Быстрорежущая сталь. Hss сталь


Быстрорежущая сталь - это... Что такое Быстрорежущая сталь?

Быстроре́жущие ста́ли — легированные стали, предназначенные, главным образом, для изготовления металлорежущего инструмента, работающего при высоких скоростях резания.

Быстрорежущая сталь должна обладать высоким сопротивлением разрушению, твёрдостью (в холодном и горячем состояниях) и красностойкостью.

Высоким сопротивлением разрушению и твердостью в холодном состоянии обладают и углеродистые инструментальные стали. Однако инструмент из них не в состоянии обеспечить высокоскоростные режимы резания. Легирование быстрорежущих сталей вольфрамом, молибденом, ванадием и кобальтом обеспечивает горячую твердость и красностойкость стали.

Истории создания

Сверло с покрытием из нитрида титана

Для обточки деталей из дерева, цветных металлов, мягкой стали резцы из обычной твердой стали были вполне пригодны, но при обработке стальных деталей резец быстро разогревался, скоро изнашивался и деталь нельзя было обтачивать со скоростью больше 5 м/мин[1].

Барьер этот удалось преодолеть после того, как в 1858 году Р. Мюшетт получил сталь, содержащую 1,85 % углерода, 9 % вольфрама и 2,5 % марганца. Спустя десять лет Мюшетт изготовил новую сталь, получившую название самокалки. Она содержала 2,15 % углерода, 0,38 % марганца, 5,44 % вольфрама и 0,4 % хрома. Через три года на заводе Самуэля Осберна в Шеффилде началось производство мюшеттовой стали. Она не теряла режущей способности при нагревании до 300 °C и позволяла в полтора раза увеличить скорость резания металла — 7,5 м/мин.

Спустя сорок лет на рынке появилась быстрорежущая сталь американских инженеров Тэйлора и Уатта. Резцы из этой стали допускали скорость резания до 18 м/мин. Эта сталь стала прообразом современной быстрорежущей стали Р18.

Еще через 5—6 лет появилась, сверхбыстрорежущая сталь, допускающая скорость резания до 35 м/мин. Так, благодаря вольфраму было достигнуто повышение скорости резания за 50 лет в семь раз и, следовательно, во столько же раз повысилась производительность металлорежущих станков.

Дальнейшее успешное использование вольфрама нашло себе применение в создании твердых сплавов, которые состоят из вольфрама, хрома, кобальта. Были созданы такие сплавы для резцов, как стеллит. Первый стеллит позволял повысить скорость резания до 45 м/мин при температуре 700—750 °C. Сплав видиа, выпущенный Круппом в 1927 году, имел твердость по шкале Мооса 9,7—9,9 (твердость алмаза равна 10).

В 1970-х годах в связи с дефицитом вольфрама быстрорежущая сталь марки Р18 была почти повсеместно заменена на сталь марки Р6М5, которая в свою очередь вытесняется безвольфрамовыми Р0М5Ф1 и Р0М2Ф3.

Характеристики быстрорежущих сталей

Горячая твердость

Твердость инструментальных сталей при повышенных температурах[2]

На рисунке приведены кривые, характеризующие твердость углеродистой и быстрорежущей инструментальных сталей при повышенных температурах испытаний. При нормальной температуре твердость углеродистой стали даже несколько выше твердости быстрорежущей стали. Однако, в процессе работы режущего инструмента, происходит интенсивное выделение тепла. При этом до 80 % выделившегося тепла уходит на разогрев инструмента. Вследствие повышения температуры режущей кромки начинается отпуск материала инструмента и снижается его твердость.

После нагрева до 200 °C твердость углеродистой стали начинает быстро падать. Для этой стали недопустим режим резания, при котором инструмент нагревался бы выше 200 °C. У быстрорежущей стали высокая твердость сохраняется при нагреве до 500—600 °C. Инструмент из быстрорежущей стали более производителен, чем инструмент из углеродистой стали.

Красностойкость

Если горячая твердость характеризует то, какую температуру сталь может выдержать, то красностойкость характеризует, сколько времени сталь будет выдерживать такую температуру. То есть насколько длительное время закаленная и отпущенная сталь будет сопротивляться разупрочнению при разогреве.

Существует несколько характеристик красностойкости. Приведем две из них.

Первая характеристика показывает, какую твердость будет иметь сталь после отпуска при определенной температуре в течение заданного времени.

Второй способ охарактеризовать красностойкость основан на том, что интенсивность снижении горячей твердости можно измерить не только при высокой температуре, но и при комнатной так как кривые снижения твердости при высокой температуре и комнатной идут эквидистантно, а измерить твердость при комнатной температуре, разумеется, гораздо проще, чем при высокой. Опытами установлено, что режущие свойства теряются при твердости 50 HRC при температуре резання, что соответствует примерно 58 HRC при комнатной. Отсюда красностойкость характеризуется температурой отпуска, при которой за 4 часа твердость снижается до 58 HRC (обозначение K4р58).

Характеристики теплостойкости углеродистых и красностойкости быстрорежущих инструментальных сталей[3] Марка стали Температура отпуска, °C Время выдержки, час Твердость, HRCэ
У7, У8, У10, У12 150—160 1 63
Р9 580 4
У7, У8, У10, У12 200—220 1 59
Р6М5К5, Р9, Р9М4К8, Р18 620—630 4

Сопротивление разрушению

Кроме «горячих» свойств от материала для режущего инструмента требуются и высокие механические свойства; под этим подразумевается сопротивление хрупкому разрушению, так как при высокой твердости (более 60 HRC) разрушение всегда происходит по хрупкому механизму. Прочность таких высокотвердых материалов обычно определяют как сопротивление разрушению при изгибе призматических, не надрезанных образцов, при статическом (медленном) и динамическом (быстром) нагружении. Чем выше прочность, тем большее усилие может выдержать рабочая часть инструмента, тем большую подачу и глубину резания можно применить, и это увеличивает производительность процесса резания.

Химический состав быстрорежущих сталей

Химический состав некоторых быстрорежущих сталей Марка стали C Cr W Mo V Co
Р0М2Ф3 1,10—1,25 3,8—4,6 2,3—2,9 2,6—3,3
Р6М5 0,82—0,90 3,8—4,4 5,5—6,5 4,8—5,3 1,7—2,1 < 0,50
Р6М5Ф2К8 0,95—1,05 3,8—4,4 5,5—6,6 4,6—5,2 1,8—2,4 7,5—8,5
Р9 0,85—0,95 3,8—4,4 8,5—10,0 < 1,0 2,0—2,6
Р18 0,73—0,83 3,8—4,4 17,0—18,5 < 1,0 1,0—1,4 < 0,50

Изготовление и обработка быстрорежущих сталей

Быстрорежущие стали изготавливают как классическим способом (разливка стали в слитки, прокатка и проковка), так и методами порошковой металлургии (распыление струи жидкой стали азотом)[2]. Качество быстрорежущей стали в значительной степени определяется степенью ее прокованности. При недостаточной проковке изготовленной классическим способом стали наблюдается карбидная ликвация.

При изготовлении быстрорежущих сталей распространенной ошибкой является подход к ней как к «самозакаливающейся стали». То есть достаточно нагреть сталь и охладить на воздухе, и можно получить твердый износостойкий материал. Такой подход абсолютно не учитывает особенности высоколегированных инструментальных сталей.

Перед закалкой быстрорежущие стали необходимо подвергнуть отжигу. В плохо отожженных сталях наблюдается особый вид брака: нафталиновый излом, когда при нормальной твердости стали она обладает повышенной хрупкостью.

Грамотный выбор температуры закалки обеспечивает максимальную растворимость легирующих добавок в α-железе, но не приводит к росту зерна.

После закалки в стали остается 25—30 % остаточного аустенита. Помимо снижения твердости инструмента, остаточный аустенит приводит к снижению теплопроводности стали, что для условий работы с интенсивным нагревом режущей кромки является крайне нежелательным. Снижения количества остаточного аустенита добиваются двумя путями: обработкой стали холодом или многократным отпуском[2]. При обработке стали холодом ее охлаждают до −80…−70 °C, затем проводят отпуск. При многократном отпуске цикл «нагрев — выдержка — охлаждение» проводят по 2—3 раза. В обоих случаях добиваются существенного снижения количества остаточного аустенита, однако полностью избавиться от него не получается.

Принципы легирования быстрорежущих сталей

Высокая твердость мартенсита объясняется растворением углерода в α-железе. Известно, что при отпуске из мартенсита в углеродистой стали выделяются мельчайшие частицы карбида. Пока выделившиеся карбиды еще находятся в мельчайшем дисперсном рассеянии (то есть на первой стадии выделения при отпуске до 200 °C), твердость заметно не снижается. Но если температуру отпуска поднять выше 200 °C, происходит рост карбидных выделений, и твердость падает.

Чтобы сталь устойчиво сохраняла твердость при нагреве, нужно ее легировать такими элементами, которые затрудняли бы процесс коагуляции карбидов. Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то красностойкость скачкообразно возрастает. Это обусловлено тем, что специальный карбид выделяется из мартенсита и коагулирует при более высоких температурах, чем карбид железа, так как для этого требуется не только диффузия углерода, но и диффузия легирующих элементов. Практически заметная коагуляция специальных карбидов хрома, вольфрама, молибдена, ванадия происходит при температурах выше 500 °C.

Таким образом, красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды и эти карбиды переходят в раствор при закалке. Несмотря на сильное различие в общем химическом составе, состав твердого раствора очень близок во всех сталях, атомная сумма W+Mo+V, определяющая красностойкость, равна примерно 4 % (атомн.), отсюда красностойкости и режущие свойства у разных марок быстрорежущих сталей близки. Быстрорежущая сталь, содержащая кобальт, превосходит по режущим свойствам остальные стали (он повышает красностойкость), но кобальт очень дорогой элемент.

Маркировка быстрорежущих сталей

В советских и российских марочниках сталей марки быстрорежущих сталей обычно имеют особую систему обозначений и начинаются с буквы «Р» (rapid — скорость). Связанно это с тем, что эти стали были изобретены в Англии, где такую сталь называли «rapid steel». Цифра после буквы «Р» обозначает среднее содержание в ней вольфрама (в процентах от общей массы, буква В пропускается). Затем указывается после букв М, Ф и К содержание молибдена, ванадия и кобальта. Инструменты из быстрорежущей стали иностранного производства обычно маркируются аббревиатурой HSS (High Speed Steel).

Применение

В последние десятилетия использование быстрорежущей стали сокращается в связи с широким распространением твёрдых сплавов. Из быстрорежущей стали изготавливают в основном концевой инструмент (метчики, свёрла, фрезы небольших диаметров) В токарной обработке резцы со сменными и напайными твердосплавными пластинами почти полностью вытеснили резцы из быстрорежущей стали.

По применению отечественных марок быстрорежущих сталей существуют следующие рекомендации.

  • Сталь Р9 рекомендуют для изготовления инструментов простой формы не требующих большого объема шлифовки, для обработки обычных конструкционных материалов. (резцов, фрез, зенкеров).
  • Для фасонных и сложных инструментов (для нарезания резьб и зубьев), для которых основным требованием является высокая износостойкость, рекомендуют использовать сталь Р18 (вольфрамовая).
  • Кобальтовые быстрорежущие стали (Р9К5, Р9К10) применяют для обработки деталей из труднообрабатываемых коррозионно-стойких и жаропрочных сталей и сплавов, в условиях прерывистого резания, вибраций, недостаточного охлаждения.
  • Ванадиевые быстрорежущие стали (Р9Ф5, Р14Ф4) рекомендуют для изготовления инструментов для чистовой обработки (протяжки, развёртки, шеверы). Их можно применять для обработки труднообрабатываемых материалов при срезании стружек небольшого поперечного сечения.
  • Вольфрамомолибденовые стали (Р9М4, Р6М3) используют для инструментов, работающих в условиях черновой обработки, а также для изготовления протяжек, долбяков, шеверов, фрез.

Примечания

  1. ↑ Мезенин Н. А. Занимательно о железе. — М.: «Металлургия», 1972. — 200 с.
  2. ↑ 1 2 3 Гуляев А. П. Металловедение. Учебник для втузов. 6-е изд., перераб. и доп. — М.: Металлургия, 1986. — 544 с.
  3. ↑ Марочник сталей и сплавов / В. Г. Сорокин, А. В. Волосникова, С. А. Вяткин, и др. Под общ. ред. В. Г. Сорокина. — М.: Машиностроение, 1989. — 640 с.

Литература

  • Гуляев А. П. Металловедение. Учебник для втузов. 6-е изд., перераб. и доп. — М.: «Металлургия», 1986. — 544 с.
  • Технология конструкционных материалов. Под ред. А. М. Дальского. — М.: «Машиностроение», 1958.

dic.academic.ru

Быстрорежущая сталь — WiKi

Истории создания

  Сверло с покрытием из нитрида титана

Для обточки деталей из дерева, цветных металлов, мягкой стали резцы из обычной твердой стали были вполне пригодны, но при обработке стальных деталей резец быстро разогревался, скоро изнашивался и деталь нельзя было обтачивать со скоростью больше 5 м/мин[1].

Барьер этот удалось преодолеть после того, как в 1858 году Р. Мюшетт получил сталь, содержащую 1,85 % углерода, 9 % вольфрама и 2,5 % марганца. Спустя десять лет Мюшетт изготовил новую сталь, получившую название самокалки. Она содержала 2,15 % углерода, 0,38 % марганца, 5,44 % вольфрама и 0,4 % хрома. Через три года на заводе Самуэля Осберна в Шеффилде началось производство мюшеттовой стали. Она не теряла режущей способности при нагревании до 300 °C и позволяла в полтора раза увеличить скорость резания металла — 7,5 м/мин.

Спустя сорок лет на рынке появилась быстрорежущая сталь американских инженеров Тэйлора и Уатта. Резцы из этой стали допускали скорость резания до 18 м/мин. Эта сталь стала прообразом современной быстрорежущей стали Р18.

Ещё через 5—6 лет появилась сверхбыстрорежущая сталь, допускающая скорость резания до 35 м/мин. Так, благодаря вольфраму было достигнуто повышение скорости резания за 50 лет в семь раз и, следовательно, во столько же раз повысилась производительность металлорежущих станков.

Дальнейшее успешное использование вольфрама нашло себе применение в создании твердых сплавов, которые состоят из вольфрама, хрома, кобальта. Были созданы такие сплавы для резцов, как стеллит. Первый стеллит позволял повысить скорость резания до 45 м/мин при температуре 700—750 °C. Сплав вида, выпущенный Круппом в 1927 году, имел твердость по шкале Мооса 9,7—9,9 (твердость алмаза равна 10).

В 1970-х годах в связи с дефицитом вольфрама быстрорежущая сталь марки Р18 была почти повсеместно заменена на сталь марки Р6М5 (так называемый «самокал», самозакаливающаяся сталь), которая, в свою очередь, вытесняется безвольфрамовыми Р0М5Ф1 и Р0М2Ф3.

Характеристики быстрорежущих сталей

Горячая твердость

При нормальной температуре твердость углеродистой стали даже несколько выше твердости быстрорежущей стали. Однако в процессе работы режущего инструмента происходит интенсивное выделение тепла. При этом до 80 % выделившегося тепла уходит на разогрев инструмента. Вследствие повышения температуры режущей кромки начинается отпуск материала инструмента и снижается его твердость.

После нагрева до 200 °C твердость углеродистой стали начинает быстро падать. Для этой стали недопустим режим резания, при котором инструмент нагревался бы выше 200 °C. У быстрорежущей стали высокая твердость сохраняется при нагреве до 500—600 °C. Инструмент из быстрорежущей стали более производителен, чем инструмент из углеродистой стали.

Красностойкость

Если горячая твердость характеризует то, какую температуру сталь может выдержать, то красностойкость характеризует, сколько времени сталь будет выдерживать такую температуру. То есть насколько длительное время закаленная и отпущенная сталь будет сопротивляться разупрочнению при разогреве.

Существует несколько характеристик красностойкости. Приведем две из них.

Первая характеристика показывает, какую твердость будет иметь сталь после отпуска при определенной температуре в течение заданного времени.

Второй способ охарактеризовать красностойкость основан на том, что интенсивность снижения горячей твердости можно измерить не только при высокой температуре, но и при комнатной, так как кривые снижения твердости при высокой температуре и комнатной идут эквидистантно, а измерить твердость при комнатной температуре, разумеется, гораздо проще, чем при высокой. Опытами установлено, что режущие свойства теряются при твердости 50 HRC при температуре резания, что соответствует примерно 58 HRC при комнатной. Отсюда красностойкость характеризуется температурой отпуска, при которой за 4 часа твердость снижается до 58 HRC (обозначение K4р58).

Характеристики теплостойкости углеродистых и красностойкости быстрорежущих инструментальных сталей[2] Марка стали Температура отпуска, °C Время выдержки, час Твердость, HRCэ
У7, У8, У10, У12 150—160 1 63
Р9 580 4
У7, У8, У10, У12 200—220 1 59
Р6М5К5, Р9, Р9М4К8, Р18 620—630 4

Сопротивление разрушению

Кроме «горячих» свойств, от материала для режущего инструмента требуются и высокие механические свойства; под этим подразумевается сопротивление хрупкому разрушению, так как при высокой твердости (более 60 HRC) разрушение всегда происходит по хрупкому механизму. Прочность таких высокотвердых материалов обычно определяют как сопротивление разрушению при изгибе призматических, не надрезанных образцов, при статическом (медленном) и динамическом (быстром) нагружении. Чем выше прочность, тем большее усилие может выдержать рабочая часть инструмента, тем большую подачу и глубину резания можно применить, и это увеличивает производительность процесса резания.

Химический состав быстрорежущих сталей

Химический состав некоторых быстрорежущих сталей Марка стали C Cr W Mo V Co
Р0М2Ф3 1,10—1,25 3,8—4,6 2,3—2,9 2,6—3,3
Р6М5 0,82—0,90 3,8—4,4 5,5—6,5 4,8—5,3 1,7—2,1 < 0,50
Р6М5Ф2К8 0,95—1,05 3,8—4,4 5,5—6,6 4,6—5,2 1,8—2,4 7,5—8,5
Р9 0,85—0,95 3,8—4,4 8,5—10,0 < 1,0 2,0—2,6
Р18 0,73—0,83 3,8—4,4 17,0—18,5 < 1,0 1,0—1,4 < 0,50

Изготовление и обработка быстрорежущих сталей

Быстрорежущие стали изготавливают как классическим способом (разливка стали в слитки, прокатка и проковка), так и методами порошковой металлургии (распыление струи жидкой стали азотом)[3]. Качество быстрорежущей стали в значительной степени определяется степенью её прокованности. При недостаточной проковке изготовленной классическим способом стали наблюдается карбидная ликвация.

При изготовлении быстрорежущих сталей распространенной ошибкой является подход к ней как к «самозакаливающейся стали». То есть достаточно нагреть сталь и охладить на воздухе, и можно получить твердый износостойкий материал. Такой подход абсолютно не учитывает особенности высоколегированных инструментальных сталей.

Перед закалкой быстрорежущие стали необходимо подвергнуть отжигу. В плохо отожженных сталях наблюдается особый вид брака: нафталиновый излом, когда при нормальной твердости стали она обладает повышенной хрупкостью.

Грамотный выбор температуры закалки обеспечивает максимальную растворимость легирующих добавок в α-железе, но не приводит к росту зерна.

После закалки в стали остается 25—30 % остаточного аустенита. Помимо снижения твердости инструмента, остаточный аустенит приводит к снижению теплопроводности стали, что для условий работы с интенсивным нагревом режущей кромки является крайне нежелательным. Снижения количества остаточного аустенита добиваются двумя путями: обработкой стали холодом или многократным отпуском[3]. При обработке стали холодом её охлаждают до −80…−70 °C, затем проводят отпуск. При многократном отпуске цикл «нагрев — выдержка — охлаждение» проводят по 2—3 раза. В обоих случаях добиваются существенного снижения количества остаточного аустенита, однако полностью избавиться от него не получается.

Принципы легирования быстрорежущих сталей

Высокая твердость мартенсита объясняется растворением углерода в α-железе. Известно, что при отпуске из мартенсита в углеродистой стали выделяются мельчайшие частицы карбида. Пока выделившиеся карбиды ещё находятся в мельчайшем дисперсном рассеянии (то есть на первой стадии выделения при отпуске до 200 °C), твердость заметно не снижается. Но если температуру отпуска поднять выше 200 °C, происходит рост карбидных выделений, и твердость падает.

Чтобы сталь устойчиво сохраняла твердость при нагреве, нужно её легировать такими элементами, которые затрудняли бы процесс коагуляции карбидов. Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то красностойкость скачкообразно возрастает. Это обусловлено тем, что специальный карбид выделяется из мартенсита и коагулирует при более высоких температурах, чем карбид железа, так как для этого требуется не только диффузия углерода, но и диффузия легирующих элементов. Практически заметная коагуляция специальных карбидов хрома, вольфрама, молибдена, ванадия происходит при температурах выше 500 °C.

Красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды, и эти карбиды переходят в раствор при закалке. Несмотря на сильное различие в общем химическом составе, состав твердого раствора очень близок во всех сталях, атомная сумма W+Mo+V, определяющая красностойкость, равна примерно 4 % (атомн.), отсюда красностойкости и режущие свойства у разных марок быстрорежущих сталей близки. Быстрорежущая сталь, содержащая кобальт, превосходит по режущим свойствам остальные стали (он повышает красностойкость), но кобальт очень дорогой элемент.

Маркировка быстрорежущих сталей

В советских и российских марочниках сталей марки быстрорежущих сталей обычно имеют особую систему обозначений и начинаются с буквы «Р» (rapid — быстрый). Связано это с тем, что эти стали были изобретены в Англии, где такую сталь называли «rapid steel». Цифра после буквы «Р» обозначает среднее содержание в ней вольфрама (в процентах от общей массы, буква В пропускается). Затем указывается после букв М, Ф и К содержание молибдена, ванадия и кобальта. Инструменты из быстрорежущей стали иностранного производства обычно маркируются аббревиатурой HSS (High Speed Steel).

Применение

В последние десятилетия использование быстрорежущей стали сокращается в связи с широким распространением твёрдых сплавов. Из быстрорежущей стали изготавливают в основном концевой инструмент (метчики, свёрла, фрезы небольших диаметров) В токарной обработке резцы со сменными и напайными твердосплавными пластинами почти полностью вытеснили резцы из быстрорежущей стали.

По применению отечественных марок быстрорежущих сталей существуют следующие рекомендации.

  • Сталь Р9 рекомендуют для изготовления инструментов простой формы, не требующих большого объёма шлифовки, для обработки обычных конструкционных материалов. (резцов, фрез, зенкеров).
  • Для фасонных и сложных инструментов (для нарезания резьб и зубьев), для которых основным требованием является высокая износостойкость, рекомендуют использовать сталь Р18 (вольфрамовая).
  • Кобальтовые быстрорежущие стали (Р9К5, Р9К10) применяют для обработки деталей из труднообрабатываемых коррозионно-стойких и жаропрочных сталей и сплавов, в условиях прерывистого резания, вибраций, недостаточного охлаждения.
  • Ванадиевые быстрорежущие стали (Р9Ф5, Р14Ф4) рекомендуют для изготовления инструментов для чистовой обработки (протяжки, развёртки, шеверы). Их можно применять для обработки труднообрабатываемых материалов при срезании стружек небольшого поперечного сечения.
  • Вольфрамомолибденовые стали (Р9М4, Р6М3) используют для инструментов, работающих в условиях черновой обработки, а также для изготовления протяжек, долбяков, шеверов, фрез.

Примечания

  1. ↑ Мезенин Н. А. Занимательно о железе. — М.: «Металлургия», 1972. — 200 с.
  2. ↑ Марочник сталей и сплавов / В. Г. Сорокин, А. В. Волосникова, С. А. Вяткин, и др. Под общ. ред. В. Г. Сорокина. — М.: Машиностроение, 1989. — 640 с.
  3. ↑ 1 2 Гуляев А. П. Металловедение. Учебник для втузов. 6-е изд., перераб. и доп. — М.: «Металлургия», 1986. — 544 с.

Литература

  • Технология конструкционных материалов. Под ред. А. М. Дальского. — М.: «Машиностроение», 1958.

Ссылки

ru-wiki.org

high speed steel — с английского на русский

  • High speed steel — (often abbreviated HSS, sometimes HS) is a material usually used in the manufacture of machine tool bits and other cutters. It is often used in power saw blades and drill bits. It is superior to the older high carbon steel tools used extensively… …   Wikipedia

  • high-speed steel — noun an alloy steel that remains hard at a red heat; used to make metal cutting tools • Syn: ↑hot work steel • Hypernyms: ↑tool steel * * * noun : an alloy tool steel which when heat treated retains much of its hardness and toughness at red heat… …   Useful english dictionary

  • high-speed steel — an especially hard, heat resistant steel for use in lathe tools and for other applications involving high friction and wear. [1925 30] * * * Alloy of steel introduced in 1900. It doubled or trebled the capacities of machine shops by permitting… …   Universalium

  • high-speed steel — greitapjovis plienas statusas T sritis chemija apibrėžtis Įrankinis plienas, turintis 0,73–1,12% C, 1,50–18,50% W, 1,0–3,0% V, 3,0–4,4% Cr, 0,50–8,50% Co, 1,0–9,0% Mo, nedidelius kiekius Mn, Si, Ni. atitikmenys: angl. high speed steel rus.… …   Chemijos terminų aiškinamasis žodynas

  • high speed steel — noun Abbreviated HSS. A kind of tool steel, invented in the early 20th century, which retains its hardness and temper at high temperatures (at which previous kinds of tool steel would soften), thus allowing cutters made from it to be employed at… …   Wiktionary

  • high speed steel — this term was derived from the fact that it is capable of cutting metal at a much higher rate than carbon tool steel and continues to cut and retain its hardness even when the point of the tool is heated to a low red temperature. Tungsten is the… …   Mechanics glossary

  • High-speed rail by country — This article provides of a list of operating High speed rail networks, listed by country. High speed rail is public transport by rail at speeds in excess of 200 km/h (125 mph) [ [http://www.uic.asso.fr/gv/article.php3?id article=14 General… …   Wikipedia

  • High-speed rail in China — This article is about high speed rail in the People s Republic of China. For high speed rail in the Republic of China (Taiwan), see Taiwan High Speed Rail. High speed rail (HSR) trains in China A China Railways CRh2 train in Guangzhou. CRh2 is… …   Wikipedia

  • High Speed 1 — approaching the Medway Viaducts …   Wikipedia

  • High-speed rail in the United States — Development of high speed rail in the United States can be traced back to the streamliners in the 1930s, 1940s, and 1950s. These systems, in turn, can be traced further back to the competing companies operating different routes between London and …   Wikipedia

  • High Speed Thrill Coaster (roller coaster) — Infobox roller coaster name= High Speed Thrill Coaster caption= location= Knoebels section= type= Steel type2= Junior status= Open opened= 1955 manufacturer= Overland Amusement Company designer= Overland Amusement Company model= track= Oval lift …   Wikipedia

  • translate.academic.ru

    БЫСТРОРЕЖУЩАЯ СТАЛЬ И НОЖИ ИЗ НЕЕ

     

    БЫСТРОРЕЖУЩАЯ СТАЛЬ И НОЖИ ИЗ НЕЕ

    Hollander, Минск  

        Быстрорез - это сталь которая сохраняет режущие свойства при большой температуре нагрева(позволяет изготовить режущий инструмент , который позволяет делать обработку материала резанием на больших скоростях). Обычная сталь при нагреве теряет свои свойства. Быстрорез держит их довольно долго.

    Вадим, Норильск  

        High speed steel (HSS, он же быстрорез) "Рапид" , типа отечественного Р18 (вольфрама 17-19%, HRC60-64), Р9, Р6М5 и пр. Хрупок и на полотне и на РК. Не идет на длинные клинки. Лопаются. Карбид крупный такой, слоистый такой карбид... Да...))) Ржавеет, но если анодировать (оксидировать) то б.м. нормально. Плохо куются, но не боятся нажд. круга, не успевают отпуститься ниже нормы.

        Некоторые любят ножи из быстрореза, особо - электрики (ножи-косячки). Теоретически, можно сделать и полевой нож, если сверхаккуратно работать (?). Но не забывайте о коррозии - она съест прежде всего РК, а вот править быстрорез замучишься. Узкий ИМХО материал.

    Марк Лучин , город герой Таллинн  

        Ножом из быстрореза пользуюсь лет 15, неделю назад им разделал двадцать вторую лично добытую косулю. 10 лет назад резал им банки с лосиной тушёнкой просто пополам, как кусок хлеба. Но надо, конечно, акуратно. Перечищено картошки им мешков, наверное, с десять. Уток, казарок, вальдшнепов лис и прочей живности перечищено-перешкурено тоже десятками. Лезвие у обуха 2,3 мм плавно сходит ровным клином от обуха к острию. Так что само по себе лезвие довольно тонкое. Жив нож до сих пор. Так, что претензии к быстрорезу немного преувеличены. Тем более, что его вообще-то отпустить вполне можно да и если удастся найти Р18 полотно и из него ножик сделать то очень удачный по прочности и стойкости материал. Чем-то напоминает CPM, но к коррозии совсем не стоек. Так что рыбку он не любит вовсе.

    Bushman

     13-01-03

         Придать форму такому ножу на электроточиле - вопрос времени. Обы

    чным кругом он точится нормально, но не очень быстро. Спуски делать

    действительно довольно неприятно - слишком долго надо держать лезви

    е ровно. Для формирования спусков можно придумать приспособу из фа

    нерного листа с прорезью под круг, чтоб лезвие класть на него. Можно е

    ще из двух болтов сделать, этакой «вилкой» (См. статью ).

        Изводить алмаз на отверстия в таком материале - дело бестолковое и

    дорогое. Покупаются шарошки, самые дешевые, диаметром около 8 мм (

    цилиндры или скругленные конусы), электрокорундовые. Такая шарош

    ка зажимается в дрель или сверлильный станок, как сверло, и методичн

    о сверлится отверстие (час-два нужно). Отверстие получится большого

    диаметра, но ровное круглое. Под него нужна шайба из латуни или текст

    олита. (Хотя это смотря какие винты будут...)

        Проваривать электросваркой не рекомендую категорически - сталь оч

    ень хрупкая, и при быстром остывании краев образуются микротрещин

    ы, которые могут легко превратиться в обычные, особенно если рубить

    - не раз такое случалось. О применении аргоновой или газосварки вообщ

    е лучше и не заикаться.

        Есть метод проделывания отверстий электроэрозионным способом (в

    идел в действии, но подробностей не знаю) - в масляной ванне кладется

    лезвие, к нему подключается провод, и лезвия касаются другим электро

    дом из графита нужной формы/размера. Для этого использовалась изоля

    ционная оправка для графитового электрода, зажимаемая в патрон свер

    лильного станка (в отключенном состоянии, ессно). Режим питания не з

    наю. Плюс метода - можно получить отверстия почти произвольной фор

    мы.

        Основной минус конструкций из полотен - хрупкость - может расколот

    ься от наличия микротрещин, образовавшихся при обработке, от падени

    я на камень и т.п., режущая кромка очень стойкая, но если неаккуратно

    обошелся (покрошил об камень или металл) - восстановление становитс

    я долгим делом.

        По поводу хрупкости у меня есть история, когда при формировании ре

    жущих кромок на вилкообразном изделии оно вошло в резонанс (сопрово

    ждалось это оглушительным воем, переходящем в писк), и один из зубье

    в (который в этот момент не соприкасался с точильным кругом) отломи

    лся и улетел в противоположный конец помещения.

    Nick Ross  

        Ножи из рапида - вещь! А отверстия… Я тоже долго боялся этого. Но глаза боятся, а руки делают.

        Делал узкий нож для бумаг (подарочный). Электролитическим способом распустил половинку полотна вдоль. Отверстия под заклепки (2.5мм) два дня сверлил алмазным бором (~50 центов штука). От двух дырок укоротился примерно на треть (1.5мм). На второй половинке отверстия сделал электролитическим методом. Тут главное равномерное протравливание, тогда отверстия получаются ровные и лишь слегка конические. Травил сразу с двух сторон навстречу. Почаще помешивать электролит!

        По поводу профиля. Без проблем получается и клин и клин с подводом(бритвенная заточка). Причем клин получается красивее именно после того, как сделал клин с подводом. Кладешь спуском на брусок и выводишь вогнутость в плоскость. Получается идеальная грань между телом клинка и спуском. Красота! А после обработки на самом мелком бруске, на суспензии, клиночек приобрел благородный темно-серый цвет...

    Bushman  

        Алмазом как-то все же у вас медленно получилось, я больше 2х часов шарошками не сверлил. По поводу формы спусков - предпочитаю почти плюскую, с самой малой выпуклостью - для работы с твердыми материалами большой толщины (типа того же мороженого мяса и т.п.) и всяческими листовыми гадостями типа оргалита, такая форма мне кажется более удобной. Из декоративных и полудекоративных покрытий нравится простое травление в азотной кислоте, либо чернение с ее же помощью. Не знаю, как это объясняется химически (на меня даже как-то зудели по этому поводу в каком-то форуме, говорили, что такого быть не может), но при многократном окунании лезвия в 10% раствор азотки, чередующемся с вытиранием его льняной тряпкой, вымоченой в том же растворе, поверхность получает матовый очень темный серый цвет. Покрытие не самое стойкое, но легко восстанавливается тем же способом без снятия предыдущего слоя.

    Nick Ross  

        Медленно получилось потому, что сверлилось это самодельной сверлилкой для печатных плат и с минимальным прижимом. Да еще и в рабочее время))))))))))) А когда сверлил отверстия по 4мм. (сверло с победитовой напайкой), так там на 3 отверстия не больше 3 минут ушло. Дэволтовским шуруповертом на максимальных оборотах. Но тут тоже тонкость есть. На выходе надо усилие снижать, а то пластину крошит. Так и получилось, что на первое отверстие ушло одно сверло. А вторым еще 5 просверлил. (2 в этой и 2 в другой заготовке). А такой темно-серый цвет получается от любой кислоты Я лимончиками добился такого. Тоже мой ножик на все случаи работы из ножовочного полотна (тонкого). Был выполирован в зеркало, а после N штук лимончиков стал благородного "тактического" темно-серого цвета. А если травить в растворе щавелевой кислоты, то на углероде получим темно-серый цвет, а на нерже - зеленый. Товарищ на конфе руснайфа писал…

    Willy  

        Резцы по дереву я тоже делал из полотна мех. пилы. Заготовку выпиливал алмазным диском - причем из нового полотна: с сохраненными зубцами идеально сидит в чисто склеенной деревянной рукояти. Диском же и скос сделан - собственно, полотно распиливалось наискось. Идеальный инструмент, вряд ли нужно лучше.

       А нож от фоторезака, думаю, вряд ли имеет смысл использовать по трем причинам. Первая - сечение таких ножей чаще всего сложное асимметричное и может не подойти для обычного ножа. Вторая и третья причины: в недорогих резаках сталь не поймешь какая, а нормальный (не самый дорогой) резак производства Германии или Швеции стоит как самый дорогой ножик MOD. При том, что фоторезаки практически не ломаются, найти нож от "старого списанного"  нереально.

    зЕПТЗЙК  

        Насчет полотен эл. рубанков 600х35х3 (без микрон), так там замечены письмена НФТ либо Н6ВФ. Сталь и вправду неплоха для походного ножа по балансу затупляемость – сминаемость - затачиваемость кромки. Причем, к окислению вторая (из практ.) устойчивее.

        А для формирования спуска очень удобна фиксируемая под углом фанерка с прорезью для диска. Горячие латвийские столяра с ее помощью по сей день изготавливают ножи для фрез по дереву.

    Bushman  

        Править такое лезвие действительно просто, только немного дольше. Если вовремя - на коже (ремне) с любой средней пастой (я туда еще стряхиваю пыль с мелкого бруска). Если уже изрядно давно не трогали - то вулканитовым кругом можно (он, между прочим, еще и замечательную поверхность оставляет - гладкую, блестящую). По поводу же боковых поверхностей - если ее не трогать, то ржаветь сильно не начинает - там оксидная пленка здоровая, и если уж совсем в сырости не хранить, все ОК, а вот если охота снять это... Я снимал, прикладывая лезвие плашмя к боковине мелкозернистого круга на электроточиле, затем - ленточной шлифовальной машиной (шкуркой обычной с электроприводом) сглаживал царапины, а дальше - на куске войлока с абразивным порошком. Конечно, все царапины изводить - долго и нудно, но этож для работы, а не для выставки предмет.

    Nick Ross  

        Вот лежит у меня на столе почти доделанный нож для мяса (так задумывался). Осталось только рукоять сделать. Толщина клинка ~1.6 мм. Изначально делал клин с подводом, а потом решил переделать в клин. В итоге получил ширину спуска ~17мм. РК сходит на нет. Отчетливо видно, как прогибается при легком боковом нажиме ногтем. А тут до выкрашивания рукой подать Слегка погорячился. Придется быть аккуратным, пока слегка не сточится. Не тупить же его принудительно, чтоб РК толще была. А резаки тоже видел. Но попроще. Офисные . Для бумаг. Там нож длиной около 50 см и шириной(в середине) около 40 мм. Толщина около 2мм.

    Bushman  

        У меня, например, нож из пилы - рабочий. Соответственно, иногда может оказаться на бетонном полу, камне и т.п., а иногда вообще приходится не совсем по правилам его использовать, скажем, отрезать полосу какого-нибудь листового материала прямо на бетоне, т.к. под рукой не оказалось обойного ножа со сменными лезвиями (они все же дерьмо редкое, мгновенно тупятся). По поводу же гнущейся под ногтем РК - это все же как-то странно... у меня на этом же ноже спуски прямые, ~14 мм, толщина - 2мм, специально попробовал - ни ногтем, ни гвоздиком прогнуть не удалось (ноготь раньше ломается).

    Nick Ross  

        Гы. Тут все дело в волшебных пузырьках(С) Тьфу! В угле получившегося клина.В моем случае угол 5,4 градуса, в Вашем - 8,2. И видно не смещение РК, а именно ее деформацию в отраженном свете. А кроме угла еще и от толщины РК зависит. У меня сходит на нет. Точился всей плоскостью спуска. а у Вас? А в будущем буду точить уже не всей плоскостью, а делать алмазную грань под большим углом.

    Willy  

        ...В Швеции, Германии и Советском Союзе/России... Может быть, и где-то еще, но я работал только с резаками из этих стран. И, как мне кажется, вряд ли нож станет красивее от нескольких "благоприобретенных" отверстий, прорезей, углублений или выпуклостей на клинке. Да и контуры его могут оказаться довольно экзотическими - серповидными, например. К тому же, нередко основное полотно резака изготавливают из одной стали, а саму рубящую кромку - из другой, или (у некоторых дорогих моделей последних лет выпуска) из керамики. Конечно, есть и простые по форме полотна из хорошей стали, но... См. выше...

    Serjant  

        Мы не поняли друг друга..... Я и мел в виду " хитрость и форму" сечения , а не количество и качество отверстий в ноже резака ....

    Willy  

     ...А что, сквозная прорезь в полотне никак не повлияет на сечение клинка, будь он из такого полотна сделан? Как бы у мастера этакий доморощенный Double shadow не получился... Да еще и кривой, как ятаган - гуркхи просто черной завистью изойдут. В некоторых резаках рубящее полотно имеет вогнутость (именно вогнутость всего полотна, а не "долы") с одной стороны, и выпуклость с другой - сечение аналогично повернутой на 90 градусов букве "Омега". Насколько я понимаю, это не только для увеличения жесткости полотна, но и для уменьшения его трения о направляющий/предохранительный сектор. Отверстия в полотне тоже мало в каком ноже будут хорошо смотреться, на мой взгляд. Вообще, конструкций фоторезаков/резаков для бумаги/полиграфических резаков (различного размера, степени механизации и мощности) очень много, и редко где конструкторы ставили себе задачу обеспечить наших мастеров -"самоделкиных" толстой полосой хорошей стали ценой в несколько сотен долларов США. Но некоторые резаки, как я уже писал, принципиально подходят, если бы не упомянутая экономическая нецелесообразность.

        И еще одно обстоятельство - не берусь судить, конечно, так как не располагаю конкретными данными о марках сталей в конкретных моделях ...Но все же, если полотно резака предназначено, по сути, для рубки, а не резки листовых материалов (резаки даже не "затачивают", а правят, подобно ножницам), то ведь это явно может обуславливать выбор конструкторами таких сталей, которые могут и не подойти для режущего тонкого лезвия...

    Chytatel, Москва  

        Интересная дискуссия возникла. Навеяла воспоминания. С массовым вбросом на производство инструмента из Р6М5 я столкнулся где-то в середине 70-х гг. До этого у нас была только Р18. Помню, взвыли мы тогда. Сверла, метчики, резцы, фрезы и тп садились моментально и затачиваться не желали -крошились. Работать было невозможно. Р18 мгновенно исчезла из инструментальных кладовок и расползлась по домам, верстакам и тумбочкам. С чем было связано такое резкое движение по замене вольфрама на молибден при производстве самокала, сказать не могу. Через какое-то время дело устаканилось и инструмент стал приемлемым, хотя, по общему мнению, Р18 была лучше. Вполне могло быть, что дефицитный вольфрам понадобился куда-то, и сверху велено было срочно перейти на молибденовые стали. Массовую ТО толком не освоили -вот и пошло барахло. На все еще диком, в сравнении с нами западе, культура термообработки этих сталей наработана давно. Когда я начинал работать, квалифицированный контингент в то время составляли те, кто встал мальчишками к станкам-верстакам в военные годы. У некоторых из них хранился американский инструмент (ножницы по металлу, развертки, крейцмейсели и тп) еще ленд-лизового происхождения. Сталь на них была как раз вольфрам-молибденовая и режущие свойства у нее были отменные. Конечно, сохранить инструмент на такой срок можно было лишь пользуясь им в особо ответственных случаях. По моему, у нас эти стали плохо закаливают на инструментальных заводах по сей день, хотя я давно уже отошел от заводской практики и могу ошибаться (сужу по покупаемым в магазине сверлам).

        По поводу пригодности самокалки-быстрореза для ножей. Ножиков из Р6М5 у меня нет, а вот из Р18 имею: сапожный косяк, переплетный карась, шерхебельную железку, стамеску (когда понадобилось дома сделать проводку, долбил ей бетонную стену, предварительно напунктирив борозду сверлом,) -все из полотен для ножовочных станков; самодельные шилья и жестяницкую чертилку, которой кроме разметки пробиваю кровельное железо (калили в термичке на заводе, о режимах ТО не говорю, тк не специалист). Никакой особливой хрупкости и сыпучести я у них не наблюдал. Ножи затачиваю на вогнутые фаски, держат лезвие они минимум не хуже других сталей. Когда выбирал полотно для инструмента на заготовительном участке, брал не те полотна, которые сломались на ножовочном станке, а которые затупились и остались целыми.

        Хотел бы обратить внимание господ конференции на одну особенность заточки Р18. Заусеница, образуемая на режущей кромке тонкими оселками- жесткая, -бывает не перегибается из стороны в сторону при доводке, и принимается за РК. После попытки что-то резать она загибается, отчего многие считают эту сталь не годной для лезвий с малыми углами заточки. Когда довОдите лезвие из этой стали, и по виду или на ощупь полагаете, что работа завершена, проведите РК по березовой или буковой деревяшке. Вполне может оказаться, доводку придется продолжить.

        Какая сталь лучше для ручного режущего инструмента, каждый решает сам. У стали есть одно свойство, причем вполне количественное -шлифуемость (удельная потеря массы образца за определенное число шлифовальных циклов). Вот и надо выбирать, что важнее: несколько повышенная стойкость РК у легированных сталей, за которую надо платить весьма серьезным увеличением трудоемкости на заточные операции (что особо характерно как раз для вольфрам-, молибден-, ванадиевых сталей) или быстрота правки на обычных. На морозе может лопнуть любая сталь, в которой есть остаточные напряжения. У меня в сарае на даче на 12мм долоте из У10А за обычную московскую зиму образовалась продольная трещина, причем долото в это время не использовалось. В северные морозы лопаются и конструкционные стали.

     К началу страницы...

    knifefoto.narod.ru

    HSS-R, HSS-G, HSS-Co, HSS-E - Статьи - Раное - Каталог статей

    GradeCCrMoWVCoР18T1
    0,73-0,833,8-4,4<1,017,0-18,51,0-1,4<0,50
    0.65–0.803.75–4.00-17.25–18.750.9–1.3-

    В 70-х годах XX века, в связи с дефицитом вольфрама, быстрорежущая сталь марки Р18 была почти повсеместно заменена на сталь марки Р6М5, которая в свою очередь вытесняется безвольфрамовыми Р0М5Ф1 и Р0М2Ф3.

    Обозначение HSS расшифровывается как "быстрорежущая сталь" и в общем случае применимо ко всему классу быстрорежущих сталей. Однако, в большинстве случаев так обозначается самая массовая сталь этого класса - Р6М5 (M-2; 1.3343; Z85WDCV; HS 6-5-2; F-5613)

    GradeCCrMoWVCoР6М5M2
    0,82-0,903,8-4,44,8-5,35,5-6,51,7-2,1<0,50
    0.954.25.06.02.0

    Приблизительный перевод европейских наименований сталей на наши ГОСТы:HSS — High Speed Steel — инструментальная быстрорежущая сталь, аналог Р6М5 (1.3343 — S6-5-2 DIN).HSS-R - инструмент изготовленый прокатом.

    HSS-G — инструментальная сталь, аналог Р6М5. G (Grinding) — шлифованный инструмент.

    HSSE, HSS-E, HSS-Co вариант HSS-G легированый кобальтом обычно это M35 — инструментальная быстрорежущая сталь, аналог Р6М5К5.CHSS-Co8 — инструментальная быстрорежущая сталь, аналог Р6М5К8 - M42.

    "M42 is a molybdenum series high speed steel alloy wit,h an additional 8% cobalt. It is widely used in metal manufacturing because of its superior red-hardness as compared to more conventional high speed steels, allowing for shorter cycle times in production environments due to higher cutting speeds or from the increase in time between tool changes. M42 is also less prone to chipping when used for interrupted cuts and cost less when compared to the same tool made of carbide. Tools made from cobalt-bearing high speed steels can often be identified by the letters HSS-Co. "

    C.V. — хромованадиевая инструментальная сталь.

    «Нонейм» может просверлить дырку, но для отверстий точного диаметра требуется хорошая оснастка. К тому же их зачастую делают из плохой стали, поэтому перезаточить их практически невозможно — после отработки заводской заточки сверло остается только выбросить.

    whiteroses.clan.su

    M2 инструментальная сталь | 1,3343 | HS-6-5-2C | SKH51

    AISI M2 инструментальная сталь представляет  собой молибден на основе быстрорежущей стали в серии вольфрама-молибдена. HSS сталь М2 является средним легированной быстрорежущей стали , которая имеет хорошую обрабатываемость. Химический состав Н-СС М2 дает хорошее сочетание хорошо сбалансированной прочности, износостойкости и твердости красные свойства. Широко используется для режущих инструментов , таких как спиральные сверла, метчики, фрезы, пилы, ножи и т.д. Кроме того, обычно используемые в холодных рабочих пуансонов и матриц и резки приложений , связанных с высокой скоростью и легкие порезы.

    Класс M2 High Speed Steel на сегодняшний день является самым популярным быстрорежущей стали , заменяющего быстрорежущей стали класса Т1 в большинстве случаев из - за своих превосходных свойств и относительной экономии.

    1. Общие M2 инструментальная сталь Связанные спецификации и Эквиваленты

    Страна США Немецкий Япония
    стандарт ASTM A600 DIN EN ISO 4957 JIS G4403
    Оценки М2 1,3343 SKH51

    2. ASTM M2 Свойства Состав инструментальная сталь химия

    ASTM A600 С Миннесота п S си Cr В Mo W
    М2 регулярные С 0,78 0,88 0,15 0,40 0.03 0.03 0,20 0,45 3,75 4,50 1,75 2,20 4,50 5,50 5,50 6,75
    DIN ISO 4957 С Миннесота п S си Cr В Mo W
    1,3343 0,86 0,94 ... ... ... ... ... 0,45 3,80 4,50 1,70 2,10 4,70 5,20 5,90 6,70
    JIS G4403 С Миннесота п S си Cr В Mo W
    SKH51 0,80 0,88 ... 0,40 0.03 0.03 ... 0,45 3,80 4,50 1,70 2,10 4,70 5,20 5,90 6,70

    3. AISI HSS M2 инструментальная сталь Механические свойства

    плотность         0,294 фунтов / дюйм 3 (8138 кг / м3)
    Удельный вес                  8,15
    Модуль упругости         0,294 фунтов / дюйм 3 (8138 кг / м3)
    Теплопроводность         24 БТЕ / фут / час / ° F 41,5 Вт / м / К °
    Machinability          65% 1% углеродистой стали
    Механические свойства метрический имперский
    Твердость, по шкале С Роквелла (отпуску при 1150 ° F, гасили при 2200 ° F) 62 62
    Твердость, по шкале С Роквелла (как затвердеет, гасили при 2200 ° F) 65 65
    Прочность на сжатие текучести (при отпуску при 300 ° F) 3250 МПа 471000 фунтов на квадратный дюйм
    Изод без надреза воздействия (при отпуску при 300 ° F) 67 Дж 49.4 фут-фунт
    Абразивная (потеря в мм 3, так как закаленный; ASTM G65) 25,8 25,8
    Абразивная (потеря в мм 3, отпуск при 1275 ° F; ASTM G65) 77,7 77,7
    коэффициент Пуассона 0.27-0.30 0.27-0.30
    модуль упругости 190-210 ГПа 27557-30458 KSI
    Тепловые свойства метрический имперский
    КТР, линейный (@ 20,0 - 100 ° С / 68,0 - 212 ° F) 10 мкм / м ° С 5.56 микродюймов / в ° F
    КТР, линейный (@ 20,0 - 500 ° С / 68,0 - 932 ° F) 12,2 мкм / м ° С 6,78 микродюймов / в ° F
    КТР, линейный (@ 20,0 - 850 ° C / 68,0 - 1560 ° F) 12,6 мкм / м ° С 7 микродюймов / в ° F

    4. Ковка AISI M2 быстрорежущей стали

    Предварительно тепла М2 HSS стали медленно и равномерно 850-900 ° С. Тепло должны затем быть увеличены более быстро до температуры ковки на 1050-1150 ° С. Если во время ковки температуры высокой скорости инструментальной стали М2 материала опускается ниже 880-900 ° С, повторно нагревом будет необходим. Охлаждают стальной компонент M2 очень медленно после ковки.

    5. Термическая обработка M2 Steel HSS

    Тепло до 1600 ° F, тщательно пропитать при высокой температуре. Печь прохладное 25 ° F в час до 900 ° F, воздушное охлаждение до комнатной температуры. Приблизительная отжигают твердость 241 Максимального Бринелль.

    Стресс Рельеф неотвержденного Материал: Тепло медленно до 1200 до 1250 ° F , замочить в течение двух часов на дюйм толщины при высокой температуре. Медленное охлаждение (печь круто , если это возможно) до комнатной температуры.

    Разогреть: Тепло медленно до 1550 ° F, тщательно замочить, высокую температуру до 1850 ° F, замочить тщательно.

    Замачивание времени в печи варьирует от нескольких минут до 15 минут, в зависимости от размера инструмента, теплоемкость печи, а также размером платы. - Нагреть до 2150 до 2200 ° F для макс. ударная вязкость и минимальное искажение. - Нагреть до 2250 до 2275 ° F для макс. твердость и истиранию сопротивление.

    Для полной твердости, масло резкого охлаждения до 150-200 ° F. Воздух закалочной до 150 ° F. При закалке в горячей соли поддерживать закалку чуть выше температуры Ms. После того, как выравнивающий вывести части из горячей соли и охлаждают на воздухе до 150 ° F

    Двойной характер является обязательным, иногда предпочтительно три закаляет. Замачивание в течение 2 часов на дюйм толщины. Воздух охладиться до комнатной температуры между характерами. Лучший диапазон закалки для твердости, прочности и вязкости составляет от 1000 до 1050 ° F ,

    Темпер ° F Rockwell «C» Темпер ° F Rockwell «C»
    В состоянии после закалки 64 900 64
    400 63 1000 65,5
    500 62,5 1050 63,5
    600 62,5 1100 61,5
    700 62,5 1150 60
    800 63,5 1200 53

    6. Обрабатываемость AISI М2 инструментальная сталь Н-СС

    Формование из HSS M2 инструментальных сталей может быть осуществлено с использованием методов шлифования. Тем не менее, они имеют плохую способность шлифовальной и , следовательно , они рассматриваются как «средним» стал обрабатываемостью инструмента при отожженных условиях. Обрабатываемость этих инструментальных сталей М2 только 50% , что из легко механической обработки W группы или воды упрочнения инструментальных сталей.

    7. М2 инструментальная сталь Применения

    Основное использование быстрорежущих сталей продолжает оставаться в производстве различных режущих инструментов.

    Типичные применения для M2 быстрорежущей стали являются спиральные сверла, расточные, протяжные инструменты, краны, фрезерные инструменты, металлические пилы. M2 подходит для инструментов холодного формования , таких как экструзия бараны и умирает, также широко используется в всех видах режущих инструментов, нож и пуансонов и умирают приложения, пластиковые формы с повышенной износостойкостью и винтами.

  • Предыдущая: L6 инструментальная сталь | 1,2714 | 55NiCrMoV7 | SKT4 | Bh324 / 5
  • Следующий: AISI304 | SUS304 | EN1.4948
  • www.qiluspecialsteel.com