на неполном сгорании углерода. Основную массу твердого топлива составляет углерод, который при сгорании может присоединить один атом кислорода (образуется угарный газ) или два (углекислый газ). При этом, угарный газ (или монооксид углерода) сам по себе является горючим газом, и может быть впоследствии дожжен до углекислого газа. Какой газ выделится при горении топлива зависит от количества кислорода — если кислорода много, то топливо сгорит полностью, выделяя большое количество тепла, и выделится углекислый газ. Если же кислорода мало, то образуется угарный газ и выделится около 28% энергии от энергии полного сгорания топлива, оставшиеся 72% выделятся при последующем сжигании угарного газа. Такое возможно при сжигании большого количества твердого топлива в закрытой камере с очень небольшим доступом кислорода и отводом продуктов горения в двигатель.

Процесс газификации твердого топлива (образование синтез-газа) начинает происходить при температуре около 1400°C. Сжигание топлива производится в специальном баке, который похож на бойлер. Бак может быть установлен на спереди капота, сзади или на специальном прицепе, а в грузовиках — и в кузове.

Двигатель автомобиля может быть как бензиновым (с небольшими изменениями карбюратора), так и дизельным (для дизельных двигателей изменения чуть серьезнее, для его работы необходимо оставить небольшое количество жидкого дизельного топлива для воспламенения смеси). Практические испытания показали, что 1000 кг сухой древесины могут заменить 365 литров бензина. Но также следует учитывать, что автомобиль на генераторном газе будет намного медленнее бензинового.

nezna.li