Большая Энциклопедия Нефти и Газа. Качество стали


Качество стали | Kursak.NET

Качество стали      1. Качество стали определяется содержанием вредных примесей..    Основные вредные примеси – это сера и фосфор. Так же к вредным примесям относятся газы (азот, кислород, водород) .    Сера – вредная примесь – попадает в сталь главным образом с исходным сырьём – чугуном. сера нерастворима в железе, она образует с ним соединение FeS – сульфид железа. при взаимодействием с железом образуется эвтектика (Fe + FeS) с температурой плавления 9880 С. Поэтому при нагреве стальных заготовок для пластической деформации выше 9000 С сталь становится хрупкой. При горячей пластической деформации заготовка разрушается. Это явление называется красноломкостью. Одним из способов уменьшения влияния серы является введение марганца. Соединение Mns плавится при 16200 С, эти включения пластичны и не вызывают красноломкости.    Содержание серы в сталях допускается не более 0.06%.    Фосфор попадает в сталь главным образом также с исходным чугуном, используемым также для выплавки стали. До 1.2% фосфор растворяется в феррите, уменьшая его пластичность. Фосфор обладает большой склонностью к ликвации, поэтому даже при незначительном среднем количестве фосфора в отливке всегда могут образоваться участки, богатые фосфором.    Расположенный вблизи границ фосфор повышает температуру перехода в хрупкое состояние (хладноломкость) . Поэтому фосфор, как и сера, является вредной примесью, содержание его в углеродистой стали допускается до 0.050%.    Скрытые примеси: Так называют присутствующие в стали газы – азот, кислород, водород – ввиду сложности определения их количества. Газы попадают в сталь при её выплавки. В твёрдой стали они могут присутствовать, либо растворяясь в феррите, либо образуя химическое соединение (нитриды, оксиды) . Газы могут находиться и в свободном состоянии в различных несплошностях.    Даже в очень малых количествах азот, кислород и водород сильно ухудшают пластические свойства стали. Содержание их в стали допускается 10-2 – 10-4 %. В результате вакуумирования стали их содержание уменьшается, свойства улучшаются.    Углеродистые инструментальные стали бывают двух видов: качественные и высококачественные.    Качественные углеродистые инструментальные стали маркируют буквой "У" (углеродистая) ; следующая за ней цифра (У7, У8, У10 и т.д.) показывает среднее содержание углерода в десятых долях процента.    Высококачественные стали дополнительно маркируются буквой "А" в конце (У10А) .    Инструментальные углеродистые стали: Обладают высокой твёрдостью (60-65 HRC) , прочностью и износостойкостью и применяются для изготовления различного инструмента.    Углеродистые инструментальные стали У8 (У8А) , У10 (У10А) , У11 (У11А) , У12 (У12А) и У13 (У13А) вследствие малой устойчивости переохлажденного аустенита имеют небольшую прокаливаемость, и поэтому эти стали применяют для инструментов небольших размеров.    Для режущего инструмента (фрезы, зенкеры, свёрла, спиральные пилы, шаберы, ножовки ручные, напильники, бритвы, острый хирургический инструмент и т.д.) обычно применяют заэвтектоидные стали (У10, У11, У12 и У13) , у которых после термической обработки структура мартенсит и карбиды.    Деревообрабатывающий инструмент, зубила, кернеры, бородки, отвёртки, топоры изготовляют из сталей У7 и У8, имеющих после термической обработки трооститную структуру.    Углеродистые стали в исходном (отожжённом) состоянии имеют структуру зернистого перлита, низкую твердость (HB 170-180) и хорошо обрабатываются резанием. Температура закалки углеродистых инструментальных сталей У10-У13 должна быть 760-780 0 С, т.е. несколько выше Ас1, но ниже Аст для того, чтобы в результате закалки стали получали мартенситную структуру и сохраняли мелкое зерно и нерастворбные частицы вторичного цементита. Закалку проводят в воде или водных растворах солей. Мелкий инструмент из сталей У10-У12 для уменьшения деформаций охлаждают в горячих средах (ступенчатая закалка) .    Отпуск проводят при 150-1700 С для сохранения высокой твёрдости (62-63 HRC) .    Сталь У7 закаливают с нагревом выше точки Ас3 (800-8200 С) и подвергают отпуску при 275-325 0 С (48-58 HRC) .    Углеродистые стали можно использовать в качестве режущего инструмента только для резанья материалов с малой скоростью, так как их высокая твёрдость сильно снижается при нагреве выше 190-200 0 С.    2. Диаграмма состояния железо-карбид железа.    Стали, содержащие от 0,8 до 2.14 % С, называют заэвтектоидными.    В начале нагревания заэвтектоидный сплав имеет структуру перлита и вторичного цементита.    При повышении температуры до 7270 С сплав просто нагревается. В т. 1 происходит эвтектоидное превращение, перлит превращается в аустенит. От точки 1 до точки 2 сплавы имеют структуру аустенит + вторичный цементит. По мере приближения к точки 2 концентрация углерода в аустените увеличивается согласно линии SE.    При температурах, соответствующих линии SE (т. 2) , аустенит оказывается насыщенным углеродом, и при повышении температуры сплав имеет структуру только аустенита. До точки 3 в сплаве не происходит никаких изменений, просто увеличивается температура.    При повышении температуры в точки 3 твёрдый аустенит начинает плавиться. Структура становится жидкость+аустенит. До точки 4 сплав продолжает плавиться.    В точке 4 под влиянием высокой температуры весь аустенит расплавляется. Структура становится – жидкость.    3. При нагреве выше температуры 7270 С число зародышей всегда достаточно велико и начальное зерно аустенита мелкое. Чем выше скорость нагрева, тем меньше зерно аустенита, так как скорость образования зародышей выше, чем скорость их роста.    При дальнейшем повышении температуры или увеличении длительности выдержки при данной температуре происходит собирательная рекристаллизация и зерно увеличивается. Рост зерна, образовавшегося при нагреве до данной температуры, естественно, не изменяется при последующим охлаждении.    Способность зерна аустенита к росту зерна неодинакова даже у сталей одного марочного состава вследствие влияния условий их выплавки.    По склонности к росту зерна разливают два предельных типа сталей: наследственно мелкозернистые и наследственно крупнозернистые.    В наследственно мелкозернистой стали при нагреве до высоких температур (1000-10500 С) зерно увеличивается незначительно, однако при более высоком нагреве наступает бурный рост зерна. В наследственно крупнозернистой стали, наоборот, сильный рост зерна наблюдается даже при незначительном перегреве выше 7270 С. Различная склонность к росту зерна определяется условиями раскисления стали и её составом.    Чем меньше зерно, тем выше прочность (sв, sт, s-1) , пластичность (d, y) и вязкость (KCU, KCT) , ниже порог хладноломкости (t50) и меньше склонность к хрупкому разрушению. Уменьшая размер зерна аустенита, можно компенсировать отрицательное влияние других механизмов упрочнения на порог хладноломкости.    Легирующие элементы, особенно карбидообразующие (нитридообразующие) задерживают рост зерна аустенита. Наиболее сильно действуют Ti, V, Nb, Zr, Al, и N, образующие трудно растворимые в аустените карбиды (нитриды) , которые служат барьером для роста зерна. Чем больше объёмная доля карбидов (нитридов) и выше их дисперсность (меньше размер) , тем мельче зерно аустенита. Одновременно нерастворимые карбиды (натриды) оказывают зародышное влияние на образование новых зёрен аустенита, что также приводит к получению более мелкого зерна. Марганец и фосфор способствуют росту зерна аустенита.    Все методы, вызывающие измельчение зерна аустенита, – микролегирование (V, Ti, Nb и др.) , высокие скорости нагрева и др. – повышают конструкционную прочность стали.    Крупное зерно стремятся получить только в электротехнических (трансформаторных) сталях, чтобы улучшить их магнитные свойства.

kursak.net

качество стали — с русского

См. также в других словарях:

  • качество стали — Совокупность свойств стали, удовлетворяющих определенным потребностям в соответствии с ее назначением. По принятой в России классификации различают три группы по качеству: 1) сталь обыкновенного качества; 2) качественная сталь; 3)… …   Справочник технического переводчика

  • Качество продукции — Термин качество продукции имеет несколько различных определений, например: В стандарте ГОСТ 15467 79[1]: совокупность свойств продукции, обусловливающих её пригодность удовлетворять определённые потребности в соответствии с её назначением. В …   Википедия

  • КАЧЕСТВО — филос. категория, отображающая существенную определенность вещей и явлений реального мира. Филос. понятие «К.» не совпадает с употреблением этого термина, когда под ним подразумевается высокая ценность и полезность вещи. Качественная… …   Философская энциклопедия

  • качество и количество —         КАЧЕСТВО И КОЛИЧЕСТВО. «Качеством называется видовое отличие сущности» (Аристотель. Мет. V 14.1020 а). Первая сущность, по Аристотелю, это индивидуальный предмет (вот этот человек), а вторая вид (люди) или род (животные) таких предметов.… …   Энциклопедия эпистемологии и философии науки

  • Качество продукции —         горной пром сти (a. quality of mining products; н. Qualitat der Bergbauprodukte; ф. qualite de la production miniere; и. calidad de la producciоn minera) совокупность свойств продукции горн. пром сти, определяющих степень пригодности… …   Геологическая энциклопедия

  • Внепечная обработка стали — Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Викифицировать статью. История Ограниченные возможности регулирования физических и физико химических условий… …   Википедия

  • Кострукционные стали — Конструкционная сталь Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой)… …   Википедия

  • Термическое упрочнение арматурной стали — Термическое упрочнение арматурной стали – достигается изменением структуры стали путем ее закалки. Термическое упрочнение является эффективным способом повышения механических свойств арматуры Тонкость помола – важнейшая характеристика …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Марка стали — – нормируемое значение качества стали, принимаемое по среднему значению предела текучести и отражающее химический состав и особенности производства ста­ли. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Упрочнение арматурной стали — – позволяет повысить предел ее текучести и более эффективно использовать арматурную сталь в железобетонных кон­струкциях. Упрочнение стали может быть выполнено в холодном состоянии и термическим способом. Холодное упрочнение стали… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Непрерывная разливка стали —         процесс получения из жидкой стали слитков заготовок (для прокатки, ковки или прессования), формируемых непрерывно по мере поступления жидкого металла с одной стороны изложницы кристаллизатора и удаления частично затвердевшей заготовки с… …   Большая советская энциклопедия

translate.academic.ru

качество стали - это... Что такое качество стали?

 качество стали

 

качество стали Совокупность свойств стали, удовлетворяющих определенным потребностям в соответствии с ее назначением. По принятой в России классификации различают три группы по качеству: 1) сталь обыкновенного качества; 2) качественная сталь; 3) высококачественная сталь. Главное различие их состоит в концентрации таких вредных примесей, как сера и фосфор. Чем меньше этих примесей, тем выше качество стали.[http://sl3d.ru/o-slovare.html]

Тематики

  • машиностроение в целом

Справочник технического переводчика. – Интент. 2009-2013.

  • качество спермы хряка
  • качество сточных вод

Смотреть что такое "качество стали" в других словарях:

  • Качество продукции — Термин качество продукции имеет несколько различных определений, например: В стандарте ГОСТ 15467 79[1]: совокупность свойств продукции, обусловливающих её пригодность удовлетворять определённые потребности в соответствии с её назначением. В …   Википедия

  • КАЧЕСТВО — филос. категория, отображающая существенную определенность вещей и явлений реального мира. Филос. понятие «К.» не совпадает с употреблением этого термина, когда под ним подразумевается высокая ценность и полезность вещи. Качественная… …   Философская энциклопедия

  • качество и количество —         КАЧЕСТВО И КОЛИЧЕСТВО. «Качеством называется видовое отличие сущности» (Аристотель. Мет. V 14.1020 а). Первая сущность, по Аристотелю, это индивидуальный предмет (вот этот человек), а вторая вид (люди) или род (животные) таких предметов.… …   Энциклопедия эпистемологии и философии науки

  • Качество продукции —         горной пром сти (a. quality of mining products; н. Qualitat der Bergbauprodukte; ф. qualite de la production miniere; и. calidad de la producciоn minera) совокупность свойств продукции горн. пром сти, определяющих степень пригодности… …   Геологическая энциклопедия

  • Внепечная обработка стали — Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Викифицировать статью. История Ограниченные возможности регулирования физических и физико химических условий… …   Википедия

  • Кострукционные стали — Конструкционная сталь Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой)… …   Википедия

  • Термическое упрочнение арматурной стали — Термическое упрочнение арматурной стали – достигается изменением структуры стали путем ее закалки. Термическое упрочнение является эффективным способом повышения механических свойств арматуры Тонкость помола – важнейшая характеристика …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Марка стали — – нормируемое значение качества стали, принимаемое по среднему значению предела текучести и отражающее химический состав и особенности производства ста­ли. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Упрочнение арматурной стали — – позволяет повысить предел ее текучести и более эффективно использовать арматурную сталь в железобетонных кон­струкциях. Упрочнение стали может быть выполнено в холодном состоянии и термическим способом. Холодное упрочнение стали… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Непрерывная разливка стали —         процесс получения из жидкой стали слитков заготовок (для прокатки, ковки или прессования), формируемых непрерывно по мере поступления жидкого металла с одной стороны изложницы кристаллизатора и удаления частично затвердевшей заготовки с… …   Большая советская энциклопедия

technical_translator_dictionary.academic.ru

Качество - сталь - Большая Энциклопедия Нефти и Газа, статья, страница 1

Качество - сталь

Cтраница 1

Качество сталей определяется условиями металлургического производства и содержанием в них вредных примесей. Стали классифицируют на группы А, Б, В.  [1]

Качество стали зависит также от характера раскисления при выплавке. Раскисление - это процесс удаления кислорода из жидкой стали, что совершенно необходимо для обеспечения прочности и предупреждения крупного разрушения при горячем деформировании. Различают спокойные, полуспокойные и кипящие стали.  [2]

Качество стали оценивается рядом структурно-нечувствительных и структурно-чувствительных механических характеристик, устанавливаемых по результатам испытаний образцов на растяжение. Величина Е характеризует жесткость ( сопротивление упругим деформациям) стали и в первом приближении зависит от температуры плавления Тпл.  [3]

Качество сталей улучшают введением в них легирующих элементов: хрома, никеля, марганца, вольфрама, молибдена, ниобия, титана, ванадия и др. Как правило, эти элементы вводят в сталь в виде ферросплавов ( сплава ведущих элементов с железом или кремнием), так как производство их значительно дешевле, чем элементов в чистом виде.  [4]

Качество стали ( главным образом содержание водорода) оказывает влияние только на продолжительность выдержки при субкритических температурах в процессе предварительной противофлокенной термической обработки.  [5]

Качество сталей улучшают путем введения в их состав легирующих элементов: хрома, никеля, марганца, вольфрама, молибдена, ниобия, титана, ванадия и др. Как правило, эти элементы-вводят в сталь в виде ферросплавов, так как производство последних значительно дешевле, чем элементов в чистом виде.  [6]

Качество стали определяется не только ее химическим составом, но и способом выплавки.  [8]

Качество сталей улучшают введением в них легирующих элементов: хрома, никеля, марганца, вольфрама, молибдена, ниобия, титана, ванадия и др. Как правило, эти элементы вводят в сталь в виде ферросплавов ( сплава ведущих элементов с железом или кремнием), так как производство их значительно дешевле, чем элементов в чистом виде.  [9]

Качество стали оценивается рядом структурно-нечувствительных и структурно-чувствительных механических характеристик, устанавливаемых по результатам испытаний образцов на растяжение. Величина Е характеризует жесткость ( сопротивление упругим деформациям) стали и в первом приближении зависит от температуры плавления Тпл.  [10]

Качество стали при этом улучшается, так как при окислении металла железной рудой в ванну вносятся вредные примеси, газы, неметаллические включения.  [11]

Качество стали при этом улучшается, так как при окислении металла железной рудой в ванну вносятся вредные примеси, газы, неметаллические включения.  [12]

Качество стали характеризуется пределами содержания углерода ( или марганца и кремния), содержанием вредных - и посторонних примесей, чистотой по неметаллическим включениям и механическими свойствами.  [13]

Качество стали для труб, из которых сооружают трубопроводы, характеризуется определенными механическими и технологическими свойствами, химическим составом. При этом сталь должна быть недифицитной и обладать невысокой стоимостью. Последнее особенно важно, так как в затратах на сооружение трубопровода стоимость стали составляет аначительную часть.  [14]

Качество стали определяется не только процессом выплавки, но и процессом разливки. Качество поверхности слитков и заготовок, а также и химический состав кипящей стали в значительной степени зависят от температуры разливки и изменения температуры в процессе охлаждения и затвердевания металла.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

33. Какие существуют виды классификации углеродистых сталей

Углеродистые стали классифицируют по структуре, способу производства и раскисления, по качеству.

По структуре различают: 1) доэвтектоидную сталь, содержащую до 0,8 % С, структура которой состоит из феррита и перлита; 2) эвтектоидную, содержащую около 0,8 % С, структура которой состоит только из перлита; 3) заэвтектоидную, содержащую 0,8–2,14 % С; ее структура состоит из зерен перлита, окаймленных сеткой цементита.

По способу производства различают стали, выплавленные в электропечах, мартеновских печах и кислородно-конвертерным способом.

По способу раскисления различают кипящие, полуспокойные и спокойные стали.

33. Классификация сталей по качеству.

Стали по качеству классифицируют на стали обыкновенного качества, качественные, высококачественные и особовысококачественные. Под качеством понимается совокупность свойств стали, определяемых металлургическим процессом её производства. Однородность химического состава, строение и свойства стали зависят от содержания вредных примесей и газов (кислорода, водорода, азота). Основным показателями для разделения сталей по качеству являются нормы содержания вредных примесей(серы, фосфора). Стали обычного качества содержат до 0,06% S и 0,07 % Р, качественные- до 0,035% S и 0,035% Р, высококачественные- не более 0,025 S и 0,025 Р, а особовысококачественные- не более 0,015% S и 0,025 Р.

34. Маркировка сталей (знать расшифровку марок углеродистых сталей) и чугунов. Углеродистые стали обыкновенного качества

Стали содержат повышенное количество серы и фосфора. Маркируются Ст.2кп., БСт.3кп, ВСт.3пс, ВСт.4сп.

Ст – индекс данной группы стали. Цифры от 0 до 6 — это условный номер марки стали. С увеличением номера марки возрастает прочностьи снижаетсяпластичностьстали. По гарантиям при поставке существует три группы сталей: А, Б и В. Для сталей группы А при поставке гарантируются механические свойства, в обозначении индекс группы А не указывается. Для сталей группы Б гарантируется химический состав. Для сталей группы В при поставке гарантируются имеханические свойства, и химический состав.

Индексы кп, пс, сп указывают степень раскисленности стали: кп — кипящая, пс — полуспокойная, сп — спокойная.

Классификация сталей

Качественные углеродистые стали

Качественные стали поставляют с гарантированными механическими свойствами и химическим составом (группа В). Степень раскисленности, в основном, спокойная.

Конструкционные качественные углеродистые стали. Маркируются двухзначным числом, указывающим среднее содержание углерода в сотых долях процента. Указывается степень раскисленности, если она отличается от спокойной.

Пример: сталь 08 кп, сталь 10 пс, сталь 45. Содержание углерода, соответственно, 0,08 %, 0,10 %, 0.45 %.

Инструментальные качественные углеродистые стали маркируются буквой У (углеродистая инструментальная сталь) и числом, указывающим содержание углерода в десятых долях процента.

Пример: сталь У8, сталь У13. Содержание углерода, соответственно, 0,8 % и 1,3 %

Инструментальные высококачественные углеродистые стали. Маркируются аналогично качественным инструментальным углеродистым сталям, только в конце марки ставят букву А, для обозначения высокого качества стали.

Пример: сталь У10А.

studfiles.net

Качество стали

Качество стали

  1. Качество стали определяется содержанием вредных примесей..

Основные вредные примеси - это сера и фосфор. Так же к вредным примесям относятся газы (азот, кислород, водород) .

Сера - вредная примесь - попадает в сталь главным образом с исходным сырьём - чугуном. сера нерастворима в железе, она образует с ним соединение FeS - сульфид железа. при взаимодействием с железом образуется эвтектика (Fe + FeS) с температурой плавления 9880 С. Поэтому при нагреве стальных заготовок для пластической деформации выше 9000 С сталь становится хрупкой. При горячей пластической деформации заготовка разрушается. Это явление называется красноломкостью. Одним из способов уменьшения влияния серы является введение марганца. Соединение Mns плавится при 16200 С, эти включения пластичны и не вызывают красноломкости.

Содержание серы в сталях допускается не более 0.06%.

Фосфор попадает в сталь главным образом также с исходным чугуном, используемым также для выплавки стали. До 1.2% фосфор растворяется в феррите, уменьшая его пластичность. Фосфор обладает большой склонностью к ликвации, поэтому даже при незначительном среднем количестве фосфора в отливке всегда могут образоваться участки, богатые фосфором.

Расположенный вблизи границ фосфор повышает температуру перехода в хрупкое состояние (хладноломкость) . Поэтому фосфор, как и сера, является вредной примесью, содержание его в углеродистой стали допускается до 0.050%.

Скрытые примеси: Так называют присутствующие в стали газы - азот, кислород, водород - ввиду сложности определения их количества. Газы попадают в сталь при её выплавки. В твёрдой стали они могут присутствовать, либо растворяясь в феррите, либо образуя химическое соединение (нитриды, оксиды) . Газы могут находиться и в свободном состоянии в различных несплошностях.

Даже в очень малых количествах азот, кислород и водород сильно ухудшают пластические свойства стали. Содержание их в стали допускается 10-2 - 10-4 %. В результате вакуумирования стали их содержание уменьшается, свойства улучшаются.

Углеродистые инструментальные стали бывают двух видов: качественные и высококачественные.

Качественные углеродистые инструментальные стали маркируют буквой "У" (углеродистая) ; следующая за ней цифра (У7, У8, У10 и т.д.) показывает среднее содержание углерода в десятых долях процента.

Высококачественные стали дополнительно маркируются буквой "А" в конце (У10А) .

Инструментальные углеродистые стали: Обладают высокой твёрдостью (60-65 HRC) , прочностью и износостойкостью и применяются для изготовления различного инструмента.

Углеродистые инструментальные стали У8 (У8А) , У10 (У10А) , У11 (У11А) , У12 (У12А) и У13 (У13А) вследствие малой устойчивости переохлажденного аустенита имеют небольшую прокаливаемость, и поэтому эти стали применяют для инструментов небольших размеров.

Для режущего инструмента (фрезы, зенкеры, свёрла, спиральные пилы, шаберы, ножовки ручные, напильники, бритвы, острый хирургический инструмент и т.д.) обычно применяют заэвтектоидные стали (У10, У11, У12 и У13) , у которых после термической обработки структура мартенсит и карбиды.

Деревообрабатывающий инструмент, зубила, кернеры, бородки, отвёртки, топоры изготовляют из сталей У7 и У8, имеющих после термической обработки трооститную структуру.

Углеродистые стали в исходном (отожжённом) состоянии имеют структуру зернистого перлита, низкую твердость (HB 170-180) и хорошо обрабатываются резанием. Температура закалки углеродистых инструментальных сталей У10-У13 должна быть 760-780 0 С, т.е. несколько выше Ас1, но ниже Аст для того, чтобы в результате закалки стали получали мартенситную структуру и сохраняли мелкое зерно и нерастворбные частицы вторичного цементита. Закалку проводят в воде или водных растворах солей. Мелкий инструмент из сталей У10-У12 для уменьшения деформаций охлаждают в горячих средах (ступенчатая закалка) .

Отпуск проводят при 150-1700 С для сохранения высокой твёрдости (62-63 HRC) .

Сталь У7 закаливают с нагревом выше точки Ас3 (800-8200 С) и подвергают отпуску при 275-325 0 С (48-58 HRC) .

Углеродистые стали можно использовать в качестве режущего инструмента только для резанья материалов с малой скоростью, так как их высокая твёрдость сильно снижается при нагреве выше 190-200 0 С.

2. Диаграмма состояния железо-карбид железа.

Стали, содержащие от 0,8 до 2.14 % С, называют заэвтектоидными.

В начале нагревания заэвтектоидный сплав имеет структуру перлита и вторичного цементита.

При повышении температуры до 7270 С сплав просто нагревается. В т. 1 происходит эвтектоидное превращение, перлит превращается в аустенит. От точки 1 до точки 2 сплавы имеют структуру аустенит + вторичный цементит. По мере приближения к точки 2 концентрация углерода в аустените увеличивается согласно линии SE.

При температурах, соответствующих линии SE (т. 2) , аустенит оказывается насыщенным углеродом, и при повышении температуры сплав имеет структуру только аустенита. До точки 3 в сплаве не происходит никаких изменений, просто увеличивается температура.

При повышении температуры в точки 3 твёрдый аустенит начинает плавиться. Структура становится жидкость+аустенит. До точки 4 сплав продолжает плавиться.

В точке 4 под влиянием высокой температуры весь аустенит расплавляется. Структура становится - жидкость.

3. При нагреве выше температуры 7270 С число зародышей всегда достаточно велико и начальное зерно аустенита мелкое. Чем выше скорость нагрева, тем меньше зерно аустенита, так как скорость образования зародышей выше, чем скорость их роста.

При дальнейшем повышении температуры или увеличении длительности выдержки при данной температуре происходит собирательная рекристаллизация и зерно увеличивается. Рост зерна, образовавшегося при нагреве до данной температуры, естественно, не изменяется при последующим охлаждении.

Способность зерна аустенита к росту зерна неодинакова даже у сталей одного марочного состава вследствие влияния условий их выплавки.

По склонности к росту зерна разливают два предельных типа сталей: наследственно мелкозернистые и наследственно крупнозернистые.

В наследственно мелкозернистой стали при нагреве до высоких температур (1000-10500 С) зерно увеличивается незначительно, однако при более высоком нагреве наступает бурный рост зерна. В наследственно крупнозернистой стали, наоборот, сильный рост зерна наблюдается даже при незначительном перегреве выше 7270 С. Различная склонность к росту зерна определяется условиями раскисления стали и её составом.

Чем меньше зерно, тем выше прочность (sв, sт, s-1) , пластичность (d, y) и вязкость (KCU, KCT) , ниже порог хладноломкости (t50) и меньше склонность к хрупкому разрушению. Уменьшая размер зерна аустенита, можно компенсировать отрицательное влияние других механизмов упрочнения на порог хладноломкости.

Легирующие элементы, особенно карбидообразующие (нитридообразующие) задерживают рост зерна аустенита. Наиболее сильно действуют Ti, V, Nb, Zr, Al, и N, образующие трудно растворимые в аустените карбиды (нитриды) , которые служат барьером для роста зерна. Чем больше объёмная доля карбидов (нитридов) и выше их дисперсность (меньше размер) , тем мельче зерно аустенита. Одновременно нерастворимые карбиды (натриды) оказывают зародышное влияние на образование новых зёрен аустенита, что также приводит к получению более мелкого зерна. Марганец и фосфор способствуют росту зерна аустенита.

Все методы, вызывающие измельчение зерна аустенита, - микролегирование (V, Ti, Nb и др.) , высокие скорости нагрева и др. - повышают конструкционную прочность стали.

Крупное зерно стремятся получить только в электротехнических (трансформаторных) сталях, чтобы улучшить их магнитные свойства.

sesii.net

Качество стали - ГП Стальмаш

Справочная информация

Качество стали определяется содержанием вредных примесей.Основные вредные примеси - это сера и фосфор. К наиболее распространенным дефектам относятся химическая и структурная неоднородность, повышенное содержание вредных примесей и неметаллических включений, дефекты макро- и микроструктуры, внутренние дефекты, дефекты формы и поверхности изделий и т. д.Химический состав является основной и важной характеристикой качества стали, так как весь комплекс физических, химических, механических и технологических свойств зависит от содержания углерода, вредных, полезных и сопутствующих элементов. Химический состав во многом определяет режим последующей обработки сталей давлением, сваркой и термической обработкой, а также структуру и свойства полученных изделий.Компания ГП "Стальмаш" производит поставки металлопроката в следующих сталях:-сталь инструментальная легированная ГОСТ 5950-2000 (штамповая, валковая),-сталь инструментальная углеродистая ГОСТ 1435-99,-сталь инструментальная быстрорежущая ГОСТ 19265-73,-сталь пружинная ГОСТ 14959-79 (рессорно-пружинная сталь),-сталь подшипниковая ГОСТ 801-78,-сталь теплоустойчивая ГОСТ 20072-74,-сталь низколегированная ГОСТ 19281-89,-сталь автоматная ГОСТ 1414-75,-сталь легированная ГОСТ 4543-71,-сталь нержавеющая ГОСТ 5632-72.Анализ химического состава проводится для каждой плавки стали отбором средней пробы при разливке металла в слитки. Пробы заливают в чугунные стаканчики-изложницы, а после затвердения из них сверлением или строганием получают стружку металла для химического анализа. Результаты анализа вносят в сертификат на сталь данной плавки.Наиболее распространенными нормируемыми показателями механических свойств металлов являются:- уровень твердости, - прочность, - относительное удлинение и сужение, - ударная вязкость и другие. Приведенные свойства стали определяются как в исходном, так и в отожженном или термически обработанном состоянии. После проведения анализа выясняют соответствие полученных данных требованиям стандартов.Макроструктурный анализ применяется для исследования структуры сталей невооруженным глазом или при увеличении ее в 30 раз с помощью лупы. Изучение макроструктуры производится темя методами: - методом изломов, - методом макрошлифов и просмотром отшлифованной и протравленной поверхности готового изделия. В результате анализа определяется волокнистость материала, неоднородность химического состава, а также дефекты внутреннего строения. В процессе микроструктурного анализа структуру стали исследуют с помощью микроскопа. Строение металла, наблюдаемое при увеличении в 50-2000 раз, называется микроструктурой. Наибольшее распространение получили оптические микроскопы. Для изучения микроструктуры образец вырезают в продольном или поперечном направлении, затем шлифуют, полируют до зеркального блеска и протравливают специальным реактивом.Металлургические способы повышения качества стали.При электрошлаковом переплаве из металла, подлежащего обработке, вначале изготавливают электроды, которые затем опускают в сой рабочего флюса, обладающего высоким сопротивлением. При прохождении электрического тока рабочий флюс плавится и образуется шлак, который выделяет тепло. Проходя через жидкий шлак, капли металла очищаются от вредных примесей и образуют высококачественный слиток. Этот метод целесообразно применять при получении высококачественных шарикоподшипниковых сталей, жаропрочных сплавов, изготовлении деталей турбин и др.Вакуумная дегазация - один из наиболее распространенных способов повышения качества стали- заключается в удалении из стали водорода, кислорода и азота. При вакуумировании резко повышаются механические свойства сталей. основными способами вакуумной обработки являются вакуумирование в ковше, вакуумирование струи металла при переливе из ковша в ковш или при заливке в изложницу и др. Установлено, что при вакуумировании струи содержание водорода в металле снижается на 60-70%, а содержание азота- до 40%. В результате взаимодействия с углеродом металл очищается от кислородных оксидных включений.

 

 

Металлопрокат от ГП Стальмаш, ООО [открыть для просмотра]

yaruse.ru