Генератор электрического тока бензиновый – оптимальный выбор для частного дома. Генератор электрического тока
Генератор электрического тока: основные критерии выбора
Оглавление: Генератор электрического тока: разновидности Три фактора, влияющие на качество эксплуатации электрогенераторов
Обеспечить бесперебойное электрическое питание в загородном доме, даже при наличии проходящих рядом электрокоммуникаций, не так уж и просто. Бесконечные аварии и профилактические отключения препятствуют этому, делая проживание в доме, как минимум, некомфортным. Исправить такое положение дел можно только с помощью специального оборудования под названием генератор электрического тока. Именно о нем и пойдет речь в этой статье, в которой вместе с сайтом stroisovety.org мы подробно изучим его разновидности и определимся с основными критериями выбора.
Генератор электрического тока фото
Генератор электрического тока: разновидности
В зависимости от вида источника энергии, необходимого для получения электричества, все генераторы электроэнергии разделяются на дизельные, бензиновые, газовые и ветровые. В свою очередь, все они могут вырабатывать или постоянный электрический ток, или переменный. Именно на эти критерии в большей степени нужно опираться, отвечая на вопрос, как выбрать электрогенератор?
Электрический бензиновый генератор благодаря своей невысокой стоимости и простой эксплуатации получил наиболее широкое распространение. Его конструкция включает в себя бензиновый двигатель и генератор электрического тока, соединенные между собой. У этих электрогенераторов расход бензина в среднем составляет от 1 до 2,5л за час работы. Их недостатком является небольшой суточный ресурс работы – до 12-ти часов. Бензиновый электрогенератор не подходит для постоянного электроснабжения, а вот в качестве временного источника питания лучше, чем он, не придумаешь.
Генератор электрический бензиновый фото
Дизельный электрический генератор, в сравнении с бензиновым, имеет немного больший ресурс работы, да и расход топлива у него намного ниже. Он мощнее и способен снабдить электроэнергией даже большой дом. Расход топлива составляет примерно 2-3л в час. Все дизель генераторы оснащаются предохранителями и всевозможными защитами. Изначально его конструкция предусматривает длительную и бесперебойную эксплуатацию.
Генератор электрический дизельный фото
Газовый бытовой электрогенератор – хорошая альтернатива дизельному. Он способен работать как от сжатого газа в баллонах, так и от газопровода. Работая на сжиженном газе, такой агрегат способен поглощать топлива в 2 раза меньше по сравнению с предыдущими своими «коллегами» по цеху, а на газе из магистрали – в 17 раз. Газовый электрогенератор имеет моторесурс, как минимум, на 30% превышающий ресурс дизельного и бензинового генераторов вместе взятых. Да и срок их эксплуатации намного дольше – это связано непосредственно с используемым топливом.
Ветроэлектрогенератор – это вообще источник экологически чистой и практически бесплатной электроэнергии. Однако здесь есть одно «но» – современные ветрогенераторы имеют большие размеры и высокую стоимость. Альтернативой могут служить солнечные батареи. Тоже стоят не дешево, но крыша, сделанная из солнечных батарей, способна снабдить энергией весь дом и участок.
Ветроэлектрогенератор для дома фото
Три фактора, влияющие на качество эксплуатации электрогенераторов
На что нужно обратить внимание при выборе электрогенератора? Это три основные вещи – мощность, вид нагрузки и вид используемого топлива.
1. Мощность электрогенератора. Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома. Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток).
Чтобы рассчитать полную мощность потребителей, нужно подсчитать суммарную мощность с учетом всех коэффициентов и небольшого запаса. Примерно это выглядит так.
Рполная = Р1xК1+Р2xК2+ … +РnxКn.Где K – коэффициент, учитывающий пусковую мощность потребителя.Коэффициент активной нагрузки для бытовых электроприборов составляет 1-1,3. Для электрических потребителей с реактивной составляющей этот коэффициент условно принимается равным 3.
Электрогенератор газовый бытовой фото
Сумма всех вместе взятых нагрузок и будет определять мощность необходимой вам электростанции, плюс 15% нужно заложить «про запас», поскольку со временем количество электрооборудования имеет свойство увеличиваться. Многие потребители (приборы, в цепь которых включены асинхронные электродвигатели, например, холодильники, электроинструменты) при пуске могут потреблять намного больше электроэнергии, чем указанная в паспортных данных мощность. Если речь идет о дизельной электростанции с заведомо большим запасом мощности, помните, что минимально допустимая нагрузка не может быть меньше 30% мощности электрического генератора.
Бытовой электрогенератор фото
2. Вид нагрузки на электрогенератор. Всем нам известно, что напряжение в сети может быть 220В (230В) и 380В (400В). Бытует мнение, что трехфазные (380В) бытовые электрогенераторы предпочтительнее в виду своей универсальности. Они могут выдавать в сеть как 380В, так и 230В. Но если в ваши планы не входит подключение трехфазных потребителей, то лучше остановиться на однофазной (230В) электростанции.
Электростанция мощностью 6кВт/400В выдает на каждую фазу по 2 кВт, этого может оказаться мало для работы вашего оборудования. В таком случае придется учесть данный нюанс при монтаже электропроводки (часть потребителей посадить на одну фазу, еще часть на другую).
Как выбрать электрогенератор для дома или дачи
3. Используемое топливо. Что выбрать? Дизельную электростанцию или бензогенератор? Бытует мнение, что при потребляемой мощности более 6-8кВт лучше остановиться на дизельном агрегате. Если провести сравнительный анализ бензиновых и дизельных установок одного класса, то можно прийти к выводу, что их надежность практически одинакова. Существенная разница заключается только в их стоимости и стоимости энергоносителя.
С этой точки зрения наиболее выгодными будут газовые электрогенераторы. А если разобраться еще подробнее, то бестопливная энергетика окажется куда более привлекательной. Тут уж выбор за вами. В любом случае, генератор электрического тока, выбранный для использования в конкретных условиях, окажется полезным приобретением.
Автор статьи Александр Куликов
Генератор переменного тока: устройство, принцип работы, назначение
Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.
Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.
Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.
Эффект электромагнитной индукции
Основой появления в проводнике электрического тока является электродвижущая сила - ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.
Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.
Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.
Стандартный электрический генератор переменного тока (или постоянного) состоит из:
- Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
- Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
- Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
- Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.
Создание постоянного тока
В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.
Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.
Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.
Схема генератора переменного тока
Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.
Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.
При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.
Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.
Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.
Генератор синхронный переменного тока
Существуют такие типы генераторов переменного тока:
- Машины синхронные.
- Машины асинхронные.
Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.
Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.
Возбуждение генератора переменного тока реализуют двумя методами:
- Контактным.
- Бесконтактным.
В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.
Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.
Асинхронный генератор
Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.
Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.
Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:
- Полый ротор.
- Короткозамкнутый ротор.
- Фазный ротор.
Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.
Схемы включения генераторов
Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.
Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:
- звездой;
- треугольником.
Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.
Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.
Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.
Где применимы генераторы постоянного и переменного тока
Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.
Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.
Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.
Назначение генератора переменного тока - вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.
Заключение
Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!
fb.ru
Генератор электрического тока бензиновый для частного дома и дачи
Генератор электрического тока бензиновый для частного дома — это личная электростанция, которая работает автономно, независимо от центрального электроснабжения. Используется для получения электричества в домах и дачах.
Как выбрать электрогенератор? Почему и в каких случаях нужно выбирать тот, который работает на бензине, а не на каком-нибудь другом топливе? Чтобы ответить на этот вопрос, для начала необходимо разобраться, какие бывают генераторы электрического тока.
Виды генераторов электрического тока
Основных немного. Всего 3:
- бензиновые;
- дизельные;
- газовые.
Принцип работы всех устройств один и тот же и похож на работу двигателя внутреннего сгорания автомобиля: топливо загружается сначала в бак, откуда поступает в камеру внутреннего сгорания. Поджигается с помощью искры. Тепловая электроэнергия производится потому, что топливо сгорает в двигателе. Различие — в виде топлива.
Кроме того, генераторы бывают синхронные и асинхронные.
Синхронные генераторы лучше подойдут для электроснабжения приборов, чувствительных к перепадам напряжения, а это вся бытовая техника: холодильники, телевизоры, компьютеры. Но такие агрегаты менее надежны. Асинхронные конструктивно попроще, но зато долговечнее и дешевле. Правильнее всего их выбрать для дачи, где чаще всего используется техника, не столь требовательная к перепадам напряжения.
Надежный помощник на даче
Ручные, автоматические и полуавтоматические.
Ручные генераторы запускаются с помощью шнура, подобно тому, как запускаются бензопилы и триммеры, работающие на бензине. Полуавтоматические — с помощью кнопки. И те, и другие лучше подойдут в случае периодического использования для получения электричества, т. е. в качестве генератора для дачи. Если же они используются в качестве резервного источника тока, например, если электричество в доме вдруг пропадает, то лучше подойдет автоматический пуск. Система включается самостоятельно, и не требуется участия человека для того, чтобы запустить генератор.
Все перечисленное выше относится к генератору электрического тока бензиновому для частного дома, работающим на любом виде топлива. Нужно рассмотреть бензиновые устройства.
Бензиновые генераторы
Этот вид генераторов электрического тока состоит из двигателя внутреннего сгорания, работающего на бензине АИ-92, и генератора переменного тока. Они более просты в управлении, чем работающие на солярке. Поэтому наилучшим использованием их будет применение на дачах.
Бензиновый генератор
У таких мини-электростанций много преимуществ и очень мало недостатков.
Преимущества:
- Невысокая, по сравнению с дизельными и газовыми генераторами, цена. Зависит она от мощности агрегата, расхода бензина, характеристик двигателя. Имеет значение и кто производитель: изделия известных компаний гораздо дороже. Но в среднем бензогенератор, исходя из этих характеристик, примерно в 2 раза дешевле дизельного.
- Компактность и мобильность. Генератор электричества, работающий на бензине, имеет небольшой вес — максимум 100 кг, дизельные весят гораздо больше. Бензиновый легко перемещать по участку, поэтому для дач это наилучший выбор.
- Малый уровень шума. Самые шумные — дизельные агрегаты, поэтому им требуются отдельное помещение и улучшенная звукоизоляция. Так, если уровень шума дизельных генераторов составляет 80-100 дБ, то бензиновых — не более 50. А согласно санитарным нормам, уже на расстоянии 7 м он не должен быть выше 74 дБ. Все дело в том, что частота вращения в двигателе, работающем на солярке, выше, чем у бензиновых. А чем выше число оборотов в минуту, тем выше шум. И если выбираем высокочастотный двигатель, то должны подумать о системе защиты человека от лишних децибел. Например, разместить агрегат в отдельно стоящем помещении с дополнительной звукоизоляцией.
- Возможность использовать редко. Это очень важное преимущество, в первую очередь для дачников, которые стараются при минимуме затрат получить максимальный результат. Затраты на бензиновый генератор небольшие, особенно если речь идет не о самом мощном агрегате. А именно этот вид мини-электростанции отличается большим разнообразием самых компактных (это касается и мощности) генераторов.
Но нужно сказать и о недостатках. Первый — оборотная сторона 1 из его достоинств: существует предел мощности для электрогенераторов бензиновых для дачи. Поэтому они не подойдут тем, кому нужна мини-электростанция для постоянного электроснабжения дома, включая работу всех электроприборов. 2 недостаток — необходимость периодического охлаждения, т. е. они не могут работать непрерывно и нуждаются во временных остановках. Кроме того, у них низкий КПД, и бензин стоит дороже солярки. Так что на вопрос, как выбрать генератор, ответ очевиден: нужно продумать все детали и исходить из личных потребностей и имеющихся возможностей.
Виды бензиновых генераторов
Если владелец решил остановиться на мини-электростанции, работающей на бензине, то и тут нужно разобраться, какие существуют разновидности. Это еще больше прояснит вопрос, какой генератор выбрать:
- Итак, бензогенераторы бывают: 2- и 4-тактные. Первые имеют самую небольшую мощность — 1 кВт. Поэтому их используют в основном на небольших дачах — для освещения и подключения небольшого числа электроприборов. Вторые более мощные — до 15 кВт могут обеспечить электричеством дачи побольше, а также небольшие дома. Но затраты на их работу выше, так как топлива расходуется больше.
- 1- и 3-фазные. Обычный генератор для дома, который используют в быту — однофазный, так как питает электроэнергией приборы, работающие на 1-фазной проводке. 3-фазные агрегаты — более мощные, и применяются обычно в промышленности. Если же их используют в быту, то специалисты предупреждают: разница между фазами не должна превышать 20 %.
- Имеют воздушный или водяной тип охлаждения двигателя. На воздушном типе генераторы не могут работать более суток и нуждаются через этот срок в остановке. На водяном — дольше работают без перерыва. Кроме того, при воздушном типе охлаждения требуется просторная площадка, чтобы воздух к ним поступал хорошо и свободно.
Как рассчитать мощность генератора?
Это очень важный момент. Например, не всегда нужно приобретать самый мощный электрогенератор для дачи. Иначе он просто будет работать впустую. Чтобы этого не произошло, требуется совершить простейшие арифметические действия. Суммировать мощности всех электроприборов в доме плюс учесть потребление электричества на освещение, а потом увеличить полученную сумму на треть, чтобы избежать перегрузок. В среднем для небольшого дома на все нужна мощность около 2 кВт в сутки. А для дачи хватит и 1 кВт.
Ориентировочное потребление
И еще существенная деталь: генератор не должен работать меньше, чем на 80 % своей номинальной нагрузки. Такой режим лучший, так как он наиболее экономичен. В противном случае КПД работы будет очень низким.
Мощный бензогенератор не стоит приобретать, если мини-электростанция нужна не постоянно. На рынке сегодня продаются модели мощностью от 0,6 до 7 кВт. Так что выбор есть. Какой лучше?
Например, для дачи (сезонное проживание) или если необходимо организовать резервное (в случае отключения электроэнергии) и автономное питание дома, то лучше приобрести бензиновый генератор мощностью от 5 до 10 кВт, ручной или полуавтоматический, с любым видом охлаждения, 1-фазный. От него электроэнергии для дачи вполне хватит.
Ну а если речь идет о большом доме или организации в доме постоянного электроснабжения, то лучше выбрать дизельный автоматический генератор большой мощности, с дополнительным кожухом и размещенный в отдельно стоящем помещении.
sadovod.guru
Генератор электрического тока
Наверняка каждый из нас открыл для себя истину, что наличие домашней электрической сети – не залог того, что ток будет подаваться в ваш дом бесперебойно. А у некоторых из нас имеется собственность в местности, куда электричество просто не проведено. В этом случае есть выход - генератор электрического тока. Речь в статье пойдет о том, как работает это устройство и о критериях его выбора для собственного пользования.
Как работает генератор электрического тока?
Вообще, электрогенераторы – это электрические машины, которые служат для того, чтобы преобразовывать энергию механическую в электрическую. Принцип действия генератора электрического тока работает на явлении электромагнитной индукции. Согласно нему в проводе, который двигается в магнитном поле, наводится ЭДС, то есть электродвижущаяся сила. В генераторе применяются электромагниты в виде обмоток из медного провода или катушек индуктивности. Когда проволочная катушка начинает вращаться, на ней вырабатывается электрический ток. Но это происходит лишь в том случае, если ее витки пересекают магнитное поле.
Виды генераторов электрического тока
В первую очередь электрогенераторы производят постоянный и переменный ток. Электрический генератор постоянного тока, состоящий из неподвижного статора с дополнительными обмотками и вращающегося ротора (якоря), служит для создания постоянного тока. Такие устройства используются в основном на предприятиях металлургии, в общественном транспорте и морских судах.
Электрические генераторы переменного тока превращают из механической энергии переменный ток путем вращения прямоугольного контура вокруг неподвижного магнитного поля или наоборот. То есть ротор за счет вращения в магнитном поле вырабатывает электроэнергию. Причем у генератора переменного тока такие вращающиеся движения совершаются намного быстрее, нежели в генераторе постоянного тока. Кстати, для дома применяются генераторы электрического тока переменного.
Кроме того, различаются генераторы по виду источника энергии. Они бывают ветровыми, дизельными, газовыми или бензиновыми. Самыми популярными изделиями на рынке генераторов электрического тока считаются бензиновые, благодаря довольно простой эксплуатации и сравнительно невысокой стоимости. В целом такой прибор представляет собой генератор, соединенный с бензиновым двигателем. За 1 час работы такое устройство расходует до 2,5 л. Правда, такой генератор подходит лишь для экстренного источника тока, поскольку в сутки они могут вырабатывать ток максимум 12 часов.
Газовый генератор отличается выносливостью и экономностью. Работает такой агрегат как от газопровода, так и от сжиженного газа в баллонах. Хорошим ресурсом работы обладает дизельный электрический генератор тока. Прибор потребляет около 1-3 л топлива в час, но зато намного мощнее и подходит для постоянного электроснабжения даже большого дома.
Экологичностью отличаются ветровые электрогенераторы. К тому же ветер – бесплатное топливо. Однако стоимость самого агрегата высокая, да и габариты его немаленькие.
Как выбрать генератор электрического тока для дома?
Перед покупкой прибора важно определиться с его мощностью. Заранее следует рассчитать суммарную мощность, которая будет потребляться всеми вашими приборами, добавив небольшой запас (около 15-30 %). Кроме того, обратить внимание стоит и на тип топлива. Самыми выгодными считаются генераторы, работающие на газу. Экономным считается дизельный генератор, но сам прибор стоит немало. Бензиновый электрогенератор стоит сравнительно недорого, но топливо расходуется больше. Так же учтите при покупке тип фазы. Трехфазовые генераторы электрического тока, работающие с напряжением 380 В, универсальны. Если у вас нет дома трехфазовых приборов, вам подойдет агрегат, работающий с фазой в 230 В.
womanadvice.ru
Генератор электрического тока бензиновый для частного дома: цены
Чтобы дом был настоящей крепостью надо предусмотреть все возможные осложнения и ни в коем случае их не допустить. Одним из наиболее распространенной и неприятной проблемой в условиях жизни в частном доме может стать отключение электричества. Однако от этого несложно предостеречься, если приобрести генератор электрического тока бензиновый для частного дома или аналогичное устройство.
Типы генераторов
Однако прежде стоит разобраться, какой мощности нужна система энергообеспечения для частного дома, а также, какой больше подойдет: дизельный или бензиновый генератор для частного дома. Сегодня на рынке представлено множество различных по характеристикам и свойствам моделей, различающихся как по мощности, так и по принципу действия.
Бензиновый
Автономный генератор тока бензиновый для частного дома — оптимальный вариант для обеспечения бесперебойного энергоснабжения в периоды отключения. Принцип работы основывается на сгорании топлива, проходящего процедуру очистки от механических примесей, с участием кислорода, поступающего посредством втягивания в специальные фильтра. Сгорающая смесь образует приводящий поршневую систему в действие газ. Вращательный момент активизирует ротор, преобразующий его в электрическую энергию.
Мощность генерации бензиновых устройств, использующихся для обеспечения электроэнергией стандартного загородного дома на одну семью, в большинстве своем ограничено 12 кВт, чего вполне хватает для обеспечения напряжения в 220 и 330 В. Для питания энергией больших торговых и офисных помещений могут использоваться устройства мощностью до 30 кВт. Часовое потребление горючего варьируется от 0,3 до 4 литров в зависимости от выходного напряжения.
При приобретении необходимо внимательно ознакомиться с инструкцией, в частности относительно рекомендованного времени бесперебойной работы. В среднем это время составляет от 10 до 12 часов, после чего требуется охлаждение системы. В то же время хороший бензиновый генератор способен работать дольше, но круглосуточное его использование тем не менее не рекомендуется. По видам различают бензиновый генератор для частного дома, цена которого ниже, — двухтактные и более дорогие, способные вырабатывать большую мощность, — четырехтактные.
Дизельный
Дизельные аппараты также используются в качества аварийного источника энергоснабжения, а также как дополнительный источник питания в тех случаях, когда предоставляемой мощности электроэнергии не хватает для обеспечения всех потребностей в ней. Дизельные аппараты весьма широко представлены, многие из них способны вырабатывать значительное количество электроэнергии, в связи с чем чаще используются для нужд нескольких домов. Принцип их работы схож с бензиновыми, однако, как следует из названия, работают на другом виде топлива. Есть также модель для обеспечения нужд одного хозяйства. Мощность трехфазных дизельных устройств, представленных на рынке, составляет от 8 до 30 кВА.
Газовый
Существуют также устройства, принцип работы которых основывается на природном газе, за счет энергии сгорания которого приводятся в движение лопатки турбины. Компрессор вращается за счет половины вырабатываемой энергии, другая питает сам генератор. В этом его преимущество, он полностью автономный, при этом экологически чистый.
Опасность газовых генераторов связана с возможной протечкой и, как следствие, взрывом при повреждении системы.
Однако необходимо отметить опасность, с которой сопряжена работа устройства. Еще опаснее устройство, принцип работы которого основан на сжиженном газе. Опасность связана с характерными для газовых устройств проблемами, подразумевающими протечку и, как следствие, возможность взрыва при повреждении системы.
Виды источников тока
Синхронные
Синхронный принцип действия системы заключается в том, что рабочие механизмы устройства, а именно: работа ротора и вращение магнитных полей статора происходит в упорядоченном, взаимосвязанном и синхронном режиме. Главное преимущества данного принципа заключается в стабильности и постоянстве получившегося на выходе напряжения.
Главный же недостаток связан, прежде всего, с перегрузками, случающимися вследствие этой взаимозависимости и повышения регулятором силы тока в роторе. Устаревшие модели также содержат недостаток, связанный с наличием щеточного устройства, которое требовало периодического обслуживания и замены. Синхронные установки в большинстве своем нашли свое применение в обеспечении током промышленных предприятий и морских судов.
Асинхронные
Асинхронные генераторы не приспособлены к пусковому тока, однако обладают устойчивостью к короткому замыканию и перегрузке. Также этот тип устройства вырабатывает напряжение, слабо подверженное нелинейному искажению, за счет чего устройство адаптировано к питанию бытовых электроприборов.
Преимущества также заключаются в следующем:
- выработка полезной энергии за счет низкого клирфактора,
- отсутствие требующих замены и ремонта «чувствительных» комплектующих,
- длительный период эксплуатации.
Асинхронные модели представлены:
- в виде коллекторных электродвигателей
- в виде шаговых двигателей, обладающих низкой частотой вращения.
Инверторные
Принцип работы этих устройств, как следует из названия, основан на применении инверторной системы. Посредством налаженного выходного напряжения, обладающего показателем стабильности частоты, осуществляется контроль за широтно-импульсной модуляцией, производящей высококачественную электрическую энергию.
Первая ступень работы устройства — работа выпрямителя, преобразующего переменный ток в постоянный. После этого с помощью стабилизации посредством работы специальных фильтров осуществляется очистка пульсации. Это позволяет вырабатываться переменному току при помощи транзисторов или тиристоров в мостовой схеме. Управление параметрами цепей обратной связки осуществляется с помощью системы инверторного устройства. Таким образом, выходной ток контролируется в своих параметрах на каждом участке, за счет чего стабилизируется его частота.
Работа устройства базируется на действие ротора, дополненного статором, и блока инвертора, состоящего из указанных выше составляющих:
- выпрямитель,
- фильтр,
- преобразующая цепь.
Контроль за работой системы осуществляет микрокомпьютер. Ротор за счет вращения вырабатывает переменный ток (трехфазный), направляемый в инвертор, а затем — в цепь выпрямление, где происходит выравнивание напряжения и стабилизация выходных показателей.
К преимуществам относятся:
- экономия электроэнергии, возникающая за счет интеллектуальной системы распределения,
- компактность, легкость и простота монтажа,
- система воздушного охлаждения двигателя, предохраняющая от перегрузок и перенагревания.
Система управления
Системы управления различны в зависимости от конкретных типов генераторов. В общем их следует разделить на ручные и автоматические. Чаще всего более дорогие устройства предполагают наличие дополнительного оборудования, осуществляющих в соответствии с заданными параметрами запуск, контроль и мониторинг работы системы электроснабжения. Для устройств некоторого типа обязательно предполагает наличие микрокомпьютера, осуществляющего эти функции.
Главные преимущества инверторных генераторов — это экономия электроэнергии, компактность и легкость монтажа.
В частности, это относится к инверторным типом устройств, от качества работы которых зависит обеспечение жизнедеятельности серьезных больших систем, сбой которых может привести к очень серьезным последствиям. Компактные, предназначенные для питания электроэнергией частного дома обычно управляются в ручном режиме, но в соответствии с установкой дополнительных опций могут быть оснащены системой автоматического управления и контроля.
Способы охлаждения
Работа устройства неизменно сопряжена с нагреванием системы энергоснабжения. Верхние допустимые пределы нагревания составных частей определяются примененных материалов изоляции, а также температурой воздуха снаружи. Верхнее допустимое значение температуры нагревания также классифицируется в соответствии с присвоенным устройству классом.
Система изоляции, предохраняющая от перенагрева также подвержена износу ввиду загрязнения, повышенного содержания влаги, окисления, воздействия электрического поля и повышенных нагрузок. Максимальная допустимая длительность эксплуатации изоляционной системы зависит от максимально допустимого уровня нагревания. Например, при постоянных достижениях температуры в пределах 120 градусов срок службы — 15 лет, а при этом значении в 140 градусов -всего 2 года.
Предохраняют систему от перенагревания с помощью использования искусственного охлаждения:
- косвенное,
- непосредственное
Косвенное предполагает охлаждение при помощи вентиляторов, расположенных в торцах ротора. Охлаждающее вещество попадает в генератор и проходит сквозь зазоры и специальные каналы. Непосредственное охлаждение отличает соприкосновением охлаждающего вещества с обмоткой устройства.
Генераторы обычно работают при помощи следующих типов охлаждения:
- воздушное,
- водородное,
- жидкостное.
Воздушное охлаждение происходит либо в проточном, либо в замкнутом режиме. Проточное подразумевает однократное прохождение охлаждающего воздуха через систему, замкнутое — его циркуляцию.
Асинхронные генераторы обладают устойчивостью к короткому замыканию и перегрузке.
При водородной системе охлаждения охлаждающее устройство всегда встраивается непосредственно в корпус механизма, а не действует снаружи, как воздушное.
Жидкостное охлаждение происходит за счет действия дистиллированной воды, обладающей повышенной эффективностью по сравнению с водородом, за счет чего более высокая степень охлаждения происходит без увеличения размеров охлаждающих элементов.
Какую мощность выбрать
Какой мощности нужен генератор для частного дома ? Требуемая мощность генератора для частного дома напрямую зависит от потребности частного дома и количества используемого в хозяйстве электрооборудования. Генератор 220В, работающий на бензине, подходящий для нужд частного дома, в большинстве представленных моделей вырабатывает мощности от 3 до 8 кВт. Из данного диапазона выбрать подходящий следует с учетом частной потребности. Аппарат, вырабатывающий примерно 3 кВт подойдет, если необходимо обеспечение работы минимального набора бытовых устройств:
- лампы накаливания,
- холодильник,
- чайник,
- обогреватель.
Если требуется обеспечить работу еще телевизора, компьютера, зарядки мобильного телефона, микроволновки, тостера, — словом всего для комфортной жизни, то понадобится аппарат, вырабатывающий 8, а то и 12 кВт.
Дополнительные параметры, на что обратить внимание
Для удобства стоит выбрать генератор для частного дома с автозапуском. После выбора мощности и типа следует разобраться во всех представленных подходящих под заданные параметры моделях, а также обратить внимание на мнение потребителей.
Хотя все производители не склонны рассказывать покупателям о существенных недостатках выпускаемой продукции, нередко встречается генератор для частного дома, отзывы о котором способны эксплицитно продемонстрировать его очевидные недоработки и слабые стороны. На это также стоит обратить внимание, поскольку никто не хочет повторять чужих ошибок, тем более что в век информационных технологий существует возможность оградиться от них.
Подключение генератора в частном доме также требует базовых навыков или помощи профессионалов. Дистрибьюторы, реализующие системы бесперебойного энергоснабжения, чаще всего обладают штатом специалистов в данной области, способных (обычно за доплату) помочь с подключением.
В целом схема подключения генератора в частном доме зависит от типа устройства, разработанного для автономной работы или нет, дополненного вводным автоматом или без такового. Обо всех особенностях подключения следует справляться в соответствии с инструкцией или проконсультироваться со специалистами.
Пренебрегать всеми значимыми деталями не стоит, поскольку неправильное подключение несет в себе целую группу рисков, различных по своим последствиям, среди которых (только часть из возможных):
- устройство выйдет из строя и потребует сервисного обслуживания,
- возникнут проблем со всей энергосетью,
- вырабатываемая электроэнергия пойдет не в дом, а распространится на всех подключенных пользователей сети.
Популярные модели бензиновых генераторов и цены
К производителям популярных и актуальных бензиновых генераторов, представленных сегодня на рынке, относятся:
- Honda,
- Briggs&Stratton,
- Mitsui Power,
- Mirkon energy,
- REG,
- SDMO,
- Zenith.
Ниже представлена сравнительная таблица: минимально подходящий (примерно 2-3 кВт) и мощный (10-11 кВт) в линейке названого производителя системы энергообеспечения для частного дома, цена по скрину с сайта дистрибьютора.
Производитель | Маломощная модель/ цена | Мощная модель/ цена |
Briggs&Stratton | Sprint 3200 A (3,1 кВт) 27 990 | Sprint 3200 A (3,1 кВт) 233 890 |
Mitsui Power | ECO ZM 3500 (2,8 кВт) 25 416 | ECO ZM 10000-E (10 кВт) 140 945 |
Mirkon energy | нет | MKG10MP 249 000 |
REG | GG3300-Х (3 кВт) 36 700 | SG10-230 (11 кВт) 200 000 |
SDMO | PERFORM 3000 (3 кВт) 47 119 | TECHNIC 15000 TE (11,5 кВт) 286 609 |
Zenith | Zh5000S (3,3 кВт) 45 000 | Zh22000DXE (11 кВт) 355 000 |
Необходимо отметить, что представленный сравнительный анализ цен носит исключительно ознакомительный характер и для обоснованного решения о покупке должен быть дополнен более подробным ознакомлением покупателя с моделями различных производителей, поскольку, во-первых, представлены данные только по одному коммерческому предложению на разные модели, во-вторых, критерий выбора — мощность без учета типа устройства, что также оказывает значительное влияние на конечную цену автоматического бензинового генератора.
Несмотря на это, ознакомившись с данной таблицей, пользователь может составить первичное мнение о представленных на рынке производителях и политике ценообразования каждого, вследствие чего сузить круг рассматриваемых вариантов.
Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.
klimatlab.com
Электрический генератор
Электрический генератор – электрическая машина, предназначенная для преобразования механической энергии в энергию электрического поля. Источниками механической энергии может быть вода, пар, ветер, двигатель внутреннего сгорания и другие.
История
Первыми электрическими генераторами были – электростатические генераторы. Принцип их действия был основан на явлении статического электричества. Но широкого применения в промышленности эти генераторы не получили, так как они развивали высокое напряжение при малом токе. Ярким примером таких генераторов стал генератор Ван де Граафа. Этот генератор был изобретен Робертом Ван де Граафом в 1929 году и в основном служил для ядерных исследований.
Затем люди начали предпринимать попытки по созданию электромагнитных генераторов, то есть генераторов, работа которых основана на явлении электромагнитной индукции. Одним из первых в этом направлении стал гениальный физик Майкл Фарадей, который как раз и открыл явление электромагнитной индукции. Также он сформировал принцип работы генераторов, который был назван законом Фарадея. Его суть заключалась в том, что в проводнике, движущемся перпендикулярно магнитному полю, образовывалась разность потенциалов. Доказательством этого принципа стал диск Фарадея. Это простейший генератор, который представлял из себя медный диск, вращающийся между концами подковообразного магнита.
В 1832 году Ипполит Пикси построил первую динамо-машину. Она представляла из себя машину, в которой имелся статор, создающий постоянное магнитное поле и нескольких обмоток, которые в нем вращались. Ток снимался с помощью механического коммутатора. По сути это был первый генератор постоянного тока.
Потом развитие промышленности пошло вверх, и были изобретены генераторы переменного тока, асинхронные и постоянные двигатели.
Принцип действия
Принцип действия электрического генератора основан на взаимодействии проводника и магнитного поля, в котором он движется. Как всегда приводится классический пример с рамкой в магнитном поле. Когда рамка вращается, её пересекают линии магнитной индукции, при этом в рамке образовывается электродвижущая сила. Эта ЭДС заставляет ток течь по рамке и с помощью контактных колец попадать во внешнюю цепь. Примерно так устроен простейший электрический генератор.
Подробнее пример с рамкой разобран в статье – переменный синусоидальный ток.
Применение
Применение электрических генераторов обширно. Они применяются практически везде, где это только возможно. Снабжаютнаши дома электроэнергией, заряжают аккумуляторы в автомобилях, используются в промышленности и многое другое.
В настоящее время стали популярны автономные бензиновые и дизельные электрогенераторы, которые могут служить источниками электрической энергии при её отключении, либо вообще при её отсутствии. Такие генераторы используются в быту и в строительстве, так как форма тока имеет искажения, то без применения специального инвертора, подключать к ним какие-то электронные устройства не целесообразно, так как они могут выйти из строя.
electroandi.ru
Электрический генератор. Основное оборудование электрических станций и подстанций.
Основное оборудование электрических станций и подстанций
Электрический генератор - это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
История изобретения генератора электрического тока
Русский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.
Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863г.
При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением.
В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.
В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.
До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.
Заряды вырабатывались, используя один из двух механизмов:
- Электростатическую индукцию
- Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков
По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.
Принцип работы любого электрического генератора
Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один - Э.Д.С., изменяющаяся по гармоническому закону.
Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.
Синхронный электрогенератор
Синхронный электрогенератор - это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.
Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется "реакцией якоря".
Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком - возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.
Асинхронный электрогенератор
Асинхронный электрогенератор - асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.
Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.
Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.
Устройство генератора
Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы - ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.
Составные части генератора:
- коллектор,
- щетки,
- магнитные полюса,
- витки,
- вал,
- якорь.
Принцип действия генератора
Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.
Виды генераторов
- электрогенераторы,
- бензогенераторы,
- дизельгенераторы,
- инверторные генераторы.
Применение
Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику.
www.gigavat.com