Контроллер заряда аккумулятора от солнечной батареи: зачем нужен и как работает. Контроллер заряда солнечной батареи схема
Схема и принцип работы контроллера заряда солнечной батареи
Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллером заряда солнечной батареи.
Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея — накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.
Содержание статьи:
Контроллеры для солнечных батарей
Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора, сохраняющего энергию солнечной батареи.
Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM
Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.
Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя. Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.
Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.
В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию
В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.
Применяемые на практике виды
На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:
- Устройства серии PWM.
- Устройства серии MPPT.
Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики. Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.
Одна из популярных у пользователей моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей
Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность. Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.
Контроллер типа MPPT:
- имеет более высокую стоимость;
- обладает сложным алгоритмом настройки;
- даёт выигрыш по мощности только на панелях значительной площади.
Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.
Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных
Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).
Структурные схемы контроллеров
Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.
Вариант #1: устройства PWM
Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.
Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).
Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность (+)
Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.
Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM. Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.
Вариант #2: приборы MPPT
Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы. Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.
Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами
Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий. Схемой таких устройств реализуются несколько методов контроля:
- возмущения и наблюдения;
- возрастающей проводимости;
- токовой развёртки;
- постоянного напряжения.
А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.
Способы подключения контроллеров
Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей. Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.
Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели
Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.
Техника подключения моделей PWM
Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.
Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий
Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:
- Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
- Непосредственно в точке контакта положительного провода включить защитный предохранитель.
- На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
- Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).
Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.
Порядок подключения приборов MPPT
Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.
Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками
Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.
Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями. Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.
Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина
Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.
Подключение периферии к аппарату MTTP:
- Выключатели панели и аккумулятора перевести в положение «отключено».
- Извлечь защитные предохранители на панели и аккумуляторе.
- Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
- Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
- Соединить кабелем клемму заземления с шиной «земли».
- Установить температурный датчик на контроллере согласно инструкции.
После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.
Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено». Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.
Полезное видео по теме
Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.
Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.
sovet-ingenera.com
Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Схема контроллера заряда аккумулятора от солнечной батареи: как работает устройство
Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.
Необходимость
При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.
Необходимость этого устройства можно свести к следующим пунктам:
- Зарядка аккумулятора многостадийная;
- Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
- Подключение аккумулятора при максимальном заряде;
- Подключение зарядки от фотоэлементов в автоматическом режиме.
Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.
Как работает контроллер зарядки аккумулятора
В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.
Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.
Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.
Типы
On/Off
Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.
Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.
В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.
PWM
Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.
Из-за этого появилась возможность практически стопроцентной зарядки устройства.
МРРТ
Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.
Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.
Параметры выбора
Критериев выбора всего два:
- Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
- Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.
Как сделать своими руками
Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.
Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.
Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.
Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.
Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.
Видео
Как правильно подключить контроллер, вы узнаете из нашего видео.
solar-energ.ru
КОНТРОЛЛЕР ЗАРЯДА СОЛНЕЧНОЙ БАТАРЕИ
В наше прогрессивное время, когда технологии постоянно совершенствуются, а производственные мощности постоянно увеличиваются, для простого самодельщика становятся все более доступными материалы и компоненты, о которых раньше приходилось только мечтать. Одними из таких компонентов являются солнечные фотоэлектрические элементы. Все большее число доморощенных Кулибиных создают свои солнечные батареи из фотоэлектрических элементов купленных по приемлемой цене на Ebay, в Dealextreme или других местах.
Но как извесно, введение в эксплуатацию нового технического устройства, такого как солнечная батарея, провоцирует на создание устройства управления этим полезным девайсом. Если раньше для этого применялись простейшие схемы с ограничивающими диодами или релейные, то сейчас, разрабатываются все более прогрессивные устройства. С одним из таких устройств,контроллеров заряда для солнечной батареи, изготовление которого вполне по силам даже начинающим, мы и предлагаем ознакомиться. Суть работы всех контроллеров заряда (как заводских так и самодельных) заключается в следующем: нагрузкой солнечной батареи является чаще всего АКБ, которая накапливает полученную энергию Солнца, а для того чтобы соблюсти все параметры заряда аккумулятора,не допустить его перезаряда (и таким образом продлить срок его службы) и утилизировать ''лишнюю'' энергию. Итак, рассмотрим схему контроллера заряда для солнечной батареи.
Оно предназначено для зарядки герметичного кислотно-свинцового (гелевого) аккумулятора на 12V от маломощной солнечной панели, с током отдачи до нескольких ампер. Последовательный защитный диод, который раньше устанавливался для предотвращения разряда аккумуляторов в темное время суток, здесь заменен полевым транзистором, который в свою очередь управляется компаратором.
Более качественный рисунокпечатной платы контроллера находится в архиве. Контроллер останавливает заряд аккумулятора, когда напряжение на нем достигает заданного предела и переключает панель на дополнительный потребитель (нагрузку)для утилизации лишней энергии. Когда же напряжение на аккумуляторе опустится ниже заданного предела, контроллер переключает солнечную панель с нагрузки на заряд АКБ. Основные характеристики схемы:
-Напряжение заряда Vbat=13,8V (настраивается), измеряется при наличии тока заряда;-Отключение нагрузки происходит когда Vbat мене 11V (настраивается), включение нагрузки когда Vbat=12,5V;-Температурная компенсация режима заряда;-Экономичный компаратор TLC339 можно заменить на более распространенный TL393 или TL339;-Падение напряжения на ключах менее 20mV при заряде током 0,5А.Настраивать устройство на включение/отключение заряда лучше исходя из паспортных данных на применяемую батарею; зарядный ток ограничен только возможностями солнечной батареи - схема контроллера никак на него не влияет. Данное устройство эксплуатировалось автором в течении года. За это время никаких нареканий и нарушений в работе выявлено не было. На фото печатной платы устройства помимо разводки непосредственно под сам контроллер (справа) разведены еще места под 3 DC/DC конвертера на 3,6 и 9вольт выхода.
Фото готового устройства со всеми компонентами, включая аккумуляторы, контроллер, конверторы и дополнительный блок индикации и коммутации. Конструктор контроллера - Oscar den Uijl.
el-shema.ru
Простой контроллер для солнечной батареи
На этот раз я решил сделать автомат, который автоматически включает светодиодное освещение в садовой беседке. Поскольку поблизости нет розетки, а постоянное протягивание удлинителя достаточно утомительное занятие, я решил запитать светодиоды от аккумулятора с подзарядкой от солнечных элементов.
Ранее был описан очень похожий драйвер на солнечных элементах, который освещает стеклянную полку в шкафу. Используя этот драйвер, возникла бы проблема, поскольку для освещения беседки нам нужно больше света, чем для освещения стеклянной полки. Так же, применение более мощного источника света будет быстрее разряжать аккумулятор, который может выйти из строя в результате глубокой разрядки элементов в батарее.
Чтобы этого не допустить, я решил создать простой драйвер с защитой от слишком глубокого разряда батареи на основе регулируемого стабилитрона TL431. В свою очередь, солнечные элементы также служат в качестве датчика освещенности, что значительно упростило всю схему.
Печатная плата имеет размеры 40мм на 45мм. Кроме того, добавлены два монтажных отверстия. Все устройство питается от трех Ni-MH аккумуляторов (1,2В/1000мАч). Для зарядки используется солнечная батарея с номинальным напряжением 5 вольт и максимальным выходным током до 80 мА. Солнечная батарея заряжает аккумуляторы через выпрямительный диод D1. Схема не имеет защиты от перезаряда батареи из-за того, что в такой конфигурации перезарядка просто невозможна.
Полностью заряженный аккумулятор должен иметь напряжение около 4,2-4,35 В Солнечная батарея вырабатывает напряжение 5В, но происходит падение на выпрямительном диоде в районе 0,7 В, что дает нам напряжение 4,3 В. Транзистор Q1 отвечает за включение освещения в ночное время и отключение его днем. База этого транзистора подключена через резистор 2,2 кОм к положительному полюсу солнечной батареи.
Когда солнечная батарея не вырабатывает электроэнергию, или она слишком маленькая, транзистор Q1 заперт. Тогда ток с вывода ("REF") стабилитрона TL431 будет течь только через резистор R4, который создает делитель напряжения вместе с резисторами R2 и R3. Транзистор Q2 управляет нагрузкой в виде светодиодов. Чтобы схема работала правильно, мы не можем игнорировать резистор R5, задачей которого является подтягивание базы транзистора Q2 к плюсу источника питания.
По расчетам для имеющегося напряжения выходит, что резистор должен иметь сопротивление 100 Ом. С таким сопротивлением схема переключается очень быстро. Но проблема состоит в том, что этот резистор имеет достаточно маленькое значение, и через него течет очень большой ток. Общий ток потребления составляет около 23 мА! Я решил этот резистор заменить на резистор большего значения. В итоге я поставил резистор номиналом 1 кОм. Теперь отключение нагрузки не такое быстрое, но ток потребления сократился до 8mA.
Конечно, текущее значения 8 мА потребляется только тогда, когда солнечная батарея находится в темном месте - то есть, только в ночное время, когда горят светодиоды. И это такой же максимальный ток (8 мА), который поступает от батареи при напряжении 4,2 В. Напряжение отключения нагрузки я поставил на 2,9 В. Предельное напряжение для одной ячейки 0,9 В, что при подключении последовательно трех дает нам 2,7 В, и следовательно, у нас есть еще в запасе 0,2 В.
Схема после отключения нагрузки (т.е. при 2,9 В и ниже), потребляет только 50 мкА. Такой же ток будет, когда солнечная батарея заряжает аккумуляторы. Устройство очень отзывчиво на свет, но не на столько, чтобы уличное освещение мешало бы определить сумерки. С момента обнаружения заката до включения светодиодов на 100% проходит примерно 2 мин.
Удалив из системы транзистор Q1, резистор R1 и выпрямительный диод D1 получаем простую схему защиты аккумулятора от глубокого разряда. Подобная схема может использоваться для отключения Li-Ion или Li-Pol аккумулятора от зарядки. Ее можно использовать, например, в фонарике. Существует также возможность создания подобной защиты и на другие напряжения, для этого нужно рассчитать делитель напряжения. Формулы и пример расчета есть здесь.
Перечень деталей:
- резисторы: 3x1к, 2,2к, 15к. 100к
- транзисторы: BC547, BC327 (или аналогичные)
- стабилитрон TL431
- диод 1N4007 (или аналогичный)
- конденсатор 100мкФ
Скачать рисунок печатной платы (1,4 Mb, скачано: 841)
Источник
www.joyta.ru
Контроллер заряда солнечной батареи
Среди современных гелиосистем большую популярность приобрели те, что работают автономно и не подключаются к электрической сети. То есть, они функционируют в замкнутом режиме. Например, в рамках энергоснабжения одного дома. В состав подобных систем входят солнечные панели (и/или ветряной генератор), контроллер заряда, инвертор, реле, аккумулятор, провода. Контроллер в этой схеме является ключевым элементом. В этой статье мы поговорим о том, для чего нужен контроллер солнечных батарей, какие бывают разновидности и как выбрать такое устройство.
Содержание статьи
Для чего нужен солнечный контроллер?
Как уже было сказано, контроллер заряда является ключевым элементом гелиосистемы. Это электронное устройство, работающее на базе чипа, который контролирует работу системы и управляет зарядом аккумулятора. Контроллеры для солнечных батарей не допускают полной разрядки аккумулятора и его излишнего заряда. Когда заряд аккумуляторной батареи находится на максимальном уровне, то величина тока от фотоэлементов уменьшается. В результате подаётся ток, необходимый для компенсации саморазряда. Если аккумулятор чрезмерно разряжен, то контроллер отключит от него нагрузку.
Итак, можно обобщить функции, которые выполняет контроллер солнечных батарей:
- многостадийный заряд аккумулятора;
- отключение зарядки или нагрузки при максимальном заряде или разряде, соответственно;
- включение нагрузки, когда заряд батареи восстановлен;
- автоматическое включение тока с фотоэлементов для зарядки аккумулятора.
Контроллер заряда солнечных батарей
Вернуться к содержаниюПараметры выбора
На что же следует обратить внимание при выборе контроллера для солнечных батарей? Основные характеристики изложены ниже:
- Входное напряжение. Максимальное напряжение, указанное в техническом паспорте, должно быть на 20 процентов выше напряжения «холостого хода» батареи фотоэлементов. Это требование появилось из-за того, что производители часто ставят завышенные параметры контроллеров в спецификациях. Кроме того, при высокой солнечной активности напряжение солнечных модулей может быть выше, чем указано в документации;
- Номинальный ток. Для контроллера типа PWM номинал по току должен на 10 процентов превышать ток короткого замыкания батареи. Контроллер типа MPPT нужно подбирать по мощности. Его мощность должен быть равна или выше напряжения гелиосистемы умноженного на тока регулятора на выходе. Напряжение системы берётся для разряженных аккумуляторов. В период высокой солнечной активностью к полученной мощности следует прибавить 20 процентов про запас.
Вернуться к содержанию
Виды контроллеров
Контроллеры On/Off
Эти модели являются самыми простыми из всего класса контроллеров заряда для солнечных батарей.
Контроллер заряда On/Off для гелиосистем
Модели типа On/Off предназначены для того, чтобы отключать заряд аккумулятора, когда достигается верхний предел напряжения. Обычно это 14,4 вольта. В результате предотвращается перегрев и излишний заряд.
С помощью контроллеров On/Off не получится обеспечить полную зарядку аккумуляторной батареи. Ведь здесь отключение происходит в том момент, когда достигнут максимальный ток. А процесс зарядки до полной ёмкости ещё необходимо поддерживать несколько часов. Уровень заряда в момент отключения находится где-то 70 процентов от номинальной ёмкости. Естественно, что это негативно отражается на состоянии аккумулятора и снижает срок его эксплуатации.Вернуться к содержанию
Контроллеры PWM
В поисках решения неполной зарядки аккумулятора в системе с устройствами On/Off были разработаны блоки управления, основанные на принципе широтно-импульсной модуляции (сокращённо ШИМ) заряжающего тока. Смысл работы такого контроллера заключается в том, что он понижает заряжающий ток, когда достигается предельное значение напряжения. При таком подходе заряд аккумулятора доходит практически до 100 процентов. Эффективность процесса увеличивается до 30 процентов.
Контроллер заряда PWM
Есть модели PWM, которые умеют в зависимости от температуры ОС регулировать ток. Это хорошо сказывается на состоянии аккумулятора, уменьшается нагрев, лучше принимается заряд. Процесс становится регулируемым в автоматическом режиме.ШИМ контроллеры заряда для солнечных батарей специалисты рекомендуют применять в тех регионах, где наблюдается высокая активность солнечных лучей. Их часто можно встретить в гелиосистемах маленькой мощности (менее двух киловатт). Как правило, в них работают аккумуляторные батареи небольшой ёмкости.
Вернуться к содержанию
Регуляторы типа MPPT
Контроллеры заряда МРРТ сегодня являются самыми совершенными устройствами для регулирования процесса заряда аккумуляторной батареи в гелиосистемах. Эти модели увеличивают эффективность генерации электричества на одних и тех же солнечных батареях. Принцип работы устройств MPPT основан на определении точки максимального значения мощности.
Контроллер заряда MPPT
MPPT в постоянном режиме следит за током и напряжением в системе. На основании этих данных микропроцессор подсчитывает оптимальное отношение параметров для того, чтобы достигнуть максимальной выработки по мощности. При регулировке напряжения и учитывается даже этап процесса зарядки. MPPT контроллеры солнечных батарей даже позволяют снимать большое напряжение с модулей, затем преобразовывая его в оптимальное. Под оптимальным понимается то, которое обеспечивает полную зарядку АКБ.
Если оценивать работу MPPT по сравнению с PWM, то эффективность функционирования гелиосистемы возрастёт от 20 до 35 процентов. К плюсам также стоит отнести возможность работы при затенении солнечной панели до 40 процентов. Благодаря возможности поддержания высокого значения напряжения на выходе контроллера можно использовать проводку небольшого сечения. А также можно поставить солнечные панели и блок на большее расстояние, чем в случае с PWM.Вернуться к содержанию
Гибридные контроллеры заряда
В некоторых странах, например, США, Германии, Швеции, Дании значительную часть электроэнергии вырабатывают ветрогенераторы. В некоторых маленьких странах альтернативная энергетика занимает большую долю в энергосетях этих государств. В составе ветряных систем также работают устройства для управления процессом заряда. Если же электростанция представляет собой комбинированный вариант из ветрогенератора и солнечных батарей, то применяют гибридные контроллеры.
Гибридный контроллер
Эти устройства могут быть построены схеме МРРТ или PWM. Основное отличие заключается в том, что в них используются другие вольтамперные характеристики. В процессе работы ветряные генераторы дают очень неравномерную выработку электроэнергии. В результате на аккумуляторные батареи поступает неравномерная нагрузка, и они работают в стрессовом режиме. Задача гибридного контроллера заключается в сбросе избыточной энергии. Для этого, как правило, используются специальные тэны.Вернуться к содержаниюСамодельные контроллеры
Люди, которые разбираются в электротехнике, часто сами собирают контроллеры заряда для ветрогенераторов и солнечных батарей. Функциональность подобных моделей часто уступает по эффективности и набору функций фабричным устройствам. Однако в небольших установках маленькой мощности самодельного контроллера вполне достаточно.
Самодельный контроллер заряда для гелиосистем
При создании контроллера заряда своими руками следует помнить о том, что суммарная мощность должна удовлетворять следующему условию: 1,2P ≤ I*U. I – это выходной ток контроллера, U – это напряжение при разряженной батарее.
Схем самодельных контроллеров существует довольно много. Их можно поискать на соответствующих форумах в сети. Здесь следует сказать лишь о некоторых общих требованиях к такому устройству:
- Напряжение зарядки должно быть 13,8 вольта и меняется в зависимости номинального значения силы тока;
- Напряжение, при котором происходит отключение заряда (11 вольт). Эта величина должна быть настраиваемой;
- Напряжение, при котором включается заряд 12,5 вольта.
Вернуться к содержанию
Некоторые особенности контроллеров заряда солнечных батарей
В заключение нужно сказать ещё о нескольких особенностях контроллеров заряда. В современных системах они имеют ряд защит для повышения надёжности работы. В таких устройствах могут быть реализованы следующие виды защиты:
- От неправильного подключения полярности;
- От коротких замыканий в нагрузке и на входе;
- От молнии;
- От перегрева;
- От входных перенапряжений;
- От разряда аккумулятора в ночное время.
- Степень заряда, напряжение АКБ;
- Ток, отдаваемый фотоэлементами;
- Ток для заряда батареи и в нагрузке;
- Запасённые и отданные ампер-часы.
На дисплее может также выдаваться сообщение о понижении заряда, предупреждение об отключении питания в нагрузку.
Некоторые модели контроллеров для солнечных батарей имеют таймеры для активации ночного режима работы. Существуют сложные устройства, управляющие работой двух независимых батарей. В их названии обычно есть приставка Duo. Стоит также отметить модели, которые умеют сбрасывать лишнюю энергию на тэны.
Интересны модели, имеющие интерфейс для подключения к компьютеру. Так можно значительно расширить функционал наблюдения за гелиосистемой и управления ей.
Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.Вернуться к содержаниюakbinfo.ru
Улучшенный контроллер заряда аккумуляторной батареи
Для накопления энергии, полученной от ветрогенераторов и солнечных батарей, используются аккумуляторные батареи (чаще всего на 12В). Когда аккумулятор заряжен, контроллер заряда переключает источник электроэнергии с аккумулятора на нагрузочный балласт. Весь представленный ниже материал является свободным переводом англоязычной страницы Майка Дэвиса (Mike Davis) о новом улучшенном контроллере заряда, спроектированном на таймере 555 серии. Этот проект занял первое место в конкурсе Utility (категория 555 Design Contest)!
Майк Дэвис рассказывает.
Новая схема контроллера заряда аккумуляторной батареи
Контроллер заряда аккумуляторной батареи является неотъемлемой частью любой ветрогенерующей или солнечной системы. Он контролирует напряжение на батарее, переключает батареи от заряда, когда они полностью заряжены, (заряд идет на эквивалент нагрузки - балласт) и подсоединяет их, когда они достигают предварительно заданного уровня разряда. Это новая, улучшенная реализация контроллера заряда на базе цифровой микросхемы 555 серии.
Начальная реализация контроллера заряда много лет использовалась в полевых условиях, многие люди во всем мире ее повторили (этот вариант контроллера можно найти на странице самодельного ветрогенератора).
Проблема в том, что людям без опыта работы с электроникой трудно его изготовить и заставить работать (схема достаточно сложна и запутана для начинающих в электронике, кроме того были проблемы с поиском необходимых деталей). Поэтому я поставил перед собой цель значительно упростить схему контроллера заряда, сделать его, если это возможно, на одной микросхеме и уменьшить количество других компонентов. Один из моих друзей предложил мне заменить все аналоговые схемы микроконтроллером. Однако это было бы слишком сложно для желающих изготовить такой контроллер заряда.
Вот моя оригинальная схема контроллера заряда (схема 100%). Сердце схемы контроллера заряда состоит из делителя напряжения, двух компараторов и SR флип-флоп. Сначала я хотел перепроектировать его с помощью микросхемы компаратора LM339 Quad. Я некоторое время пытался эту идею реализовать, и даже сделал несколько пробных вариантов, однако возникли некоторые проблемы, вследствии чего я отложил проект на некоторое время и работал над другими вещами.
Блок-схема таймера NE555. В это время я работал над ШИМ - контроллером двигателя насоса, в котором регулятор скорости использует микросхему таймера 555 серии. Глядя на рисунок внутренней структуры микросхемы 555 серии, я был поражен тем, насколько сильно она напоминает мою оригинальную схему контроллера заряда. Вдруг я понял, что, использовав чип 555 серии, смогу перестроить схему контроллера заряда, значительно упростить ее и уменьшить количество деталей.
Моя оригинальная схема контроллера заряда с выделенными секциями.Блок-схема чипа таймера NE555.
Сравните эти диаграммы, и вы также увидите сходство между моей оригинальной схемой контроллера заряда и структурной схемой таймера NE555. Цветные прямоугольники представляют подобные секции. Таймер 555 серии может заменить 7 компонентов в исходной схеме и намного упростить ее. Это очень нетрадиционное использование чипа 555, ведь я его не буду использовать как таймер вообще.
Для продолжения щелкните на кнопке с цифрой 2
Изготовление и тестирование обновленного контроллера заряда аккумуляторной батареи
Я приступил к работе и за очень короткое время изготовил рабочий макет. Он заработал с первой попытки, что является редкостью для меня (я почти всегда допускаюсь ошибок при реализации).
Вот показана схема нового контроллера заряда (полноразмерная схема).
Я использовал только распространенные компоненты. NE555 - это, вероятно, самая популярная микросхема в истории радиоэлектроники. Миллиарды их производились ежегодно. Транзистор может быть 2N2222, NTE123, 2N3904, или другой подобный общего назначения (небольшой NPN транзистор). MOSFET является IRF540 или аналогичный. У меня остались от других проектов много IRF540s, поэтому я использовал один из них, а не покупал то еще. Используйте то, что вы можете найти.
Все резисторы 1/8 Вт. Резисторы 1/4 Вт или выше их могут заменить, если у вас нет 1/8 Ватт резисторов. Два регулируемых резисторы, R1 и R2 (10K точные переменные резисторы), я использовал потому что уже имел их под рукой. Любые номиналы между 10K и 100K должны работать нормально, 10% допуск достаточен для всех пассивных компонентов. Схема не требует прецизионных деталей.
Обновление. Я изменил выше приведенную схему, добавив дополнительные резисторы R8 * и R9 *. Эти 330 Ом резисторы не нужны для работы схемы, но они помогут защитить ее от случайных коротких замыканий (например, когда Кнопки нажимаются). Начальная схема была намеренно минималистичной.
Реле. Я использовал автомобильные реле, рассчитанные на 40 Ампер. Их очень легко найти. Я включил реле для удобства подключения. 40 Ампер могут показаться лишними, но они позволят расшириться в будущем. Вы можете начать с одной небольшой солнечной панели, а затем добавить несколько, позже ветряк и больший банк батарей. Все остальные части указаны ниже.
Перечень деталей контроллера заряда
IC1 - 7805 - регулятор напряжения 5 Вольт
R3, R4, R5 - 1K Ом 1/8 Вт 10%
IC2 - NE555 - таймер
R6 - 330 Ом 1/8 Вт 10%
PB1, PB2 - контактные Кнопки без фиксации
R7 - 100 Ом 1/8 Вт 10%
LED1 - зеленый светодиод
Q1 - 2N2222 или похожий NPN транзистор
LED2 - желтый светодиод
Q2 - IRF540 или похожий Power MOSFET
RLY1 - 40 Amp SPDT автомобильные реле
C1 - 0.33uF 35V 10%
D1 - 1N4001 или аналогичный
С2 - 0,1 мкФ 35В 10%
R1, R2 - 10K - многооборотные потенциометры
R8 * -R9 * - дополнительные 330 Ом 1/2 W резисторы (см. текст)
Рабочий макет. Макет для испытания в полевых условиях заработал с первого раза.
Обратите внимание, я решил использовать 78L05 версию регулятора 5 Вольт в крошечном TO-92 корпусе, такого же размера, как транзистор 2N2222. Это небольшой черный прямоугольник в верхнем левом углу платы. Такое решение экономит много места на плате, позволяет обрабатывать только 100 мА, но этого достаточно для питания этой схемы. Если вы не можете найти 78L05, можно использовать в корпусе TO-220 версию 7805, которая является гораздо более распространенной (это немного увеличит плату).
Если у вас схема изготовлена, пришло время ее настраивать. Я использую 11.9V и 14.9V как нижнюю и верхнюю границу напряжения для контроллера. Это точки, где он переходит от заряда батарей к демпингу на эквивалент нагрузки, и наоборот (эквивалент нагрузки нужен в том случае, если вы используете ветряк, при работе только с солнечными батареями, линия эквивалента нагрузки может остаться открытой).
Наверное, лучший способ настроить схему - подсоединить источник питания постоянного тока к клеммам аккумулятора. Установите электропитания 11.9V. Измерьте напряжение на испытательной точке 1. Отрегулируйте R1 напряжение на контрольной точке, сделайте ее как можно ближе к 1.667V. Теперь устанавливаем 14.9V и измеряем напряжение на испытательной точке 2, регулируем R2, пока напряжение на контрольной точке будет как можно ближе к 3.333V.
Проверьте работу контроллера заряда, подав на вход напряжение несколько большее и меньшее (между 11,7 и 15,1 Вольт). Вы должны услышать, как реле закрывается около 14,9 вольт и открывается примерно в 11,9 Вольт. Кнопки PB1, PB2 могут быть использованы для изменения состояния контроллера, когда входное напряжение находится между двумя заданными точками.
Готовый контроллер заряда. После того, как контроллер был настроен, я установил его в полу-всепогодный корпус. Реле находится на левой стороне. Для проводки я использовал провод для сильно-токовых соединений (он разработан для переключения до 40 ампер). Я также включил предохранитель на входную линию с солнечной батареи / ветряка.
Вот еще одно фото контроллера заряда с крышкой. В нем мне нравится то, что я вижу светодиоды сквозь полупрозрачную крышку и с первого взгляда понятно, в каком состоянии контроллер заряда находится (удобно при тестировании).
На этой фотографии показаны все соединения с внешней стороны контроллера: есть соединение для плюса батареи, положительный вход от солнечной панели или ветрогенератора, плюс дополнительного эквивалента нагрузки (балласта) и три соединения на землю.
При подключении контроллера заряда, аккумулятор должен присоединяться первым (таким образом электроника сможет отдавать получаемую энергию). Если солнечные панели или ветрогенератор присоединить первыми, контроллер будет находиться в нестабильном состоянии.
Я должен сказать об эквиваленте нагрузки (балласте): когда контроллер заряда чувствует, что батареи (аккумулятор) полностью заряжены, он переключается на эквивалент нагрузки (просто большой внешний банк резисторов с высокой номинальной мощностью), чтобы выбрать выходную мощность ветрогенератора и держать его под нагрузкой . Если вы используете коммерчески изготовленный ветряк со встроенной защитой, или используете только солнечные батареи, то эквивалент нагрузки не нужен, и вы можете оставить эту линию не подключенной. Вы можете узнать больше о эквиваленте нагрузки (балласте) на моей странице ветряных турбин.
Вот еще один вид сбоку: кнопки зарядки и балласта. Контроллер заряда автоматически переключается между зарядом и балластом, когда напряжение батареи достигает низкого и высокого предела. Эти кнопки позволяют мне вручную переключать контроллер заряда между двумя состояниями.
Вот фото испытания нового контроллера заряда. Одна из моих самодельных 60-ваттных солнечных панелей была установлена за пределами моей мастерской и использована для зарядки в батареи глубокого цикла с помощью нового контроллера заряда. Все сработало отлично. Контроллер заряда, когда батарея была полностью заряжена, переключил на балласт.
Вот фото тестирования крупным планом. Вольтметр показывает 12,64 вольт на батарее, которая по сути является полностью заряженной. Понадобился лишь короткое время для завершения заряда солнечной батареи, и контроллер заряда переключил на балласт. Единственная проблема, которую я имел во время тестирования - трудно было увидеть в ярком солнечном свете, который из светодиодов горит.
Вот короткое видео, которое я снял во время выполнения теста, показывает, как контроллер заряда автоматически переключается с зарядки на балласт, когда превышена верхняя граница напряжения.
Схема типичной системы солнечных батарей и ветрогенераторов (полноразмерная схема). Несколько солнечных панелей и / или ветровые турбины могут быть подключены одновременно. Источники тока могут быть соединены параллельно. Каждая солнечная панель или ветрогенератор должны иметь свой собственный блокирующий диод. Здесь представлена схема типичной системы с ветровой турбиной и двумя панелями солнечных батарей, питающих контроллер заряда. Обычно преобразователь переменного тока входит в систему для питания нагрузки от переменного тока.
Люди пишут мне и спрашивают, зачем нужен контроллер заряда и аккумулятор. Почему просто не подключать солнечные панели или ветряк непосредственно к преобразователю и использовать ток, который они производят? Ну, дело в том, что солнце не всегда светит, а ветер не всегда дует, а людям энергия нужна в любое время. Батареи сохраняют ее доступной для использования, когда это необходимо.
Обновление. Мой друг Джейсон Маркхэм (Jason Markham) создал макет печатной платы для этого проекта.
Обновление. Люди спрашивают меня, может ли этот контроллер заряда использоваться с системами на 24 Вольта, и какие изменения для этого будут необходимы. Схема должна работать нормально в 24-вольтовых системах. Реле нужно будет заменить для 24В напряжения катушки, и нужно будет повторно откалибровать контроллер для новых высоких и низких пределов для более высокого напряжения батареи. Регулятор 7805 напряжения рассчитан на работу в режимах до 35 Вольт входного напряжения, поэтому в других изменениях в схеме нет необходимости.
Обновление. Стремясь создать компактную, аккуратную и портативную солнечную энергосистему, я установил контроллер заряда на верху батарейного блока. Я также установил инвертор тока на коробку - аккумуляторный ящик промышленной мощности.
Вот еще одно фото установки. Здесь включен прикуриватель для питания 12V нагрузки. Это полная солнечная электрическая система в одном небольшом (но тяжелом) пакете, нужно лишь подключить солнечную батарею.
Контроллер заряда установлен на новый батарейный блок. Мой старый банк батарей я получил почти бесплатно, но он был очень тяжелым и громоздким. Наконец я купил одну большую батарею примерно такого же размера и веса, как автомобильный аккумулятор (это дизайн глубокого цикла), она идеально подходит для солнечных / ветряных систем. Она имеет примерно такую же мощность как мой старый банк батарей, но намного меньше и легче. Это стоило около $ 200, но моя спина будет постоянно благодарить за это, ведь не нужно будет больше поднимать старый банк 14 батарей.
Обновление. Этот проект контроллера заряда на основе микросхемы 555 серии занял первое место в конкурсе Utility, категория 555 Design Contest !!!!! Yahooooo!
Оригинальный текст Майка Дэвиса можно прочитать на англоязычном сайте www.mdpub.com
radiofishka.in.ua
Какой контроллер для солнечных батарей установить с вашими панелями
Основной сложностью использования солнечной энергии в быту является ее накопление. Солнечная батарея вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.
Виды контроллеров
Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.
- ON/OFF контроллер – самый простой из существующих. Редко применяется в современных системах, т.к. имеет массу недостатков. Суть его работы заключается в том, что он просто отключает поступление электричества с солнечной панели при достижении максимального заряда батареи. Напряжение и сила тока при этом будет изменяться в зависимости от интенсивности работы самих панелей. АКБ при этом сама регулирует сколько «взять» тока.
Контроллер ON/OFF
В итоге, максимальный ток достигается при 70% уровня заряда, контроллер срабатывает. Батарея быстро приходит в негодность. Двумя ощутимыми достоинствами такого устройства является его стоимость и возможность собрать такой контроллер солнечных батарей своими руками. - ШИМ или PWM – контроллеры обеспечивают ступенчатую зарядку АКБ путем переключения между различными режимами заряда. Эти режимы, в свою очередь, выбираются автоматически в зависимости от степени разряженности аккумулятора. АКБ заряжается до 100% за счет повышения напряжения и понижения силы тока. Недостатком такого контроллера являются потери при зарядке аккумулятора – до 40%
- MPPT контроллер. Наиболее экономичный и современный способ организовать зарядку аккумуляторной батареи от солнечных панелей. Этот вид контроллеров работает по вычислительной технологии. В каждый момент времени он сравнивает напряжение, подаваемое с солнечных панелей с напряжением на аккумуляторе и выбирает оптимальные преобразования для того, чтобы получить максимальный заряд АКБ.
Какой выбирать
Как видно из описаний, первый вариант (ON/OFF контроллер) – совсем не подходит для длительного использования. Т.е. если он у вас имеется, то его можно поставить для тестирования работы системы, но затем заменить на ШИМ (PWM) контроллер или MTTP.
Последний – предпочтительнее. Технология MTTP предусматривает КПД контроллера солнечных батарей на уровне 93-97%, тогда как ШИМ дает только 65-70%. Если учитывать стоимость солнечных панелей, то покупка более дорогого контроллера оправдывается эффективностью их использования.
Стоимость
Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:
- Solar controller 20a ссылка на алиэкспресс (откроется в новом окне) – стоимость 20,75$ - простое управление, яркий ЖК дисплей, понятный интерфейс. Отлично справляется с задачей по заряду АКБ. Технология ШИМ (PWM). Имеется возможность подключения через USB к компьютеру для настройки.
- MPPT Tracer 2210RN Solar Charge Controller Regulator ссылка на алиэкспресс (в новом окне), цена 75$ – MTTP контроллер на 20А – качественный и надежный, сертифицированный, распознает день/ночь. Высокий КПД – 97%
Видео, контроллер своими руками
Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ - такая перспектива уже не кажется раумной. Собрать качественный MPPT - контроллер в домашних условиях - вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.
Дополнения к видео: схема контроллера, расположение деталей на печатной плате:
Загрузка...Вконтакте
Одноклассники
Google+
Как быстро окупятся солнечные батареи для частного дома. Как подсчитать емкость аккумулятора для солнечной электростанции Какой ветрогенератор лучше выбрать, вертикальный или горизонтальный Подбираем солнечную панель для дома без переплаты за ненужноеelectricadom.com