Справочник химика 21. Горит ли углекислый газ


Как сжечь углекислый газ? | Наука и жизнь

Новые катализаторы помогут превратить диоксид углерода в топливо.

Чтобы получить энергию, как правило, необходимо что-нибудь сжечь: обычные автомобили сжигают топливо в двигателях внутреннего сгорания, электромобили заряжают свои батареи от электричества, поступающего, например, на ТЭЦ, где сжигают природный газ, и даже нам для мышечной или умственной работы надо «сжечь» внутри себя съеденный завтрак.

Пористая структура поверхности серебряного катализатора после удаления полистирольной матрицы. (Фото: MIT)

В любом органическом топливе, будь то бензиновые углеводороды или углеводы из шоколадки, содержатся атомы углерода, которые в конце своего энергетического пути превращаются в углекислый газ. Ну а газ, в свою очередь, отправляется в атмосферу, где он может накапливаться и вызывать всякие нехорошие эффекты вроде глобального потепления.

С энергетической точки зрения углекислый газ абсолютно бесполезен, поскольку углерод в нём полностью «сгорел», прочно и неразрывно связав себя с двумя атомами кислорода. Гореть он уже не горит, и единственное что с ним можно сделать – утопить или закопать. Утопить его можно, растворив в океане – и это действительно один из способов утилизации СО2. Другой способ – закачать его под высоким давлением под землю, желательно там, где есть нефтяные месторождения; это позволит повысить отдачу нефтяных пластов и поможет добыть больше нефти. Однако химики всё же нашли способ «сварить кашу из топора» – существует третий путь утилизации СО2, когда его превращают в топливо.

Чтобы превратить СО2 в топливо, нужно «похимичить» с молекулой углекислого газа, например, отобрать у неё один атом кислорода. Тогда углекислый газ превратится в угарный газ СО. Несмотря на то, что для большинства угарный газ – это «тот газ, от которого периодически погибают неаккуратные пользователи дровяных печей», в промышленности его используют в самых разных процессах: во-первых, его можно сжечь и получить энергию, во-вторых, его можно использовать в металлургических процессах, а в-третьих, из него можно синтезировать различные органические молекулы, в том числе и жидкое топливо. Как раз последний пункт и открывает перед углекислым газом нефтехимические перспективы.

Однако стоит заметить, что использование угарного газа в химических целях не есть что-то совсем новое. Ещё на заре ХХ века германские химики Франц Фишер и Ганс Тропш разработали способ, как из обычного угля получить жидкое топливо: сначала из каменного угля и воды получают синтез-газ – так называется смесь угарного газа и водорода, а затем с помощью катализатора из синтез-газа получают различные углеводороды. Этот способ был востребован, когда обычной нефти не хватало, однако со временем, во второй половине двадцатого века метод получения топлива из угля стала просто дорогой альтернативой «классическим» нефтеперерабатывающим технологиям. Но если в процессе Фишера-Тропша в качестве сырья используют каменный уголь, который сам по себе есть полезное ископаемое, то химики из Массачусетского технологического института для той же цели – получения синтез-газа – разработали способ, позволяющий делать его из «ненужного» углекислого газа.

Такие вещи невозможны без использования катализаторов, и, чтобы получить работающий катализатор, химикам порой приходится идти на самые разные хитрости. Дело в том, что, кроме определённого химического состава, для катализатора очень важна его внутренняя структура. Если говорить упрощённо, катализатор, нанесённый на ровную поверхность, может оказаться нерабочим, а вот если его нанести на пористую поверхность, и если у пор при этом будет определённый размер, то тогда он сможет заработать в полную силу.

Для того чтобы создать такой катализатор, химики взяли электропроводящий материал в качестве подложки и нанесли на него слой из полистирольных шариков диаметром около 200 нанометров. После чего пустоты, оставшиеся в пространстве между шариками, заполнили атомами серебра. (В качестве аналогии можно представить, что мы насыпали на пол слой из бильярдных шаров, а потом всё сверху залили ровным слоем расплавленного парафина.) Теперь, чтобы получить пористый субстрат, нужно каким-то образом убрать из материала все шарики, оставив в целости оставшуюся структуру. В случае с бильярдными шарами это было бы весьма проблематично, а вот в случае с полистирольными шариками все оказалось намного проще – и в итоге после удаления полистирола на поверхности электрода получилась ячеистая структура из серебра с «сотами» определённого размера.

Подобный материал, как оказалось, хорошо превращает углекислый газ в синтез-газ, причём эффективность и селективность катализатора управляется за счёт размера сот: если на этапе синтеза катализатора взять полистирольные шарики покрупнее, то после реакции получится один состав продуктов, а если помельче – то другой. Подробно результаты исследований опубликованы в журнале Angewandte Chemie.

И вроде бы всё хорошо, и человечество должно бы праздновать победу над выбросами парниковых газов, а каждую трубу, чадящую в атмосферу продуктами сгорания, нужно оборудовать подобным серебряным катализатором, но всё-таки стоит сделать одно замечание. Один из важных законов, по которому живёт окружающий нас мир – закон сохранения: масса и энергия не возникают ниоткуда и не пропадают в никуда. Это справедливо и для атомов химических элементов, и для тепла, вырабатываемого при сжигании топлива, и для электрической энергии. Поэтому сколько энергии получается при сжигании угарного газа до углекислого, как минимум, столько же энергии нужно затратить (упрощённо), чтобы превратить молекулу углекислого газа обратно в молекулу угарного. И очевидно, что для такой, в общем-то, «зелёной» технологии по утилизации парникового газа нужен свой источник энергии, который как минимум не «начадил» бы в атмосферу столько СО2, сколько можно было бы превратить в полезный продукт.

Откуда взять энергию для превращения одного газа в другой? Например, от ветряных или солнечных энергоустановок, которые производят энергию, но не выбрасывают в атмосферу продукты сгорания топлива – в результате это позволило бы уменьшить общее количество углекислого газа.

Забавно, что похожей деятельностью занимались древние растения и бактерии, поглощавшие находившийся тогда в избытке в атмосфере углекислый газ, и преобразовывшие его в органические вещества, ставшие потом ископаемым топливом. Возможно, что человечеству в будущем придётся заниматься чем-то похожим, но только уже с использованием химических технологий.

www.nkj.ru

Какой газ горит синим пламенем? Угарный или углекислый? Вроде бы углекислый не горит

В углекислом газе углерод имеет высшую степень окисления +4 (СО2), а в угарном только +2 (СО), то есть он еще как бы "не догорел" полностью, его молекула может присоединить еще один атом кислорода, догорая до кондиции. А углекислому газу цеплять кислород уже некуда. Поэтому угарный газ горит, а углекислый - нет, это уже окончательный продукт горения.

ну протестируй

Угарный и есть углекислый, двоечница.

Огнетушитель заправлен каким ?

Да, углекислый не горит. Синим пламенем иногда горят газообразные углеводороды.

touch.otvet.mail.ru

Ядовит ли углекислый газ или нет,доказать?

Сам по себе он не ядовит.. . Вот только он тяжелее кислорода и вытесняет его.. . Большая концентрация СО2 следовательно нехватка кислорода.. . Кстати кроме CO2 углекислым называется еще и соединение СО еще его называют угарным газом, на счет ядовитости сказать не могу, но вот точно знаю что он образует стойкое соединение с гемоглабином (белок красных кровяных телец) и припятствует его соединению с кислородом и выводу СО2 из организма, что вызывиет остое кислородное голодание. СО образуется при горении с недостатком кислорода, как раз на пожарах большинство людей от него и страдают (сперва отключка от отравления потом уже все остальное...)

это огрехи неграмотного перевода. Люди пострадали от угарного газа СО. Углекислый газ СО2 не ядовит

Нет, неядовит. Журналюги безграмотные просто. Ядовит УГАРНЫЙ газ. Люди в подводных лодках погибали не от избытка углекислого газа, а от недостатка кислорода. Есть даже лечебная смесь кислорода с углекислым газом, называется КАРБОГЕН.

ядовит угарный газ СО, встраивается в молекулы гемоглобина и тормозит окислительно-восстановительные процессы в организме...

Углекислый газ (CO2) не ядовит. Мы же пьем газированные углекислым газом напитки и при этом ничего не происходит. При пожаре люди страдают из-за угарного газа (СO), образующегося при сгорании органики в атмосфере с дефицитом кислорода. От углекислого газа можно пострадать, если его окажется слишком много во вдыхаемом воздухе, т. е. просто будет нечем дышать. Во как-то так.

Ядовит при концентрации 100%

мы дышим кислородом. а выдыхаем со2

touch.otvet.mail.ru

Углекислый газ горение в нем

    Изучая свойства углекислого газа, Блэк обнаружил, что свеча в нем не горит. Свеча, горящая в закрытом сосуде с обычным воздухом, в конце концов гаснет, и оставшийся воздух уже не поддерживает горения. Такое явление, конечно же, не казалось беспричинным, поскольку было известно, что при горении свечи образуется углекислый газ. Но когда Блэк абсорбировал углекислый газ, оставшийся воздух, который заведомо не был углекислым газом, горение не поддерживал. [c.40]     Открытие Блэка было важным по ряду причин. Во-первых, он показал, что углекислый газ может образовываться при нагревании минерала подобно тому, как этот газ образуется при горении дерева. Таким образом была установлена очевидная взаимосвязь между живой и неживой природой. [c.40]     В этих уравнениях —теплота разложения метилового спирта—равна теплоте его образования, взятой с противоположным знаком AWj — теплота образования углекислого газа ДЯз — теплота образования воды (табл. 6 приложения). Тепловой эффект реакции горения метилового спирта равен сумме тепловых эффектов всех трех реакций  [c.182]

    Состав продуктов сгорания. При полном сгорании топлива образуются углекислый газ, сернистый газ, пары воды, избыточный кислород и азот. В случае неполного сгорания топлива в продуктах сгорания могут быть оксид углерода, углеводороды, углерод и др. Массу и объем продуктов сгорания, а также расход воздуха для горения топлива определяют по формулам, приведенным в гл. IV. [c.197]

    При горении свечи израсходован весь кислород, а образовался углекислый газ СО2 [c.372]

    Продукты полного горения топлива состоят из углекислого газа, сернистого газа, паров воды, избыточного кислорода и азота. При неполном горении в продуктах горения могут также присутствовать окись углерода, углеводороды, водород и элементарный углерод — сажа. [c.110]

    Для полного сгорания топлива с образованием углекислого газа и паров воды необходимо обеспечить в любом месте пламени достаточное количество кислорода. Поэтому практически воздуха подается больше, чем теоретически необходимо для горения. Избыток воздуха зависит от качества топлива, способа сжигания, конструкции печи, конструкции горелок и условий сжигания. Избыток воздуха выражается чаще в процентах или как безразмерный коэффициент а, определяющий отношение количества действительно необходимого воздуха к теоретическому. Вообще рекомендуется принимать при газовых топливах 5—35%, при жидких топливах 20—50% избыточного воздуха. Современные горелки с керамическими камнями практически работают с теоретическим количеством воздуха, т. е. с нулевым избытком. У автоматически регулируемых больших печей избыток воздуха берется меньше, чем у печей, регулируемых вручную. [c.53]

    Окалина тяжелее металла, из которого она образовалась, ровно на столько, сколько весит соединившееся с металлом количество воздуха. Горение дерева также сопровождается присоединением воздуха, но увеличения веса в этом случае не наблюдается, так как образовавшееся новое вещество — углекислый газ улетучивается в атмосферу. Оставшаяся зола легче сгоревшего дерева. Если бы горение дерева проходило в закрытом сосуде и образующиеся при этом газы оставались бы в сосуде, тогда можно было бы показать, что вес золы плюс вес образовавшихся газов плюс [c.46]

    Углекислый газ (иначе, углекислота ) не поддерживает горения обычных видов топлива (т.е. углерода и его соединений). Горят в углекислом газе лишь такие вещества, сродство которых к кислороду значительно больше, чем у углерода. Примером может служить [c.493]

    В этих случаях горение углеводородов происходит упорядоченно. Достаточная подача кислорода воздуха обеспечивает превращение самых разнообразных радикалов в углекислый газ и водяной пар и выделение при этом значительного количества тепла. [c.475]

    Так как в шахтных печах неизбежно наличие избыточного воздуха, то часть продуктов сгорания направляют на рециркуляцию и используют их для сжигания в системе внешнего отопления. Эта процедура осуществляется в отдельной топочной камере, режим горения в которой регулируется достаточно точно. Повторное вдувание продуктов сгорания в шахтную печь нежелательно, поскольку высокое содержание в них СО2 приводит к насыщению углекислым газом кальцинированного известняка. [c.296]

    В этих термохимических уравнениях — теплота разложения этилена, величина которой равна величине теплоты образования этилена, взятой с противоположным знаком АЯ — теплота образования углекислого газа, а ДЯ3 — теплота образования воды (см. приложение, табл. 6). Тепловой эффект реакции горения равен сумме тепловых эффектов реакций разложения этилена, образования углекислого газа и воды  [c.180]

    Недостаток кислорода прп горении легко установить анализом продуктов сгорания. При малом избытке воздуха, недостаточном для полного сгорания топлива, в дымовых газах обнаруживается окись углерода или несгоревшие частички углерода топлива (черный дым). Контроль избытка воздуха осуществляется путем определения содержания углекислого газа в продуктах сгорания. Коэффициент избытка воздуха определяется сравнением содержания СОг в дымовых газах при теоретическом количестве воздуха с действительным содержанием СОг (процентное содержание СОг в дымовых газах обратно пропорционально коэффициенту избытка воздуха), предполагая, что количеством образовавшейся СО можнО пренебречь. [c.53]

    Уравнение для состава продуктов сгорания составляем таким же путем, как при определении потребного количества воздуха. Если из 1 кг углерода в результате горения получится Чи килограмм-моля углекислого газа, а из 1 кг серы /зг килограмм-лголя сернистого ангидрида (SO2), то число килограмм-молей СО2 и SO2, полученных из 1 кг топлива, будет равно [c.59]

    Первая реакция ведет к образованию окиси этилена, вторая является реакцией горения этилена до СО, и Н,0. Занумеруем компоненты в следующем по-))ядке 1 — этилен, 2 — окись этилена, 3 — кислород, 4 — вода, 5 — углекислый газ. [c.48]

    Количество молей углекислого газа, образующегося при горении этих двух кислот, равно 0,06 (0,1 —0,04), где 0,04 — количество молей СО2, образовавшегося за счет сгорания 0,02 моля СНзСООН, откуда можно записать  [c.179]

    Метод сжигания. Этот метод применяется при анализе многих материалов. Серу в каменном угле определяют путем спекания навески угля со смесью из окиси магния или окиси цинка с небольшим количеством (от / до Уз по отношению к 2пО или М О) углекислого натрия. Тугоплавкая окись магния (или окись цинка) играет роль колосников , обеспечивая доступ воздуха к частицам угля углекислый натрий поглощает образующийся при горении серы сернистый газ и, кроме того, способствует дальнейшему окислению Ыа ЗО, до Ыа ЗО . Применяется также метод сжигания в стальной калориметрической бомбе в атмосфере кислорода под давлением. [c.160]

    Регенерацию проводят в условиях ограниченной влажности и с защитой компрессоров от хлора. Поэтому в схему регенерации включают заранее высушенные адсорберы, заполненные цеолитом ЫаА. Включают компрессор и обеспечивают циркуляцию на инертном газе (азоте), поднимают температуру на входе в реакторы до 250-270°С и начинают подачу воздуха в первый реактор, доводят концентрацию кислорода в подаваемой азото-воздушной смеси до 0,5-0,6% об. Через несколько часов горения кокса на катализаторе доводят концентрацию кислорода до 11% об. и выжигают основную массу кокса при температуре от 300 до 400°С. На этой стадии воздух подают во все реакторы для ускорения выжига кокса. Контроль за процессом горения осуществляют с помощью зонных термопар, не допуская резкого повышения температур в слое катализатора, а также с помощью аналитического контроля за содержанием кислорода и углекислого газа на входе и выходе из реакторов. [c.140]

    При взаимодействии карбоната неизвестного металла с соляной кислотой выделяется углекислый газ, который не поддерживает горения и, следовательно, в избытке кислорода сжигают только водород, выделяющийся по реакции (1). [c.91]

    Так как углекислый газ не поддерживает горение, то на воздухе сжигают только водород. Следовательно, после реакции (3) остается  [c.182]

    При горении угля в замкнутом объеме воздуха последний постепенно обогащается углекислым газом. Сколько (в процентах) кислорода будет в таком измененном по составу воздухе, когда содержание СО2 в нем достигнет 2,5% (по объему)  [c.104]

    Практика показывает, что химические реакции связаны с разнообразными физическими процессами. Например, горение сопровождается выделением теплоты и испусканием света, химические реакцни в гальванических элементах являются причиной возникновения электрического тока. С другой стороны, поглощение света фотоэмульсией вызывает в ней химический процесс образования скрытого изображения. Под действием солнечных лучей в растениях протекает сложная цепь химических превращений, в результате которых из воды и углекислого газа синтезируются углеводы. В электрическом разряде происходит взаимодействие кислорода и азота. Во всех случаях имеет место тесная связь физических и химических явлений. [c.6]

    Кроме воды, для тушения пожаров можно применять водные растворы двууглекислого и углекислого натрия, поташа, хлористого аммония, поваренной соли, глауберовой соли, аммиачнофосфорных солей, сернокислой меди, а также четыреххлористый углерод, бромэтил и другие соединения галогенов. Огне-гасительное действие водных растворов солей отличается от огнегасительных свойств воды тем, что соли, выпадая из раствора, образуют на поверхности горящего вещества изолирующие пленки, отнимающие дополнительное тепло, которое затрачивается на последующее разложение этих солей в зоне горения при этом выделяются инертные огнегасительные газы. [c.447]

    Все химические реакции сопровождаются либо выделением, либо поглощением тепла. Первые называются экзотермическими реакциями, вторые — эндотермическими. Так, реакция горения углерода с образованием углекислого газа сопровождается выделением тепла, а реакция разложения углекислого газа на кислород и углерод — поглощением. [c.12]

    Углекислый газ обладает всеми свойствами кислотных оксидов. Однако вследствие того что соответствующий ему гидроксид — угольная кислота очень неустойчива, при растворении в воде СОг практически с ней не взаимодействует. Так как в СОг углерод,имеет степень окисления +.4, то гореть или поддерживать горение он не может. Для него не характерны ни окислительные, ни восстановительные свойства, хотя некоторые активные металлы могут гореть в атмосфере СОг, отнимая у него кислород  [c.246]

    Теплотой горения органического соединения называется тепловой эффект реакции окисления углерода до углекислого газа, водорода до водяных паров (или жидкой воды) и других элементов (М, Р, 5 и т. д.) до соответствуюш,их конечных продуктов окисления. Теплоты горения углерода и водорода совпадают с теплотами образования СОг и воды. Теплоты горения определяют опытным путем. Тепловые эффекты многих реакций могут быть вычислены с учетом двух следствий, вытекающих из закона Гесса  [c.87]

    В последующие годы Генри Кавендиш открыл водород (1766), Да-ниель Резерфорд-азот (1772), а Джозеф Пристли изобрел насыщенную углекислым газом воду и открыл моноксид азота ( веселящий газ ), диоксид азота, моноксид углерода, диоксид серы, хлористый водород, аммиак и кислород. В 1781 г. Кавендиш доказал, что вода состоит только из водорода и кислорода, после того как он наблюдал, как Пристли взорвал эти два газа (Пристли впоследствии вспоминал об этом как о случайном эксперименте для развлечения нескольких философствующих друзей ). Открытие кислорода (рис. 6-2) заставило Антуана Лавуазье отказаться от господствовавшей в химии XVIII в. флогистонной теории горения. История крушения этой теории показывает важность количественных измерений в химии. [c.272]

    Двуокись углерода. Двуокись углерода (угольный ангидрид, углекислый газ) образуется при самых разнообразных процессах горении, дыхании, брожении, гниении и т. д. Содержание СОа в воздухе может колебаться в довольно широких пределах. В среднем же оно равно 0,03%. Значит, в 10 ООО л воздуха содержится всего лишь 3 л СОа. [c.436]

    Лавуазье был убежден (и, надо сказать, совершенно справедливо), что жизнь поддерживается процессом, сходным с процессом горения ибо мы вдыхаем воздух, богатый кислородом и бедньп углекислым газом, а выдыхаем воздух, бедный кислородом и значительно обогащенный углекислым газом. Он и его коллега Пьер Симон де Лаплас (1749—1827), впоследствии известный астроном, попытались измерить количество вдыхаемого животным кислорода и выдыхаемого ими углекислого газа. Результаты оказались озадачивающими — часть вдыхаемого кислорода не превратилась в выдыхаемый углекислый газ. [c.49]

    Иногда для тушения огня пользуются небольшими баллонами с жидким СО2. При испарении последнего горящее вещество одновременно и охлаждается (за счет испарения СО2), и изолируется от кислорода воздуха слоем углекислого газа. Главное преимущество огнетушителей этого типа заключается в том, что СО2 испаряется без остатка и окружающие место горения предметы не портятся.  [c.509]

    При охлаждении газовой смеси конденсируется водяной пар, образовавшийся при сгорании как метана, так и водорода. Поэтому по данным уменьшения объема газовой смеси после конденсации водяного пара невозможно определить содержание метана или водорода. При пропускании смеси через раствор щелочи поглощается углекислый газ, образующийся только при сжигании метана. По условию задачи при поглощении углекислого газа объем уменьшился на 10 мл (35 — 25 = 10). Из уравнения реакции горения метана видно, что из 1 объема метана образуется 1 объем углекислого газа. Значит, в 100 мл смеси содержалось 10 мл метана. Из уравнения реакции горения метана видно, что 1 объем метана реагирует с 2 объемами кислорода с образованием 1 объема углекислого газа и 2 объемов водяного пара. При конденсации водяного пара объем уменьшится на 2, так как из 1 объема метана и 2 объемов кислорода (1 -f 2 = 3) остается 1 объем углекислого газа. При сгорании 10 мл метана и конденсации водяного пара объем должен уменьшиться на 20 мл. По условию задачи при конденсации водяного пара объем уменьшился на 65 мл (100 — 35 = 65). Значит, при сжигании метана объем уменьшился на 20 мл, а при сжигании водорода и конденсации водяного пара—на 45> мл (65—20 = 45). Из уравнения реакции горения водорода видно, что 2 объема водорода реагируют с 1 объемом кислорода с образованием 2 объемов конденсирующегося водяного пара, и объем в целом уменьшается на 3. В. этом случае при уменьшении объема на 45 мл прореагировали 30 мл водорода и [c.85]

    Кривая а (см. рис. 120) характеризует температуру стенки контрольного участка под слоем нагара при работе ГТД без испарительного охлаждения. За период с 5-й по 10-ю мин At=22° . Перевод двигателя для работы на том же топливе Т-1пп, но с подачей СО2 в поток воздуха не отразился на тепловой напряженности двигателя, но масса нагара в форкамере несколько уменьшилась и нагарное число находилось в пределах 98,0— 90,6. Углекислый газ как инертная среда незначительно влияет на режим горения, поэтому с увеличением массового расхода СО2 перепад температур на стенке снижается с At=22° до At(y 0°С при максимальном расходе СО2 (в этом случае СО2 подавали не через форсунки, а через трубопровод диаметром 3 мм при р= =35 кгс/см ). Теплоизоляционное число нагара находилось в пределах 86,5—45,4, а удельная теплоизоляционность изменялась от 0,880 до 0,503. [c.283]

    Взаимодействие магния с оксидом углерода (IV). Возьмите тигельными щипцами стружку магния, зажгите ее в пламени горелки и внесите в стакан, заранее наполненный углекислым газом. Объясните горение магния в ат осфере СО2. Запишите уравнение реакции. К какому тИпу она относится Какова роль магния в происходящем процессе  [c.246]

    Дву5>кись углерода, применяемая для тушения пожаров, выбрасывается из баллонов, где она находится в жидком состоянии под большим давлением. Мгновенно испаряясь, она образует белые хлопья углекислого снега , имеющие температуру минус 70—80°С. Попадая в очаг огня, хлопья испаряются, снижают температуру таящего вещества и разбавляют окружающий воздух. При содержании двуокиси углерода в воздухе в пределах 36—38 /о (об.) горение прекращается. Двуокись углерода является незаменимым средством для быстрого тушения небольших очагов пожара на ликвидацию огня требуется 2—10 с. Вследствие своей незлектропроводно-сти двуокись углерода применяется также для тушения загоревшихся электродвигателей и других электротехнических установок. Для тушения посредством двуокиси углерода применяют автоматически действующие стационарные установки, передвижные, переносные и ручные огнетушители (см. стр. 67). [c.62]

    Углерод и водород. В большинстве стандартов был принят метод Либиха он состоит в сжигании образца угля в токе кислорода при температуре 800—900° С, тогда как получающиеся продукты горения проходят над нагретой окисью меди, которая обеспечивает полное превращение углерода в углекислый газ и водорода в воду. Окислы серы и хлора, которые могут повлиять на результаты, удаляют соответственно путем пропускания над нагретым хроматом свинца, затем над серебряной сеткой. Содержание углерода и водорода затем вычисляют из привеса использованных поглотителей для удержания углекислого газа и воды. В Англии параллельно этому методу [18] создали метод, названный шеффильдским, котором сжигание происходит при температуре 1350° С. [c.49]

    Элементный анализ на углерод и водород основан на безоста-точном сжигании органической массы нефтепродукта в токе кислорода до углекислого газа и волы. Пос.лодние улавливаются, и по их количеству рассчитывается содержание указанных элементов. Принимаются соответствующие меры для того чтобы горение было полным (образующуюся СО о]продукты сгорания были очищены от окислов серы, галогенов и других примесей. [c.58]

    К первой группе относится большинство известных физикохимических методов воздействия на пласты закачка водных растворов ПАВ, кислот (серной, углекислой, азотной и их производных), щелочей и различных побочных продуктов нефтехимии, сточных вод и пенных систем и спецреагентов. Сюда следует отнести все модификации термовоздействия (нагнетание в пласты теплоносителей, термохимические методы, модификации внутри-пластового горения и т. д.). [c.28]

    Вообще-то это известная реакция, поскольку горение - процесс неуправляемого окисления, в результате которох о образуются углекислый газ и вода. [c.89]

    Из записанной выще схемы видно, что разницу в количестве молей образующегося углекислого газа и грамм-эквивалентов кислот вызывает уксусная кислота, так как для двух остальных кислот количество грамм-эквизалентов численно равно количеству молей образующегося при их горении углекислого газа. Эта разница равна 0,02 (0,1—0,08). [c.179]

    В каких же случаях ионный обмен приводит к выделению газа, и какой же это может быть газ Добавим немного соляной кислоты к раствору кальцинированной соды (карбоната натрия). Шипение и образование пузырьков газа не оставляют сомнений в том, что имеет место химическая реакция. Попробуем установить выделяющийся газ. Мы обнаружим, что газ не поддерживает горение и не имеет запа.ха. Из атомов, присутствующих в системе, в данных условиях может образоваться только один такой газ - диоксид углерода СО , углекислый газ (хлороводород, который тоже может присутстоовать в сислеме, имеет ха11актерный раздражающий нос запах, а точнее жжение, так что его лучше не нюхать). Интересно отметить, что подобный же результат получается при приливании к раствору карбоната натрия серной кислоты, азотной кислоты и др. Углекислый [c.132]

    Оксид углерода (IV) СО2, или углекислый газ, образуется в природе при горении и гниении органических веществ. Содержится в воздухе (объемная доля 0,03 %), а также во многих минеральных источниках (нарзан, боржоми и др.). Выделяется при дыхании жнвотных и растений. [c.132]

    Дж. Блэк установил, что связанный воздух — углекислый газ — отличается от обыкновенного воздуха тем, что он тяжелее атмосферного и не поддерживает пи горения, ни дыхания. Если, папример, выдыхать воздух через U-образную трубку, наполненную известковой водой, то происходит помутнение воды. Ученый пришел к выводу, что связанный воздух выделяется в процессе дыхания и сгорания древесного угля. Дж. Блэк, а за ним Д. Макбрайд (1767) показали, что связанный воздух тождествен газу, образующемуся при брожении вина. В то время углерод еще не рассматривали как элемент, а кислород не был известен. И хотя Дж. Блэк знал, что связанный воздух — это продукт сжигания древесного угля, он не мог объяснить его как соединение углерода и кислорода. [c.68]

chem21.info

Ответы@Mail.Ru: горит ли со2

в атмосфере кислорода не горит. СО2 - это уже "зола" от сгоревшего углерода

Если бы СО2 горела, тогда бы не делали огнетушителей углеродных.

Углекислый газ и горит - это 2 разных понятия.. . СО2 никогда гореть не будет

В советских школах это проходили... (((

))) В советских школах не проходили, что СО2 может гореть в F2 (фтор) . Фтор, как более сильный окислитель, вступит в реакцию с углеродом, кислород освободится Энергетически это тоже выгодно, так как фтор-сильнейший окислитель, ТАК ЧТО ГОРЕТЬ БУДЕТ!!!!))))))

touch.otvet.mail.ru

Ответы@Mail.Ru: Кислород газ горючий?

Горение - бытовое название реакции активного соединения с кислородом. Соответственно, вопрос "горит ли кислород" настолько же оправдан, насколько и "смачиваемая ли вода".

Без него не может быть горение, а то есть окисления Т. е он помогает горению Даже органические вещества сгорают, образуя углекислый газ и воду C2H6 + O2 ---> CO2+h3O

посудите сами: если бы кислород горел сам по себе, наша планета превратилась бы в крематорий. он не помогает горению, а сам являеться частью этого процесса, соединяясь с горючим веществом (чаще со смесью разных горючих веществ). тепло и свет -следсвие достаточно большой энергии соединения кислорода с горючим.

Горение - это химическая реакция с образованием пламени. Причем пламя может иметь и невысокую температуру, к примеру зеленоватое пламя этилового эфира борной кислоты не обжигает руку, а температура невидимого пламени горящего водорода около 3000 градусов. Когда пишут, горит ли тот или иной газ, по умолчанию имеются в виду стандартные условия, т. е. в атмосфере воздуха, в котором и так 20% кислорода. А в атмосфере пропана или метана кислород будет гореть, хотя в реакции он является все же окислителем. В атмосфере фтора кислород горит уже как топливо, т. к. фтор - сильнейший окислитель, в нем горит даже вода h3O + 3F2 = 2HF + F2O <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Горение" target="_blank">http://ru.wikipedia.org/wiki/Горение</a>

Не горит кислород даже во фторе. Хотя в некоторых реакциях, например, при горении воды во фторе, фторид кислорода может образовываться.

Сам кислород не горит - Вы правы: -) Это как бы... один из видов"топлива" - первым являются дрова, вторым кислород: -)

touch.otvet.mail.ru

чем отличается угарный газ от углекислого(кроме хим.формулы)?что содержится в кока-коле?что выделяется при пожаре?

Угарный газ (оксид углерода) , СО, газ без цвета и запаха, плотность 1,25 г/л, tкип -191,5 °С. Образуется при неполном сгорании углерода или его соединений. На воздухе горит синим пламенем (2СО + О2 = 2СО2). В промышленности получают газификацией топлив, при конверсии газов. Сырье основного органического синтеза, высококалорийное топливо. Оксид углерода ядовит. Углекислый газ (диоксид углерода, угольный ангидрид) , СО2, бесцветный газ со слегка кисловатым запахом и вкусом, плотность 1,98 г/л. Охлаждая углерода диоксид при обычном давлении, получают твердую снегообразную массу («сухой лед» ) с tвозг 78,50 °С. Растворимость 0,88 объема газа в 1 объеме воды при 20 °С. Как продукт полного окисления углерода поступает в воздух при сжигании топлива и при дыхании. Главный источник углерода растений, усваивающих углерода диоксид при фотосинтезе. Углерода диоксид получают при обжиге известняка, окислении углеводородных топлив. Применяют в производстве соды, при газировании воды, в огнетушителях. P.S. При пожаре выделяются оба газа, а в кока-коле содержится углекислый газ.

в кока-коле углекислый газ (СО2), а при пожаре выделяется угарный (СО)

touch.otvet.mail.ru