Большая Энциклопедия Нефти и Газа. Какая температура плавления меди


Какая температура плавления меди — sovetskyfilm.ru

Происхождение и нахождение меди в природе

Свое название химический элемент получил от названия острова Кипр (Cuprum), там его научились добывать еще в 3 тысячелетии до н.э. В периодической системе химических элементов у меди 29 атомный номер, она расположена в 11 группе 4-го периода. Элемент является пластичным переходным металлом, имеющим золотисто-розовый цвет.

По распространению в земной коре элемент занимает среди других элементов 23 место и чаще всего встречается в виде сульфидных руд. Самыми распространенными видами являются медный колчедан и медный блеск. На сегодняшний день есть несколько способов получения меди из руды. но любая из технологий требует поэтапного подхода, чтобы достичь конечного результата.

В самом начале развития цивилизации люди научились получать и использовать медь, а также ее сплавы. Уже в то далекое время они добывали не сульфидную, а малахитовую руду.В таком виде она не нуждалась в предварительном обжиге. Смесь руды с углями помещали в глиняный сосуд, которые опускали в небольшую яму, после чего смесь поджигали, угарный газ помогал восстановиться малахиту до состояния свободной меди.

В природе медь встречается не только в руде, но и в самородном виде, самые богатые месторождения находятся на территории Чили. Сульфиды меди часто образуются в среднетемпературных геотермальных жилах. Часто медные месторождения могут быть в виде осадочных пород — сланцы и медяные песчаники, которые встречаются в Читинской области и Казахстане.

Физически свойства

Пластичный металл на открытом воздухе быстро покрывается оксидной пленкой. она и придает элементу характерный желтовато-красный оттенок, в просвете пленки могут иметь зеленовато-голубой цвет. Медь относится к тем немногим элементам, которые имеют заметную для глаза цветовую окраску. Она обладает высоким уровнем тепло- и электропроводности — это второе место после серебра.

  • Плотность — 8,94*10 3 кг/м 3
  • Удельная теплоемкость при Т=20 о С — 390 Дж/кг*К
  • Электрическое удельное сопротивление в температурном режиме от 20-100 о С — 1,78*10 -8 Ом/м
  • Температура кипения — 2595 о С
  • Удельная электропроводность при Т=20 о С — 55,5-58 МСм/м.

Температура плавления меди

Процесс плавления происходит, когда металл из твердого состояния переходит в жидкое и у каждого элемента есть своя температура плавления. Многое зависит от наличия примесей в составе металла, обычно медь плавится при температуре 1083 о С. Когда к ней добавляют олово, то температура плавления снижается и составляет 930-1140 о С, температура плавления здесь будет зависеть от содержания в сплаве олова. В сплаве меди с цинком температура плавления становится еще ниже — 900-1050 о С.

В процессе нагрева любого металла происходит разрушение кристаллической решетки. По мере нагревания температура плавления становится выше, но затем она остается постоянной, после того как достигла определенного температурного предела. В такой момент и происходит процесс плавления металла, он полностью расплавляется и после этого температура снова начинает повышаться.

Когда начинает происходить охлаждение металла, то температура начинает снижаться и в какой-то момент она остается на прежнем уровне до момента полного затвердения металла. Затем металл затвердевает полностью и температура снова снижается. Это можно увидеть на фазовой диаграмме, где отображен весь температурный процесс с начала момента плавления и до затвердения металла.

Разогретая медь при нагревании начинает переходить в состояние кипения при температуре 2560 о С. Процесс кипения металла очень напоминает процесс кипения жидких веществ, когда начинает выделяться газ и на поверхности появляются пузырьки. В моменты кипения металла при максимально высоких температурах начинает выделяться углерод, который образуется в результате окисления.

Плавление меди в домашних условиях

Низкая температура плавления позволила людям в древности расплавлять металл прямо на костре и затем использовать готовый металл в быту, чтобы сделать оружие, украшения, посуду, орудия труда. Для плавления меди в домашних условиях понадобятся следующие предметы:

  • Тигель и специальные щипцы для него.
  • Древесный уголь.
  • Муфельная печь.
  • Горн.
  • Бытовой пылесос.
  • Форма для плавления.
  • Стальной крюк.

Весь процесс происходит поэтапно, для начала металл нужно положить в тигель, после чего разместить в муфельную печь. Установить нужную температуру и наблюдать за процессом через стеклянное окошко. В процессе плавления в емкости с металлом появится окисная пленка. ее необходимо убрать, открыв окошко и стальным крюком отодвинуть в сторону.

Если нет муфельной печи, то медь можно расплавить с помощью автогена. плавление будет происходить при нормальном доступе воздуха. Используя паяльную лампу можно расплавить желтую медь (латунь) и легкоплавкие виды бронзы. Следить за тем, чтобы пламя охватило весь тигель.

Если в домашних условиях нет ничего из перечисленных средств, тогда можно воспользоваться горном. установив его на слой древесного угля. Чтобы усилить температуру можно использовать бытовой пылесос, включив режим выдувания, но только если шланг имеет металлический наконечник. Хорошо, если наконечник будет иметь зауженный конец, чтобы струя воздуха была более тонкой.

В современных промышленных условиях медь в чистом виде не применятся. ее состав содержит в себе много различных примесей — железа, никеля, мышьяка и сурьмы, а также других элементов. Качество готового изделия определяется наличием процентного содержания примесей в сплаве, но не более 1%. Важными показателями являются тепло- и электропроводность металла. Медь широко используется во многих отраслях промышленности благодаря своей пластичности, гибкости и низкой температуре плавления.

December 27, 2012

Историки предполагают, что первобытные люди находили медь в виде самородков, порой достигающих значительных размеров. Свое название на латинском языке медь (Cuprum) получила от острова Кипр, где ее добывали древние греки. Благодаря тому, что температура плавления меди не слишком высока и составляет 1083 °С, самородки или руду, содержащую медь, можно было плавить на костре. Это обеспечивало получение меди и позволяло использовать ее для изготовления оружия и предметов быта.

Несмотря на то, что медь широко применялась людьми еще с древних времен, по распространению в земной коре она занимает 23 место среди других элементов. Чаще всего она в природе встречается в виде соединений, входящих в состав сульфидных руд. Наиболее распространенные из них – медный блеск и медный колчедан. Существует несколько технологий получения меди из руды, причем по каждой из них процесс происходит в несколько этапов.

Как уже отмечалось, невысокая температура плавления меди позволяла успешно ее обрабатывать еще на самом начальном этапе развития цивилизации. И надо отдать должное древним металлургам, ими были найдены варианты получения и использования не только чистой меди, но и ее сплавов. Плавление – это переход металла из твердого состояния в жидкое. Для этого использовали нагрев, и низкая температура плавления меди позволяла успешно проводить подобную операцию.

Затем в жидкую медь добавляли олово или производили его восстановление из касситерита (руды, содержащей олово) на поверхности меди. В итоге получали бронзу, по прочности превосходящую Cuprum и применяемую для изготовления оружия. Однако сейчас хотелось бы остановиться более подробно на операции плавления, позволяющей получить достаточно чистый материал из руды.

Температура плавления у каждого металла своя и зависит от наличия примесей в составе исходного материала. Так, медь, температура плавления которой составляет 1083 °С, после добавления олова образует бронзу, которая плавится при температуре &30-11409deg;С в зависимости от содержания олова. Латунь же, сплав меди и цинка, имеет температуру плавления &00-10509deg;С.

В процессе нагрева металла происходит разрушение кристаллической решетки. Первоначально, по мере нагрева, температура возрастает, а затем, начиная с некоторого значения, остается постоянной, хотя нагрев и продолжается. В этот момент и происходит плавление. Так продолжается в течение всего времени, пока весь металл не расплавится, и только потом температура начнет повышаться. Это справедливо для всех металлов, температура плавления меди также не изменяется.

При охлаждении картина обратная: сначала температура снижается до начала затвердевания металла, потом держится постоянной и после полного отвердения металла начинает опять понижаться. Такое поведение металла, если его изобразить на графике, называется фазовой диаграммой, показывающей, в каком состоянии находится вещество при конкретной температуре. Для ученых фазовая диаграмма является одним из инструментов в изучении поведения металлов при плавлении.

Если продолжить нагрев расплавленного металла, то при некоторой температуре начинается процесс, похожий на кипение. Так, температура кипения меди составляет 2560 °С. Это название процесс получил за внешнее сходство с кипением жидкости, когда из нее начинают выделяться пузырьки газа. То же самое происходит и с металлом, например, при достаточно высокой температуре из жидкого железа начинает выходить углерод, образующийся в ходе его окисления.

В статье рассмотрен процесс плавления металлов, описано понятие температуры плавления, ее поведение в процессе проведения плавки. Объясняется, какое влияние низкая температура плавления меди оказала на развитие цивилизации и металлургии.

  • Медь: где ее достать
  • Организация рабочего места
  • Как производится плавка
  • Заключение по теме

Одним из красивейших при декорировании материалом является медь. Однако осуществить плавление меди в мастерской довольно проблематично. Поэтому люди придумывают различные ухищрения и способы, чтоб осуществить плавление меди дома. Это связано с тем, что медь очень «благородно» смотрится, ее благородный внешний вид украсит любую поделку. Например, медные детали прекрасно украсят рукоятки ножей (охотничьих, так и бытовых), шкатулки, зажигалки, брелоки, дамские сумочки и кошельки и т.д. Однако, при изготовлении таких поделок дома, человек сталкивается с целым рядом проблем: начиная от вопроса «где достать металл?», заканчивая вопросом «как его расплавить?» и «как придать нужную форму элементу?». Где найти медь в быту, как осуществить плавление меди в бытовых условиях и как приготовить формы для заливки детали, будет рассказано ниже.

Какая температура плавления меди

Медь: где ее достать

Все помнят из школьного курса химии то, что медь это 11 элемент таблицы Менделеева, с температурой плавления порядка 1083,5 градусов Цельсия. Но помимо всего прочего, медь не широко распространена в природе, поэтому на данный момент стоимость меди достигает 9000 долларов США за тонну (при этом исторический рекорд по цене – 12000 долларов за тонну в 2011 году). Высокая стоимость вызвана небольшим количеством месторождений. Основные месторождения меди находятся в Южной Америке (Чили и Перу), Казахстане, Китае, Австралии и США. Именно этим обоснована высокая стоимость чистого металла. Поэтому возникает вопрос: где достать медь в быту?

Какая температура плавления меди

Общая схема выплавки меди.

Медь может находиться в электронике и электротехнических изделиях. Из меди изготавливают провода и кабели, обмотки для трансформаторов и электрических машин (электродвигателей и электрогенераторов), небольшое количество металла содержится в печатных платах.

Другие бытовые изделия – это радиаторы и нагреватели. В продаже имеются полотенцесушители, трубы, радиаторы (в том числе и автомобильные), которые выполнены из чистой меди. Их достаточно легко определить по желтому (специфическому) цвету материала и массе (медь довольно тяжела).

В продаже (на барахолках или в магазинах) можно встретить медные дверные ручки, столовые приборы, различные поделки и, естественно, монеты, гильзы от артиллерийских снарядов и от стрелкового оружия.

При этом количество металла в тех или иных элементах бывает недостаточно, поэтому многие люди смешивают металл из одного изделия с другим. Однако это неправильно, поскольку столовая медь является очищенной, а электротехническая или металл из труб токсичен, и не годиться для приготовления пищи (если конечное изделие планируется использовать на кухне).

Какая температура плавления меди

График температуры плавления меди.

Другим вариантом получения меди является использование сплавов меди, таких как латунь или бронза. Так, латунью называют сплав меди и цинка в соотношении примерно 5 к 8 (на 5 частей меди 8 частей цинка). Из латуни изготавливают широкий спектр изделий, связанных с водопроводом: краны, вентиля, патрубки и т.д. Латунь может использоваться в смесителях. Из латуни также делают метизы (гайки, шайбы, болты), манометрические трубки и т.д. Обычно латунь имеет желтый или золотистый цвет, однако существуют сплавы и зеленого цвета. Ее температура плавления около 900 градусов Цельсия.

Бронзой называют сплав меди с оловом в соотношении 90% к 10%. Температура плавления бронзы составляет порядка 1000-1100 градусов Цельсия. В современном мире встретить изделия из бронзы довольно сложно, поскольку ее используют только для отливки украшений и элементов декора. Некоторые бронзовые сплавы применяются для изготовления смесителей.

Выплавить медь из деталей или из сплавов (латуни, бронзы) примерно одинаково по материальным затратам и по времени. Поэтому любая деталь, изготовленная из вышеперечисленных металлов годиться для плавки.

Вернуться к оглавлению

Организация рабочего места

Поскольку медь является тугоплавким металлом, то необходимо приобрести некоторое оборудование для ее плавления. Рассмотрим вариант плавки заготовки весом более 0,5 кг. Что для этого потребуется:

Какая температура плавления меди

Цветовые характеристики сплавов меди.

  1. Первое, с чего следует начать – это постройка горна. Есть много способов построить горн своими руками. Его выкладывают из огнеупорных кирпичей полностью. При этом не следует гнаться за большим объемом плавильной камеры, для переплавки небольшого объема металла потребуется небольшой объем. Так объема в 0,5 кубометра хватить для переплавки 1 кг меди. Самый примитивный горн делается следующим образом: огнеупорными кирпичами (без раствора) складывается небольшая камера (для этого потребуется 25-30 кирпичей), в которую подводиться газ. При этом особое внимание стоит уделить системе подачи газа и горелке. Естественно, что такая конструкция не предназначена для большого количества плавок, однако на 2-3 плавки.
  2. Муфельная печь. Ею обзаводятся, если лень строить горн. Ее можно свободно приобрести у специализированных фирм. Для малого объема плавки в продаже имеются лабораторные муфельные печи. Стоит отметить, что приобрести готовую муфельную печь менее трудозатратно и не сильно дорого по сравнению с горном. Так стоимость материалов для самостоятельного строительства горна может составлять 70% от стоимости готового изделия.
  3. Далее следует тигель и щипцы к нему. Тиглем называют емкость из тугоплавкого материала, в которой переноситься и плавиться металл. Тигель и щипцы для него рекомендуется купить (их свободно продают для лабораторных нужд).
  4. Бытовой пылесос или компрессор – для нагнетания воздуха в горн и печь. Реконструкторы могут построить кузнечные меха.
  5. Формы для заливки изделий. Их часто изготавливают (вырезают) из дерева или камня. Форма должна быть идентична желаемой детали.
  6. Крюк из стали. Подбирается по диаметру тигля. Крюк должен быть немного меньше диаметра.
  7. Расходные материала. Сюда относится топливо: дрова, кокс и газ.

Вернуться к оглавлению

Как производится плавка

После того, как все необходимое построено, собрано и проверено на работоспособность, можно осуществить плавление меди.

Сначала внутрь тигля укладываются детали и элементы, которые идут на переплавку. После чего тигель помещается внутрь муфельной печи. Далее задается необходимая температура плавки. При этом важно постоянно контролировать металл, чтобы он не сгорел и не выгорел. Для наблюдения в печи имеется смотровое окошко. При этом стоит помнить, что на поверхности металла может образовываться пленка окиси.

Когда температура в печи достигла выставленного значения, дверь печи открывают и при помощи щипцов достают тигель.

Какая температура плавления меди

Плавка меди в тигле.

Далее следует отодвинуть окисную пленку стальной проволокой, после чего выливают расплавленную медь внутрь стоящей рядом формы. Важно, чтобы форма находилась недалеко от печи, чтобы не дать застыть металлу в процессе переноски. После заливки металлу дают время, чтобы остыть, после чего извлекают готовое изделие. Плавки с использованием муфельной печи очень удобны, требуют минимум вмешательства человека.

В случае, если печь отсутствует, медные детали можно переплавить в горне. Здесь в качестве топлива можно использовать древесные угли, каменные угли, кокс и другие виды топлива. Перед плавкой тигель с металлом устанавливается на слой угля и обкладывается углем. К горну приставляется компрессорная установка для нагнетания воздуха внутрь. В качестве компрессора отлично подойдут бытовые пылесосы, которые работают на выдув. Далее топливо поджигается, и запускается компрессорная установка. Главное отличие плавки в горне от муфельной печи заключается в постоянном участии в процессе плавки (топливо добавить, увеличить напор воздуха и т.д.). При этом стоит постоянно контролировать плавление металла. После того, как медь расплавилась, тигель вынимают щипцами, и металл заливают в форму.

Если объем меди для переплавки небольшой, то можно воспользоваться автогеном. Для этого струю пламени направляют от днища тигля вверх. При этом необходимо защитить металл от чрезмерного окисления. Для этого поверхность металла в тигле присыпают древесным углем (растолченным в пыль). После расплавления металла его также заливают в форму.Небольшие детали из сплавов меди (латунь и бронза) могут быть расплавлены на паяльной лампе.

Вернуться к оглавлению

Заключение по теме

Что такое медь

Понятие и особенности

Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.

Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.

Медь имеет ряд отличительных особенностей перед остальными металлами:

  1. Пластичность. Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
  2. Устойчивость к коррозии. Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
  3. Реакция на повышение температуры. Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.

Благодаря таким особенностям можно отличить данный материал от латуни. олова. бронзы и других металлов.

Видео ниже расскажет вам про полезные свойства меди:

Плюсы и минусы

Преимуществами данного металла являются:

  • Высокий показатель теплопроводности;
  • Устойчивость к влиянию коррозии;
  • Достаточно высокая прочность;
  • Высокая пластичность, которая сохраняется до температуры -269 градусов;
  • Хорошая электропроводность;
  • Возможность легирования с различными добавочными компонентами.

Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.

Свойства и характеристики

Какая температура плавления меди

Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.

Физические свойства метала:

  • Температура плавления меди составляет 1084°C;
  • Температура кипения меди составляет 2560°C;
  • Плотность 8890 кг/м³;
  • Электрическая проводимость 58 МОм/м;
  • Теплопроводность 390 м*К.
  • Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
  • Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
  • Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
  • Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.

При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.

Структура и состав

Медь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, цинк. олово. никель и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.

Структурный тип меди может включать в себя также кристаллы серебра, никеля. кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.

О том, где брать медь, смотрите в этом видеоролике:

Производство материалов

В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.

Большую часть (до 90%) первичного металла меди получают благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.

Области применения

Какая температура плавления медиМедь активно используется в следующих областях:

  • Электротехническая промышленность. которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
  • Изготовление филигранных изделий. Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
  • Переплавка катодной меди в проволоку. Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.

Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.

Видео ниже расскажет о том, как медь может изменить свои свойства:

StroyRes.NET — это интернет журнал о строительных материалах. У нас Вы найдете их описание и физико-химические свойства. Мы рассказываем о сферах применения с практическими уроками, а также затрагиваем вопросы производства, доставки и хранения материалов.

Какая температура плавления меди

Какая температура плавления меди

Какая температура плавления меди

Какая температура плавления меди

Какая температура плавления меди

Какая температура плавления меди

Внимание, только СЕГОДНЯ!

sovetskyfilm.ru

температура плавления, физические свойства, сплавы

Твердый металл медь люди научились плавить еще до нашей эры. Название элемента по таблице Менделеева – Cuprum, в честь первого массового расположения производства меди. Именно на острове Кипр в третьем тысячелетии до н.э. начали добывать руду. Металл зарекомендовал себя как хорошее оружие и красивый, блестящий материал для изготовления посуды и других приборов.

температура плавления меди процесс

Процесс плавления меди

Изготовление предметов требовало множество усилий при отсутствии технологий. В первых шагах развития цивилизации и поиску новых металлов, люди научились добывать и плавить медную руду. Получение руды происходило в малахитовом, а не в сульфидном состоянии. Получение на выходе свободной меди, из которой можно изготавливать детали, требовало обжига. Для исключения окислов, металл с древесным углем размещалась в сосуд из глины. Поджигался металл в специально подготовленной яме, образующийся в процессе угарный газ способствовал процессу появления свободной меди.

Для точных расчетов использовался график плавления меди. В то время производился точный расчет времени и примерная температура, при которой происходит плавка меди.

Медь и ее сплавы

Металл имеет красновато-желтый оттенок благодаря оксидной пленке, которая образуется при первом взаимодействии металла с кислородом. Пленка придает благородный вид и обладает антикоррозийными свойствами.

Сейчас доступно несколько способов добычи металла. Распространёнными являются медный колчедан и блеск, которые встречаются в виде сульфидных руд. Каждая из технологий получения меди требует особого подхода и следования процессу.

Добыча в природных условиях происходит в виде поиска медных сланцев и самородков. Объемные месторождения в виде осадочных пород находятся в Чили, а медные песчаники и сланцы расположились на территории Казахстана. Использование металла обусловлено невысокой температурой плавления. Практически все металлы плавятся путем разрушения кристаллической решетки.

Основной порядок плавления и свойства:

  • на температурных порогах от 20 до 100°  материал полностью сохраняет свои свойства и внешний вид, верхний оксидный слой остается на месте;
  • кристаллическая решетка распадается на отметке 1082°, физическое состояние становится жидким, а цвет белым. Уровень температуры задерживается на некоторое время, а затем продолжает рост;
  • температура кипения меди начинается на отметке 2595°, выделяется углерод, происходит характерное бурление;
  • при отключении источника тепла происходит снижение температуры, происходит переход в твердую стадию.

Плавка меди возможна в домашних условиях, при соблюдении определенных условий. Этапы и сложность задачи зависят от выбора оборудования.

Физические свойства

Основные характеристики металла:

  • в чистом виде плотность металла составляет 8.93 г/см3;
  • хорошая электропроводность с показателем 55,5S, при температуре около 20⁰;
  • теплопередача 390 Дж/кг;
  • кипение происходит на отметке 2600°, после чего начинает выделение углерода;
  • удельное электрическое сопротивление в среднем температурном диапазоне – 1.78×10 Ом/м.

Основными направлениями эксплуатации меди является электротехнические цели. Высокая теплоотдача и пластичность дают возможность применения к различным задачам. Сплавы меди с никелем, латунью, бронзой, делаю более приемлемой себестоимость и улучшают характеристики.

Химический состав меди

В природе она не однородна по своему составу, так как содержит ряд кристаллических элементов, образующих с ней устойчивую структуру, так называемые растворы, которые можно подразделить на три группы:

  1. Твердые растворы. Образуются, если в составе содержаться примеси железа, цинка, сурьмы, олова, никеля и многих других веществ. Такие вхождения существенно снижают ее электрическую и тепловую проводимость. Они усложняют горячий вид обработки под давлением.
  2. Примеси, растворяющиеся в медной решетке. К ним относятся висмут, свинец и другие компоненты. Не ухудшают качества электропроводимости, но затрудняют обработку под давлением.
  3. Примеси, формирующие хрупкие химические соединения. Сюда входят кислород и сера, а также другие элементы. Они ухудшают прочностные качества, в том числе снижают электропроводность.

Масса меди с примесями гораздо больше, чем в чистом виде. Ко всему прочему, элементы примесей существенно влияют на конечные характеристики уже готового продукта. Поэтому их суммарный состав, в том числе количественный, по отдельности должен регулироваться еще на этапе производства. Рассмотрим более подробно влияние каждого элемента на характеристики конечных медных изделий.

  1. Кислород. Один из самых нежелательных элементов для любого материала, не только медного. С его ростом ухудшается такое качество, как пластичность и устойчивость к коррозионным процессам. Его содержание не должно превышать 0,008%. В ходе термической обработки в результате процессов окисления количественное содержание этого элемента уменьшается.
  2. Никель. Образует устойчивый раствор и существенно снижает показатели проводимости.
  3. Сера или селен. Оба компонента одинаково влияют на качество готовой продукции. Высокая концентрация таких вхождений снижает пластичные свойства медных изделий. Содержание таких компонентов не должно превышать 0,001% от общей массы.
  4. Висмут. Негативно влияет на механические и технологические характеристики готовой продукции. Максимальное содержание не должно превышать 0,001%.
  5. Мышьяк. Он не меняет свойств, но образует устойчивый раствор, является своего рода защитником от пагубного влияния других элементов, как кислород, сурьма или висмут.
Химический состав меди

Химический состав меди

  1. Марганец. Он способен полностью раствориться в меди практически при комнатной температуре. Влияет на проводимость тока.
  2. Сурьма. Компонент лучше всех растворятся в меди, наносит ей минимальный вред. Содержание его не должно превышать 0,05% от массы меди.
  3. Олово. Образует устойчивый раствор с медью и повышает ее свойства по проведению тепла.
  4. Цинк. Его содержание всегда минимально, поэтому такого пагубного влияния он не оказывает.

Фосфор. Основной раскислитель меди, максимальное содержание которого при температуре 714°С составляет 1,7%.

Латунь

Латунь

Латунь

Сплав на основе меди с добавлением цинка называется латунь. В некоторых ситуациях добавляется олово в меньших пропорциях. Джеймс Эмерсон в 1781 году решил запатентовать комбинацию. Содержание цинка в сплаве может варьироваться от 5 до 45%. Латуни различают в зависимости от предназначения и спецификации:

  • простые, состоящие из двух компонентов – меди и цинка. Маркировка таких сплавов обозначается буквой «Л», напрямую значащая содержание меди в сплаве в процентах;
  • многокомпонентные латуни – содержат множество других металлов в зависимости от назначения к использованию. Такие сплавы повышают эксплуатационные свойства изделий, обозначаются также буквой «Л», но с прибавлением цифр.

Физические свойства латуни относительно высокие, коррозийная стойкость на среднем уровне. Большинство сплавов не критично к пониженным температурам, возможно эксплуатировать металл в различных условиях.Технологии получения латуни взаимодействует с процессами медной и цинковой промышленности, обработке вторичного сырья. Эффективным способом плавки является использование электропечи индукционного типа с магнитным отводом и регулировкой температуры. После получения однородной массы, она разливается в формы и подвергается процессам деформации.

Плавка латуни

Плавка латуни

Применение материала в различных отраслях, повышает на него спрос с каждым годом. Сплав применяется в суд строительстве и производстве боеприпасов, различных втулок, переходников, болтов, гаек и сантехнических материалов.

Бронза

Бронза

Бронза

Цветной металл для изготовки изделий разных типов начали использовать с древних времен. Данный факт подтверждается найденными материалами при археологических раскопках. Состав бронзы изначально был богат оловом.

Промышленностью выпускается различное количество разновидностей бронзы. Опытный мастер способен по цвету металла определить его предназначение. Однако не каждому под силу определить точную марку бронзы, для этого используется маркировка. Способы производства бронзы подразделяются на литейные, когда происходит плавление и отлив и деформируемые.

Состав металла зависит от предназначения к использованию. Основным показателем является наличие бериллия. Повышенная концентрация элемента в сплаве, подвергнутая процедуре закаливания, может соперничать с высокопрочными сталями. Наличие в составе олова отнимает у металла гибкость и пластичность.

Производство бронзовых сплавов изменилось с древних времен фактически внедрением современного оборудования. Технология с использованием в качестве флюса в виде древесного угля используется до сих пор. Последовательность получения бронзы:

  • печь разогревается для требуемой температуры, после этого в нее устанавливается тигель;
  • после плавки металл может окислится, во избежание этого добавляют флюс в качестве древесного угля;
  • кислотным катализатором служит фосфорная медь, добавление происходит после полного прогрева сплава.
температура плавления бронзы

Плавка бронзы

Старинные изделия из бронзы подвержены естественным процессам – патинирование. Зеленоватый цвет с белым оттенком проявляется из-за образования пленки, обволакивающей изделие. Искусственные методы патинирования включают в себя методы с использованием серы и параллельным нагреванием до определенной температуры.

Температура плавления меди

Плавится материал при определенной температуре, которая зависит от наличия и количества сплавов в составе.

В большинстве случаев, процесс происходит при температуре от 1085°. Наличие олова в сплаве дает разбег, плавление меди может начаться при 950°. Цинк в составе также понижает нижнюю границу до 900°.

Для точных расчетов времени понадобится график плавления меди. На обычном листке бумаги используется график, где по горизонтали отмечается время, а по вертикали градусы. График должен указывать, на каких моментах поддерживается температура при нагреве для полного процесса кристаллизации.

Печь для плавки меди

Печь для плавки меди

Плавление меди в домашних условиях

В домашних условиях медные сплавы возможно плавить несколькими способами. При использовании любого из методов, понадобятся сопутствующие материалы:

  • тигель – посуда, изготовленная из закаленной меди или другого огнеупорного металла;
  • древесный уголь, понадобится в роли флюса;
  • крюк металлический;
  • форма будущего изделия.

Наиболее легким вариантом для плавления является муфельная печь. В емкость опускаются куски материала. После установки температуры плавления процесс можно наблюдать через специальное окошко. Установленная дверца позволяет удалять образованную в процессе оксидную пленку, для этого понадобиться заранее подготовленный металлический крюк.

Вторым способом плавления в домашних условиях является использование горелки или резака. Пропан – кислородное пламя отлично подойдет для работ с цинком или оловом. Куски материалов для будущего сплава помещаются в тигель, и нагреваются мастером произвольными движениями. Максимальная температура плавления меди может быть достигнута при взаимодействии с пламенем синего цвета.

Плавка меди в домашних условиях подразумевает работу с повышенными температурами. Приоритетом служит соблюдение техники безопасности. Перед любой процедурой следует одеть защитные огнеупорный перчатки и плотную, полностью закрывающую тело одежду.

Значение плотности меди

Плотность — это отношение массы к объему. Выражается она в килограммах на кубический метр всего объема. В виду неоднородности состава, значение плотности может меняться в зависимости процентного содержания примесей. Поскольку существуют разные марки медных прокатов с разным содержанием компонентов, то и значение плотности у них будет разное. Плотность меди можно найти в специализированных технических таблицах, которая равна 8,93х103 кг/м3. Это справочная величина. В этих же таблицах показан удельный вес меди, который равен 8,93 г/см3. Таким совпадением значений плотности и его весовых показателей характеризуются не все металлы.

Основные показатели меди

Основные показатели меди

Не секрет, что от плотности напрямую зависит конечная масса изготовленного изделия. Однако для расчетов гораздо правильнее использовать удельный вес. Этот показатель очень важен для производства изделий из меди или любых других металлов, но применим больше к сплавам. Он выражается отношением массы меди к объему всего сплава.

Расчет удельного веса

В настоящее время учеными разработано огромное количество способов, помогающих найти характеристики удельного веса меди, которые позволяют даже без обращения к специализированным таблицам вычислять этот немаловажный показатель. Зная его, можно с легкостью подобрать необходимые материалы, благодаря которым в конечном итоге можно получить нужную деталь с требуемыми параметрам. Это делается еще на стадии подготовки, когда планируется создать необходимую деталь из меди или ее содержащих сплавов.

Как уже говорилось выше, удельный вес меди можно подсмотреть в специализированном справочнике, но если под рукой такого нет, то его можно рассчитать по следующей формуле: вес делим на объем и получаем необходимую нам величину. Общими словами такое соотношение можно выразить как общее весовое значение к общему значению объема всего изделия.

Не стоит путать его с понятием плотности, так как он характеризует металл по-другому, хоть и имеет одинаковые значения показателей.

Рассмотрим, как можно вычислить удельный вес, если известна масса и объем медного изделия.

Например, имеем чистый медный лист толщиной 5 мм, шириной 2 м и длиной 1 м. Для начала посчитаем его объем: 5 мм * 1000 мм (1 м = 1000 мм) * 2000 мм, что составляет 10 000 000 мм3 или 10 000 см3. Для удобства расчетов будем считать, что масса листа составляет 89 кг 300 грамм или 89300 грамм. Делим рассчитанный результат на объем и получаем 8,93 г/см3. Зная этот показатель, мы всегда с легкостью можем вычислить весовое содержание в меди того или иного сплава. Это удобно, например, для обработки металла.

Единицы измерения удельного веса

В разных системах измерения используются разные единицы для обозначения удельного веса меди:

  1. В системе измерения СГС или сантиметр-грамм-секунда используется дин/см3.
  2. В Международной СИ используются единицы н/м3.
  3. В системе МКСС или метр-килограмм-секунда-свеча применяется кг/м3.

Первые два показателя равны между собой, а третий при конвертации равен 0,102 кг/м3.

Расчет веса с использованием значений удельного веса

Не будем уходить далеко и воспользуемся примером, описанным выше. Вычислим общее содержание меди в 25 листах. Поменяем условие и будем считать, что листы изготовлены из медного сплава. Таким образом, берем удельный вес меди из таблицы и он равен 8.93 г/см3. Толщина листа 5 мм, площадь (1000 мм * 2000 мм) составляет 2 000 000 мм, соответственно объем будет равняться 10 000 000 мм3 или 10 000 см3. Теперь умножаем удельный вес на объем и получаем 89 кг и 300 гр. Мы вычислили общий объем меди, который содержится в этих листах без учета веса самих примесей, то есть общее весовое значение может быть больше.

Теперь умножаем рассчитанный результат на 25 листов и получаем 2 235 кг. Такие расчеты уместно использовать при обработке медных деталей, так как позволяют узнать, сколько меди всего содержится в изначальных объектах. Аналогичным образом можно рассчитать медные прутки. Площадь сечения провода умножается на его длину, где получим объем прутка, а далее по аналогии с вышеописанным примером.

Как определяется плотность

Плотность меди, как и плотность любого другого вещества, является справочной величиной. Она выражается соотношением массы к объему. Самостоятельно вычислить этот показатель весьма сложно, так как без специальных приборов состав проверить невозможно.

Пример расчета плотности меди

Выражается показатель в килограммах на кубический метр или в граммах на кубический сантиметр. Показатель плотности более полезен для производителей, которые на основе имеющихся данных могут скомпоновать ту или иную деталь с требуемыми свойствами и характеристиками.

Области использования меди

Благодаря физико-механическим свойствам, она широко используется для различных отраслей промышленности. Наиболее часто ее можно встретить в электротехнической области в качестве составляющей части электрического провода. Не меньшей популярностью она пользуется также в производстве систем отопления и охлаждения, электроники и системах теплового обмена.

В строительной отрасли она используется, прежде всего, для создания разного рода конструкций, которые получаются гораздо меньше по массе, чем из любых других аналогичным материалов. Часто ее используют для кровли, так как такие изделия обладают легкостью и пластичностью. Такой материал легко обрабатывается и позволяет менять геометрии профиля, что очень удобно.

Как уже говорилось выше, основное свое применение она находит в изготовлении электрических и иных токопроводящих кабелей, где она используется для изготовления жил проводов и кабелей. Обладая хорошей электропроводностью, она дает достаточное сопротивление электронам тока.

Широко используются также сплавы меди, например, сплав меди и золота повышает прочность последнего в разы.

На стенках медных прокатов никогда не образуются соляные отложения. Такое качество полезно для транспортировки жидкостей и паров.

На основе оксидов меди получают сверхпроводники, а в чистом виде она идет на изготовление гальванических источников питания.

Схема гальванического источника питания

Схема гальванического источника питания

Она входит в состав бронзы, которая обладает стойкостью к агрессивным средам, как морская вода. Поэтому часто ее используют в навигации. Также бронзовые продукты можно увидеть на фасадах домов, как элемент декора, так как такой сплав обрабатывается легко, так как очень пластичен.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

 

stankiexpert.ru

Температура плавления меди

Историки предполагают, что первобытные люди находили медь в виде самородков, порой достигающих значительных размеров. Свое название на латинском языке медь (Cuprum) получила от острова Кипр, где ее добывали древние греки. Благодаря тому, что температура плавления меди не слишком высока и составляет 1083 °С, самородки или руду, содержащую медь, можно было плавить на костре. Это обеспечивало получение меди и позволяло использовать ее для изготовления оружия и предметов быта.

Несмотря на то, что медь широко применялась людьми еще с древних времен, по распространению в земной коре она занимает 23 место среди других элементов. Чаще всего она в природе встречается в виде соединений, входящих в состав сульфидных руд. Наиболее распространенные из них – медный блеск и медный колчедан. Существует несколько технологий получения меди из руды, причем по каждой из них процесс происходит в несколько этапов.

Как уже отмечалось, невысокая температура плавления меди позволяла успешно ее обрабатывать еще на самом начальном этапе развития цивилизации. И надо отдать должное древним металлургам, ими были найдены варианты получения и использования не только чистой меди, но и ее сплавов. Плавление – это переход металла из твердого состояния в жидкое. Для этого использовали нагрев, и низкая температура плавления меди позволяла успешно проводить подобную операцию.

Затем в жидкую медь добавляли олово или производили его восстановление из касситерита (руды, содержащей олово) на поверхности меди. В итоге получали бронзу, по прочности превосходящую Cuprum и применяемую для изготовления оружия. Однако сейчас хотелось бы остановиться более подробно на операции плавления, позволяющей получить достаточно чистый материал из руды.

Температура плавления у каждого металла своя и зависит от наличия примесей в составе исходного материала. Так, медь, температура плавления которой составляет 1083 °С, после добавления олова образует бронзу, которая плавится при температуре 930-1140°С в зависимости от содержания олова. Латунь же, сплав меди и цинка, имеет температуру плавления 900-1050°С.

В процессе нагрева металла происходит разрушение кристаллической решетки. Первоначально, по мере нагрева, температура возрастает, а затем, начиная с некоторого значения, остается постоянной, хотя нагрев и продолжается. В этот момент и происходит плавление. Так продолжается в течение всего времени, пока весь металл не расплавится, и только потом температура начнет повышаться. Это справедливо для всех металлов, температура плавления меди также не изменяется.

При охлаждении картина обратная: сначала температура снижается до начала затвердевания металла, потом держится постоянной и после полного отвердения металла начинает опять понижаться. Такое поведение металла, если его изобразить на графике, называется фазовой диаграммой, показывающей, в каком состоянии находится вещество при конкретной температуре. Для ученых фазовая диаграмма является одним из инструментов в изучении поведения металлов при плавлении.

Если продолжить нагрев расплавленного металла, то при некоторой температуре начинается процесс, похожий на кипение. Так, температура кипения меди составляет 2560 °С. Это название процесс получил за внешнее сходство с кипением жидкости, когда из нее начинают выделяться пузырьки газа. То же самое происходит и с металлом, например, при достаточно высокой температуре из жидкого железа начинает выходить углерод, образующийся в ходе его окисления.

В статье рассмотрен процесс плавления металлов, описано понятие температуры плавления, ее поведение в процессе проведения плавки. Объясняется, какое влияние низкая температура плавления меди оказала на развитие цивилизации и металлургии.

загрузка...

worldfb.ru

Температура - плавление - медь

Температура - плавление - медь

Cтраница 1

Температура плавления меди 1 083 С; для использования в качестве припоя требует высокого нагрева спаиваемых изделий, поэтому применяется для пайки стали, преимущественно в печах с защитной атмосферой.  [1]

Высокие температура плавления меди и теплопроводность ( почти в 6 раз больше, чем у стали) требуют применения мощных высококонцентрированных источников теплоты при сварке плавлением, режимов сварки с высокой погонной энергией и во многих случаях предварительного и сопутствующего подогрева.  [2]

Заметно снизить температуру плавления меди можно добавкой таких элементов как золото и индий. Медь с золотом образуют непрерывный ряд твердых растворов с минимальной температурой плавления 889 С при 80 % золота.  [3]

При температуре выше температуры плавления меди, особенно при 1500 - 2000 С, наблюдалось сильное вьшотевание и улетучивание меди из образцов.  [4]

С, тогда как температура плавления меди равна 1083 С. Парообразование цинка приводит к периодическому прекращению тока в каналах печи.  [6]

Температура плавления флюса должна быть ниже температуры плавления меди. Используют легкоплавкие флюсы системы NaF - LiF - CaF2, которые обеспечивают устойчивый процесс, подогрев и плавление кромок на требуемую глубину, хорошее формирование шва и легкое удаление шлаковой корки. Механические свойства металла шва незначительно отличаются от свойств основного металла.  [7]

Температура плавления флюса должна быть ниже температуры плавления меди, используют легкоплавкие флюсы системы NaF - LiF - CaF2, которые обеспечивают: устойчивый процесс, подогрев и плавление кромок на требуемую глубину, хорошее формирование шва и легкое удаление шлаковой корки.  [8]

Температура плавления флюса должна быть ниже температуры плавления меди. Используют легкоплавкие флюсы системы NaF-LiF - CaF2, которые обеспечивают устойчивый процесс, подогрев и плавление кромок на требуемую глубину, хорошее формирование шва и легкое удаление шлаковой корки. Механические свойства металла шва незначительно отличаются от свойств основного металла.  [9]

С - температура подложки; 7М1080 С - температура плавления меди.  [10]

Гп-20 С - температура подложки; Г 1080 С - температура плавления меди.  [11]

Пластинки керамических сплавов припаивают к державке медью при температуре ( температуре плавления меди 1083 С), безопасной для прочности керамического сплава, не ухудшающей его структуры. Отличные результаты дает пайка медью в атмосфере водорода. Припайка пластинок керамических сплавов может производиться также на электрических контактах сварочных машин.  [12]

Разработаны опытные флюсы из фторидов щелочно-земельных металлов с температурой плавления ниже температуры плавления меди.  [13]

Как изменяется растворимость газов ( водорода, сернистого газа) при температуре плавления меди.  [14]

При обработке меди режущая кромка инструмента из твердого сплава Т15К6 формоустойчива до температуры плавления меди. Так как температура плавления является предельной, можно заключить, что скорость резания при обработке меди с точки зрения формо-устсйчивости режущей кромки неограниченна.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Температура - плавление - медь

Температура - плавление - медь

Cтраница 4

В зоне пайки происходит взаимная диффузия припоя в основной металл и основного металла в припой. Железо и медь имеют ограниченную взаимную растворимость, в пределах около 4 % при температуре плавления меди. При понижении температуры растворимость меди в железе и железа в меди снижается. Железо выпадает в мелкодисперсном виде, часть же его после охлаждения остается в меди в виде переохлажденного твердого раствора.  [46]

При контакте под давлением золота с медью в восстановительной среде или в вакууме процесс диффузия - проникновения молекул одного металла в другой - идет довольно быстро. Детали из этих металлов соединяются между собой при температуре, значительно более низкой, чем температуры плавления меди, золота или любого их сплава. Такие соединения называют золотыми печатями. Их используют при изготовлении некоторых типов радиоламп, хотя прочность золотых печатей несколько ниже прочности соединений, полученных путем сплавления. Из сплавов золота с серебром или медью делают волоски гальванометров и других точных приборов, а также миниатюрные электрические контакты, предназначенные для приема огромного числа замыканий и размыканий. При этом, что особенно важно, эти конструктивно несложные детали должны работать без прилипания контактов, должны реагировать на каждый импульс.  [47]

Максимальное значение члена qre уравнения ( 17) можно получить, если положить, что поверхность анода является черным телом при температуре плавления меди, равной Г1353 К.  [48]

Такие покрытия являются классическим примером КЭП с улучшенными механическими свойствами [ 1, с. Композиции Си - А12О3, полученные металлургическим методом, имеют повышенную температуру рекристаллизации вплоть до 1000 С, что лишь на 80 С ниже температуры плавления меди. Это свойство проявляется тем значительнее, чем больше содержание АЬО3 и меньше размеры частиц. Для сравнения отметим, что композиции Си-MgO и Си - ZrO2 обладают повышенной жаростойкостью.  [49]

При повышенных температурах медь диффундирует в припой и образует твердый раствор, соответствующий линии DF, а серебро - из припоя в медь в соответствии с линией EG ( см. рис. 14 - 10), что в общем счете приводит к обогащению припоя медью. Если; возможно вытекание жидкой фазы из места спая вследствие его плохой конструкции, то наступает частичная кристаллизация, продолжающая обогащение медью вплоть до достижения температуры плавления меди. По этим причинам крайне важно выдерживать место спая при температуре на 50 С выше температуры плавления эвтектики в течение возможно более короткого времени и охлаждать его возможно быстрее после того, как припой затек в месте спая. Количество припоя не должно быть больше необходимого для заполнения очень тонкой прослойки между спаиваемыми деталями, почему не следует применять больших зазоров между ними. Для восстановления или улучшения механических свойств спая может потребоваться соответствующий отжиг по принципу дисперсионного старения. При пайке стальных деталей необходимо применять припой с более высокой температурой, чем у медно-серебряного припоя. Наиболее подходит для этой цели чистая медь. В жидком состоянии медь обладает весьма большой текучестью, и зазор между спаиваемыми деталями не должен превышать 0 025 мм. Рекомендуется неподвижная посадка до 0 05 мм, известная обычно под названием горячей, тугой или прессовой посадки.  [50]

Медные вставки подвержены окислению; их сечение со временем уменьшается и защитная характеристика предохранителя изменяется. Для уменьшения окисления обычно применяют луженые медные вставки. Температура плавления меди 1080 С, поэтому при токах, близких к минимальному току плавления, температура всех элементов предохранителя значительно возрастает.  [51]

Раствор Си2О в меди, содержащий 1 16 % ( по массе) его, плавится при 1075 С. Принимая, что молекулярная масса Си2О в растворе соответствует его формуле, определить скрытую теплоту плавления меди. Температура плавления меди равна 1083 С.  [52]

Страницы:      1    2    3    4

www.ngpedia.ru

Температура плавления меди

Образование 27 декабря 2012

Историки предполагают, что первобытные люди находили медь в виде самородков, порой достигающих значительных размеров. Свое название на латинском языке медь (Cuprum) получила от острова Кипр, где ее добывали древние греки. Благодаря тому, что температура плавления меди не слишком высока и составляет 1083 °С, самородки или руду, содержащую медь, можно было плавить на костре. Это обеспечивало получение меди и позволяло использовать ее для изготовления оружия и предметов быта.

Несмотря на то, что медь широко применялась людьми еще с древних времен, по распространению в земной коре она занимает 23 место среди других элементов. Чаще всего она в природе встречается в виде соединений, входящих в состав сульфидных руд. Наиболее распространенные из них – медный блеск и медный колчедан. Существует несколько технологий получения меди из руды, причем по каждой из них процесс происходит в несколько этапов.

Как уже отмечалось, невысокая температура плавления меди позволяла успешно ее обрабатывать еще на самом начальном этапе развития цивилизации. И надо отдать должное древним металлургам, ими были найдены варианты получения и использования не только чистой меди, но и ее сплавов. Плавление – это переход металла из твердого состояния в жидкое. Для этого использовали нагрев, и низкая температура плавления меди позволяла успешно проводить подобную операцию.

Затем в жидкую медь добавляли олово или производили его восстановление из касситерита (руды, содержащей олово) на поверхности меди. В итоге получали бронзу, по прочности превосходящую Cuprum и применяемую для изготовления оружия. Однако сейчас хотелось бы остановиться более подробно на операции плавления, позволяющей получить достаточно чистый материал из руды.

Температура плавления у каждого металла своя и зависит от наличия примесей в составе исходного материала. Так, медь, температура плавления которой составляет 1083 °С, после добавления олова образует бронзу, которая плавится при температуре 930-1140°С в зависимости от содержания олова. Латунь же, сплав меди и цинка, имеет температуру плавления 900-1050°С.

В процессе нагрева металла происходит разрушение кристаллической решетки. Первоначально, по мере нагрева, температура возрастает, а затем, начиная с некоторого значения, остается постоянной, хотя нагрев и продолжается. В этот момент и происходит плавление. Так продолжается в течение всего времени, пока весь металл не расплавится, и только потом температура начнет повышаться. Это справедливо для всех металлов, температура плавления меди также не изменяется.

При охлаждении картина обратная: сначала температура снижается до начала затвердевания металла, потом держится постоянной и после полного отвердения металла начинает опять понижаться. Такое поведение металла, если его изобразить на графике, называется фазовой диаграммой, показывающей, в каком состоянии находится вещество при конкретной температуре. Для ученых фазовая диаграмма является одним из инструментов в изучении поведения металлов при плавлении.

Если продолжить нагрев расплавленного металла, то при некоторой температуре начинается процесс, похожий на кипение. Так, температура кипения меди составляет 2560 °С. Это название процесс получил за внешнее сходство с кипением жидкости, когда из нее начинают выделяться пузырьки газа. То же самое происходит и с металлом, например, при достаточно высокой температуре из жидкого железа начинает выходить углерод, образующийся в ходе его окисления.

В статье рассмотрен процесс плавления металлов, описано понятие температуры плавления, ее поведение в процессе проведения плавки. Объясняется, какое влияние низкая температура плавления меди оказала на развитие цивилизации и металлургии.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Полипропилен - температура плавления, свойства и характеристикиБизнес Полипропилен - температура плавления, свойства и характеристики

Полипропилен, температура плавления которого должна быть вам известна, если вы планируете использовать материал для личных целей, представляют собой термопластичный синтетический неполярный полимер, который относится ...

Графит: температура плавления, свойства и применениеБизнес Графит: температура плавления, свойства и применение

Графит относится к минералам, которые отличаются многофункциональностью в практическом использовании. Обычно принято ассоциировать его с красящими веществами, но этим его возможности не ограничиваются. В то же время н...

Полиэтилен: температура плавления, потребительские свойства и применениеБизнес Полиэтилен: температура плавления, потребительские свойства и применение

Сегодня человечество не может обойтись без искусственных материалов. Они обладают рядом уникальных качеств, доступны и значительно удешевляют производство. Одним из таких материалов выступает полиэтилен. Температура п...

Бронза - температура плавления. Как делаются изделия из бронзыБизнес Бронза - температура плавления. Как делаются изделия из бронзы

Бронза представляет собой сплав из меди и другого дополнительного элемента, в качестве которого чаще всего выступает олово, свинец, алюминий или кремний. В зависимости от процентного показателя данных металлов, бронза...

Можно ли мед хранить в пластиковой таре? При какой температуре хранить мед?Еда и напитки Можно ли мед хранить в пластиковой таре? При какой температуре хранить мед?

Ни для кого не является секретом тот факт, что мед считается природным лекарством, которому нет цены. На современном этапе ученые пытаются воспроизвести состав данного продукта искусственно, но пока ничего не получает...

Температура плавления пальмового масла, особенности производства, польза и вредЕда и напитки Температура плавления пальмового масла, особенности производства, польза и вред

В различных информационных источниках «пальмовая» тема муссируется неоднозначно. Предмет вопроса – полезно или вредно человеческому организму масло пальмы, ведь в нашу страну оно импортируется в огро...

Полипропилена температура плавления: характеристики и свойстваОбразование Полипропилена температура плавления: характеристики и свойства

Полипропилен представляет собой термопластичный полимер пропена. Его получают по технологии полимеризации пропилена при использовании металлокомплексных катализаторов. Параметры для получения этого материала схожи с т...

Температура плавления алмаза, физические свойства и структура минералаОбразование Температура плавления алмаза, физические свойства и структура минерала

Какова температура плавления и кипения алмаза? Существует ли минерал в расплавленном виде в естественной среде? Поиском ответа на эти и другие вопросы займемся в представленном материале.Как сформировались алм...

Температура плавления серы. Установки для плавления серыОбразование Температура плавления серы. Установки для плавления серы

Сера - один из самых распространённых элементов земной коры. Чаще всего она встречается в составе минералов, содержащих кроме неё металлы. Очень интересны процессы, происходящие при достижении температуры кипения и пл...

Температура плавления золота. Температура плавления и кипения металловОбразование Температура плавления золота. Температура плавления и кипения металлов

Именно физические свойства металлов по большей части определяют области их применения людьми в технике и промышленности. Среди основных характеристик немаловажное значение имеет температура их плавления. Знание данног...

monateka.com