Большая Энциклопедия Нефти и Газа. Легирующие металлы это


Что представляют собой легирующие металлы

Легирующие металлы имеют значение в современной промышленности. Проанализируем некоторые из них, выделим их отличительные и сходные характеристики.

легирующие металлы

Примеры легирующих металлов

Титан является элементом, широко распространенным в природе. Существует около 60 минералов титана, имеющих промышленное значение, но лидерство принадлежит ильмениту и рутилу.

Рутил в своем составе имеет около 60 процентов титана. Плотность минерала 4,3, твердость равна 6. Своим названием он обязан Ильменским горам, где его впервые обнаружили. В наши дни данный минерал представлен в виде основного источника выделения титана.

высоко легирующие металлы

Характеристика титана

В середине прошлого века были обнаружены уникальные характеристики данного элемента. Он имеет высокую температуру плавления при низкой плотности. Все легирующие металлы, включая и титан, имеют высокую прочность, коррозионную стойкость. Именно механические и химические характеристики титана сделали его востребованным в ракетной, самолетной, авиационной промышленности.

В наши дни разработаны десятки разнообразных марок прочных, жаропрочных, коррозионностойких сплавов титана с хромом, кремнием, алюминием, марганцем, медью, железом.

легирующие металлы список

Особенности материалов

Отмечая на вопрос о том, что такое легирующие металлы, отметим, что речь идет о тех добавках, которые позитивно влияют на технические и эксплуатационные характеристики получаемых сплавов.

Титановые сплавы показали свою устойчивость к морской воде, воздушной среде, агрессивным средам. Минимальная коррозия сделала титан одним из самых востребованных в качестве добавок при создании сплавов.

Распространение в природе

Высоко легирующие металлы в природе находятся в виде руд. Например, в железных малкинских рудах (Северный Кавказ) содержится достаточное количество титана. Он также обнаружен в базальтовых породах Карачая. Перспективными считают титано-магнезитовые руда в Армении.

Характеристика ванадия

Перечисляя легирующие металлы, необходимо назвать и ванадий. В земной коре он находится в горных породах, а также в рудах в рассеянном виде. Для выделения в промышленных масштабах используют такие минералы, как карнотит, патронит, ванадинит. Чистый ванадий имеет серый цвет, обладает металлическим блеском.

Применяют ванадий в металлургической промышленности, с его помощью изготавливают высококачественные стали. У материалов, получаемых с добавлением ванадия, повышенные механические свойства.

Такие легирующие металлы нужны для получения материалов в металлургии, автомобилестроении. Оксиды ванадия применяют в химической промышленности как катализатор, востребованы они в фотографии, живописи, красильном производстве.

Какие еще можно использовать легирующие металлы? Список включает тантал, хром, ниобий, титан, ванадий. Они нужны для получения коррозионностойких и жаропрочных сплавов, применяемых в различных областях техники.

В чистом виде ванадий применяют в атомной энергетике для выпуска электронных приборов.

какие металлы являются легирующими для сплавов алюминия

Характеристика никеля

Отвечая на вопрос о том, какие металлы являются легирующими для сплавов алюминия, выделим никель. Этот серебристо-белый металл повышает механическую стойкость и магнитные свойства. Это актуально для реактивной техники и при производстве газотурбинных установок. Хромоникелевые сплавы отличаются повышенными жаростойкими и жаропрочными характеристиками, поэтому востребованы в атомных реакторах, антикоррозионных покрытиях, создании щелочных аккумуляторов.

Из сплавов с добавкой данного металла в химической промышленности создают химическую аппаратуру, применяют их в виде катализаторов.

Никелевые руды встречаются на территории Армении, Грузии, на Северном Кавказе.

Характеристика кобальта

В земной коре его содержание не превышает 0,004 процентов. Из минералов, которые востребованы в промышленности, отметим: асболан, кобальтин, линнеит, смальтин.

Кобальт используют для изготовления сплавов, отличающихся повышенной магнитной индукцией, создания жаропрочных и жаростойких сталей. В керамической, стекольной промышленности из соединений кобальта создают качественный минеральный пигмент синего цвета.

Выявлено месторождение кобальта в Азербайджане, именно здесь его добывают в промышленных объемах.

Характеристика молибдена

Данный металл обладает физическими свойствами, делающими его сходным со свинцом. Для промышленного производства применяют молибденит, содержащий около 70 процентов металла. В промышленности его начали использовать в тридцатых годах прошлого века для создания специальных сплавов. При добавлении молибдена существенно повышается прочность и пластичность стали.

Это необходимо для авиации, машиностроения. Твердые сплавы его с хромом, ванадием, никелем, вольфрамом, применяют для изготовления кислотоупорных и инструментальных сталей. В чистом виде молибден необходим для создания нитей накаливания электрических плит, а также в радио- и электротехнике. Его оксид проявляет каталитические свойства при переработке нефти, востребован при создании красок, химических реактивов.

что такое легирующие металлы

Заключение

Разнообразные легирующие металлы, применяемые в настоящее время при изготовлении сталей, позволяют придавать сплавам определенные характеристики. В завсимости от того, какие требования предъявляются к выпускаемым сталям, предполагается применение определенных добавок металлов. Например, добавление вольфрама позволяет получать жаропрочные стали, в которых нуждается космическая промышленность.

fb.ru

Легирующий металл - Большая Энциклопедия Нефти и Газа, статья, страница 1

Легирующий металл

Cтраница 1

Легирующие металлы улучшают механические свойства стали, изменяют ее физические и химические свойства.  [1]

Легирующие металлы: никель, кобальт в гидроокиси и металлический.  [2]

Вышеуказанные легирующие металлы образуют более стойкие, чем цементит ( Fe3C), карбиды, препятствующие обезуглероживанию сталей.  [3]

Обычно легирующими металлами бывают металлы более дорогие, чем металл-основа.  [4]

Если легирующий металл не стоек в данной агрессивной среде, то коррозионная стойкость сплава титана будет ниже, чем нелегированного титана.  [5]

Если легирующие металлы содержатся в сплаве в достаточном количестве, то возможно образование когерентных пленок двуокисей титана и циркония. Кроме того, окислы обоих этих металлов являются полупроводниками п-ти-па с вакансиями в решетках ионов О2 -, так что при насыщении этих окислов ионами Nb5 число вакансий значительно уменьшается. Затем объемные отношения TiO2 / Ti и ZrCb / Zr гораздо меньше объемного отношения Nb2O5 / 2Nb, так что окисный слой должен быть менее подвержен растрескиванию.  [6]

S-электроны легирующего металла заполняют вакансии cf - полосы палладия, снижая % А, причем действие добавки увеличивается по мере перехода от Ag к Sb и особенно резко при замене серебра на кадмий.  [7]

Введение легирующих металлов имеет целью снижение температуры, отвечающей точке Кюри. Так, если 78-процентный пермаллой ( 78 Ni) имеет точку Кюри при температуре 580 С, то так называемый супермаллой, содержащий 79 % никеля и 5 % молибдена, имеет точку Кюри при 400 С. Применение легирующих добавок дает возможность избежать сложного процесса охлаждения и одновременно повышает магнитные свойства материала.  [9]

Влияние активных легирующих металлов на процесс образования пассивирующей пленки отличается От того влияния, которое они оказывают на процесс активного растворения. Хром и титан в сильных средах окисляются при более высоком потенциале, чем железо, кобальт или никель, являющиеся основами сплавов типа металл - металлоид, и при своем охлаждении образуют пассивирующиеся пленки с высокими защитными характеристиками. В сплавах, содержащих хром и титан, пассивация наступает только тогда, когда концентрация хрома и ( или) титана в образующейся поверхностной пленке превышает определенную величину. Это подтверждается и результатами анализа химического состава пленки, возникающей на поверхности аморфного сплава Со-Cr - 20B при различном содержании хрома.  [10]

В качестве легирующего металла чистый лантан почти не применяют, используя для этого более дешевый и доступный церий или мишметалл - легирующее действие лантана и лантаноидов практически одинаково.  [11]

В качестве легирующего металла чистый лантан почти не применяют, используя для этого более дешевый и доступный церий или мишметалл, - легирующее действие лантана и лантаноидов практически одинаково.  [12]

Сплавы меди, содержащие легирующие металлы, окрашиваются труднее, чем чистая медь.  [13]

Карбиды железа и легирующих металлов, особенно тугоплавких - вольфрама, титана существенно определяют свойства легированных сталей, придавая им твердость, износостойкость.  [14]

Значительно расширить производство легирующих металлов и добычу природных алмазов.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Легирующие элементы - это... Что такое Легирующие элементы?

 Легирующие элементы         химические элементы, преимущественно металлы, вводимые в состав сплавов для придания им определённых свойств (см. Легирование). Основные Л. э. в стали и чугуне — Cr, Ni, Mn, Si, Мо, W, V, Ti, Zr, Be, Nb, Co, Al, Cu, B, Mg; в алюминиевых сплавах — Si, Cu, Mg, Zn, Mn, Ti, Zr; в медных сплавах — Zn, Sn, Pb, Al, Mn, Fe, Ni, Be; в магниевых сплавах — Al, Zn, Mn, Zr; в свинцовых сплавах — Sn, Zn, Sb; в никелевых сплавах — Cr, Fe, Ti, Al. Л. э. вводят в легируемый металл обычно в виде сплавов (см. Ферросплавы, Лигатура).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Легированный чугун
  • Легислатура

Смотреть что такое "Легирующие элементы" в других словарях:

  • легирующие элементы — [alloying elements] химические элементы, преимущественно металлы, вводимые в состав сплавов для придания им определенных свойств (Смотри Легирование). Основные легирующие элементы в стали и чугуне Cr, Ni, Mn, Si, Mo, W, V, Ti, Zr, Nb, Co, Al, Cu …   Энциклопедический словарь по металлургии

  • Случайные легирующие элементы — Tramp alloys Случайные легирующие элементы. Остаточные легирующие элементы, которые содержатся в неконтролируемых легированных стальных отходах, загружаемых в сталелитейную печь. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П.… …   Словарь металлургических терминов

  • случайные легирующие элементы — Остаточные легирующие элементы, которые содержатся в неконтролируемых легированных стальных отходах, загружаемых в сталелитейную печь. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом …   Справочник технического переводчика

  • содержащий легирующие элементы — прил., кол во синонимов: 1 • низколегированный (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Элементы химические — [chemical elements] составные части всего многообразия простых и сложных веществ. Каждый химический элемент это совокупность атомов с одинаковым зарядом атомных ядер и одинаковым числом электронов в атомной оболочке. Атомное ядро состоит из… …   Энциклопедический словарь по металлургии

  • ЭЛЕМЕНТЫ ЛЕГИРУЮЩИЕ — входящие в состав руды и улучшающие качество конечного продукта. Имеют большое значение в черной металлургии, где ими являются Ni, Co, Сr и V. Отношение Сr и Ni в природою легированных рудах (бурых железняках коры выветривания, образовавшейся за… …   Геологическая энциклопедия

  • ЭЛЕМЕНТЫ (КОМПОНЕНТЫ) ПОЛЕЗНЫЕ — составные части полезного ископаемого, представляющие интерес для промышленности. В Э. п. входят элементы главные и второстепенные, включая элементы примеси, элементы спутники и элементы легирующие. Геологический словарь: в 2 х томах. М.: Недра.… …   Геологическая энциклопедия

  • ЭЛЕМЕНТЫ ВТОРОСТЕПЕННЫЕ — присутствующие в руде в низких и чрезвычайно низких содер., но существенно влияющие на промышленную ценность м ния. Обычно не определяют контура рудных залежей. При значительном скоплении Э. в. минимальное бортовое содер. главных полезных… …   Геологическая энциклопедия

  • легирующие примеси — [alloying elements] элементы, специально вводимые в металлы и сплавы в определенных количествах с целью изменения их структуры и свойств (Смотри также Легирующие элементы, Легирование). Смотри также: Примеси случайные примеси постоянные примеси …   Энциклопедический словарь по металлургии

  • халькофильные элементы — [chalcophile elements] 19 элементов сульфидных руд по классификации норвежкого геохимика В. М. Гольдшмидта: S, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, Ln, Sn, Sb, Те, Au, Hg, Tl, Pb, Bi, Po. Металлы xалькофильные элементы обладают специфическим сродством …   Энциклопедический словарь по металлургии

dic.academic.ru

ЛЕГИРУЮЩИЕ МЕТАЛЛЫ ЭТО - Легирование металла - Справочник химика 21

Антикоррозионное легирование металла. Чёрные металлы — Чёрные металлы железо и его сплавы (стали, ферросплавы, чугуны), в отличие от остальных металлов, называемых цветными. Например, медистые стали в своем составе содержат 0,2—0,5% Си и уже одно это в l /a— 3 раза повышает стойкость металла по сравнению с обычной углеродистой сталью. Коррозионная стойкость железа повышается введением легирующих добавок (нержавеющие стали содержат добавки Сг, N1 и других металлов).

Легирующие элементы — химические элементы, преимущественно металлы, вводимые в состав сплавов для придания им определённых свойств (см. Легирование). Для улучшения физических, химических, прочностных и технологических свойств металлы легируют, вводя в их состав различные легирующие элементы. Имеется способ уменьшения коррозии металлов, который строго нельзя отнести к защите, — это легирование металлов, т. е. получение сплавов.

Для улучшения свойств металлов, в том числе для обеспечения их коррозионной стойкости, в состав сплавов вводят различные вещества (легирующие добавки). Есть также легированные стали и чугуны. Ванадий в основном используют в качестве добавки к сталям. При введении в систему Ре—С небольших добавок других металлов (легирование) общий вид диаграммы состояния сохраняется. В отличие от модифицирования при легировании приобретённые свойства сохраняются после последующих переплавов металла.

Легирование является одним из главных методов управления литой структурой металлов и сплавов. Как отмечено выше, легирование сплавов следует осуществлять на более ранних стадиях, то есть – ещё при выплавке сплавов, в частности чугунов и сталей.

Поэтому процесс растворения чистых металлов и их ферросплавов при легировании происходит в диффузионном режиме и является длительным. Для легирования железоуглеродистых сплавов используются практически все основные элементы периодической системы, за исключением, пожалуй, благородных металлов и трансурановых элементов.

В зависимости от применяемых для легирования элементов, легированную сталь называют хромистой, хромоникелевой и т.д. Промышленные исследования в области совмещённых технологий легирования сталей ванадием начаты в 40-х годах В.И. Тыжновым и развиты в Уральском НИИ чёрных металлов (УРАЛНИИЧЕРМЕТ). Совмещённые технологии легирования сталей и особенно чугунов отходами, содержащими оксиды других цветных металлов, изучены гораздо в меньшей степени, что мешает их распространению.

Распределение легирующих элементов в стали.

Из сплавов железа с углеродом, называемых сталями, изготавливаются почти все конструкции в машиностроении и тяжелой промышленности. Смотри также Легирующие элементы, Легирование). Леги́рование (нем.legieren — «сплавлять», от лат.ligare — «связывать») — добавление в состав материаловпримесей для изменения (улучшения) физических и/или химических свойств основного материала.

В разных отраслях применяются разные технологии легирования. Легирование проводится на различных этапах получения металлического материала с целями повышения качества металлургической продукции и металлических изделий.

Легирование чугунов

В отличие от напыления и других видов покрытия, добавляемые вещества диффундируют в легируемый материал, становясь частью его структуры. Легирование стало целенаправленно применяться сравнительно недавно. Отчасти это было связано с технологическими трудностями.

Повышенная твёрдость и вязкость японских мечей с возможностью обеспечить остроту кромки возможно объясняются наличием в стали молибдена. Современные взгляды о влиянии на свойство стали различных химических элементов начали складываться с развитием химии во второй четверти XIX века.

Легирование (металлургия)

Для легирования сталей используются хром, марганец, никель, вольфрам, ванадий, ниобий, титан и другие элементы. Небольшие добавки кадмия в медь увеличивают износостойкость проводов, добавки цинка в медь и бронзу — повышают прочность, пластичность, коррозионную стойкость. Легирующие элементы вводят в сталь для повышения её конструкционной прочности.

Растворяясь в феррите, легирующие элементы упрочняют его. Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель. Молибден, вольфрам и хром влияют слабее. В зависимости от того, как взаимодействует легирующий элемент с железом или углеродом, он по-разному влияет на свойства стали. В феррите в большей или меньшей степени растворяются все элементы.

Химия и химическая технология

При этом твердость и предел прочности возрастают, а ударная вязкость обычно снижается. Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями. Марганец вводят в сталь до 2 %. Он распределяется между ферритом и цементитом.

В связи с этим для измельчения зерна с марганцем в сталь вводят карбидообразующие элементы. Марганец и кремний являются постоянными спутниками практически в любой стали, поскольку их специально вводят при её производстве. Кремний, наряду с марганцем и алюминием является основным раскислителем стали. Марганец также используется для «связывания» находящейся в стали серы и устранения явления красноломкости.

3] Но на практике круг элементов, используемых для легирования сплавов, гораздо уже – в основном это металлы IV-VI групп системы элементов

Специальное введение марганца, кремния и алюминия выше указанных диапазонов для придания стали определённых потребительских свойств уже будет являться легированием. Легированная сталь — сталь, которая, кроме обычных примесей, содержит элементы, специально вводимые в определённых количествах для обеспечения требуемых физических или механических свойств.

Способ состоит в в преднамеренном изменении состава металла путем введения в него специальных легирующих добавок (лат. ligare — связывать, соединять). Необходимы механически свойства металлов и сплавов достигаются введением в расплав легирующих добавок. Другим способом получения стали является восстановление железа из руды и введение в него требуемого количества углерода и других примесей. Марка легированной качественной стали в России состоит из сочетания букв и цифр, обозначающих её химический состав.

Уже опубликовано на сайте:

labrowendosin.ru

Легирование — Мегаэнциклопедия Кирилла и Мефодия — статья

Введение легирующей примесей может существенным образом изменить свойства твердых тел. От характера взаимодействия атомов легирующих элементов и атомов основного вещества, от типа образованных дефектов структуры, от характера взаимодействия легирующих и фоновых примесей, легирующих примесей и дефектов структуры, от способности легирующей примеси образовывать соединения в матрице вещества и т.д. зависят свойства (электрические, магнитные, тепловые) легируемого вещества.

Легирование широко применятся в технологии получения металлов и сплавов, полупроводниковых кристаллов и пленок, а также диэлектрических материалов с заданными свойствами.

Легирования металлов, сталей и сплавов позволяет получить металлические сплавы с разнообразными свойствами, значительно отличающимися от свойств чистых металлов. Например, коррозионная стойкость циркония существенно зависит от его чистоты. Сотые доли процента углерода и азота снижают его коррозионную стойкость, но введение ниобия нейтрализует действие углерода, а введение олова — азота. Легирование ряда металлов и сплавов на их основе редкоземельными элементами позволило значительно улучшить прочностные характеристики этих веществ и т. д.При легировании стали можно получить заданные свойства, в том числе отсутствующие у исходных углеродистых сталей. Стали считаются легированными при содержании примесей в них, например, кремния — более 0, 8%, марганца — не более 1%. Но при введении легирующих примесей в сталь необходимо учитывать, что все элементы, которые растворяются в железе, влияют на температурный интервал его аллотропических модификаций, оказывая влияние на свойства сталей. Температура полиморфных превращений железа зависит от всех растворенных в нем элементов. В их присутствии изменяется область существования γ-железа. Ряд легирующих примесей (Ni, Mn и др.) расширяют область существования γ-железа от комнатной температуры до температуры плавления (см. аустенит), А такие примеси, как V, Si, Mo и др. делают ферритную фазу устойчивой вплоть до температуры плавления (см. феррит). Легирующие примеси в промышленных сталях могут преимущественно растворяются именно в основных фазах железоуглеродистых сплавов — феррите, аустените, цементите). При наличии в сплаве железа большой концентрации элемента, который сужает γ-область, превращение g¬®aотсутствует, образуются ферритные стали. Класс аустенитных сталей можно получить при легировании элементами, расширяющими γ-область.

Если легирующие примеси в γ-железе находятся в свободном состоянии, то они как правило, являются примесями замещения, занимая позиции атомов железа. Но легирующие примеси могут образовывать химические соединения с железом, между собой, образовывать оксиды или карбиды. В этом случае карбидообразующие элементы (молибден, ванадий, вольфрам, титан) задерживают выделение карбидов железа при отпуске и увеличивают конструкционную прочность стали.

Легирующие примеси изменяют свойства феррита. Молибден, вольфрам, марганец и кремний снижают вязкость феррита, а никель — не снижает. Но никель интенсивно снижает порог хладоломкости, уменьшая склонность железа к хрупким разрушениям.

Все легирующие элементы (за исключением марганца и бора), уменьшают склонность аустенитного зерна к росту. Никель, кремний, кобальт, медь (элементы, не образующие карбиды), относительно слабо влияют на рост зерна. Легирующие элементы замедляют процесс распада мартенсита. Т. е. в общем случае легирование существенным образом меняет кинетику фазовых превращений.

Для повышения качества сталей некоторые примеси, например, марганец и кремний, добавляют в заданном количестве. При содержании марганца от 0, 25 до 0, 9% прочность стали повышается без значительного снижения ее пластичности. Кремний, содержание которого в обыкновенных сталях не превышает 0, 35%, не оказывает существенного влияния на свойства стали. А такие примеси, как фосфор и сера являются нежелательными загрязняющими примесями. Фосфор делает сталь хрупкой (хладноломкой), а присутствие серы в количестве более 0, 07 % вызывает красноломкость стали, снижает ее прочность и коррозионную стойкость.

Изменение свойств сплавов в результате легирования обусловлено, кроме того, изменением формы, размеров и распределения структурных составляющих, изменением состава и состояния границ зерен. Легирование стали может тормозить процессы рекристаллизации.Под легированием полупроводников подразумевается не только дозированное введение в полупроводники примесей, но и структурных дефектов с целью изменения их свойств, главным образом электрофизических. Наиболее распространенным методом легирования является легирование различными примесями.Для получения кристаллов n- и p- типа проводимости кристаллы легируют электрически активными примесями (чаще всего – водородоподобными, валентность которых отличается от валентности основных замещаемых атомов на единицу). Электрически активные водородоподобные примеси являются примесями замещения. Например, для элементарных полупроводниковых материалов германия или кремния такими легирующими примесями являются атомы элементов III или V групп таблицы Менделеева. Примеси такого типа создают мелкие (вблизи дна зоны проводимости или вблизи потолка валентной зоны) энергетические уровни: соответственно, примеси III группы (B, Al, In, Ga) будут акцепторами, а примеси V группы (P, Sb, As) — донорами. У полупроводниковых соединений AIIIBV элементы V группы замещаются примесями VI группы (S, Se, Te), которые являются донорами, а элементы II группы (Zn, Cd), замещая, соответственно, атомы III группы в соединении, будут проявлять акцепторные свойства. Такое легирование позволяет управлять типом проводимости и концентрацией носителей заряда в полупроводнике.

Некоторые примеси, введенные в кристалл, способны проявлять как донорные, так и акцепторные свойства. Если проявление донорных или акцепторных свойств таких примесей зависит от их размещения в кристаллической матрице, например, от того, находится ли атом легирующей примеси в узле кристаллической решетки или в междоузлии, примеси называются амфотерными. Некоторые примеси, размещаясь в узлах решетки, являются акцепторами, а в междоузлии — донорами. А в случае легирования соединений AIIIBV примесями IV группы, проявление донорных или акцепторных свойств будет зависеть от того, в узлах какой подрешетки расположен атом примеси. При замещении таким атомом катионного узла он будет проявлять донорные свойства, а при замещении анионного узла — акцепторные.

В некоторых случаях используют легирование изовалентными примесями, т.е. примесями, принадлежащими той же группе Периодической системы, что и замещаемые им атомы. Такое легирование используется для формирования свойств косвенным путем. Например, легирование кристаллов GaAs изовалентной примесью In способствует проявлению эффекта примесного упрочнения (снижения плотности дислокаций) и формированию в кристалле полуизолирующих свойств.

Иногда для легирования используют примеси, образующие глубокие уровни в запрещенной зоне, что позволяет воздействовать на диффузионную длину носителей заряда и регулировать степень компенсации электрически активных центров.

Путем введения тех или иных легирующих добавок можно эффективно влиять на состояние ансамбля собственных точечных дефектов в кристалле, в особенности на поведение в них дислокаций и фоновых примесей и таким образом управлять свойствами полупроводникового материала.

Легирование полупроводников обычно осуществляется непосредственно в процессе выращивания монокристаллов и эпитаксиальных структур. Легирующая примесь в элементарной форме или в виде соединения вводится в расплав, раствор или газовую фазу. В связи с особенностями процессов на фронте кристаллизации при выращивания кристаллов и пленок, примесь распределяется неравномерно как по длине, так и в объеме кристалла. Чтобы добиться равномерного распределения, используются различные технологические приемы.

Еще одним способом легирования полупроводников является радиационное легирование. В этом случае доноры и акцепторы не вводятся в кристалл, а возникают в его объеме в результате ядерных реакций при его облучении. Наибольший практический интерес представляют реакции, возникающие в результате облучения тепловыми нейтронами, которые обладают большой проникающей способностью. При таком способе легирования распределение электрически активных примесей более равномерно. Но в процессе облучения в кристалле образуются радиационные дефекты, снижающие качество материала.

Для создания p-n-переходов может использоваться диффузионный метод введения легирующей примеси. В этом случае примесь в объем вводят либо из газовой фазы, либо из специально нанесенного покрытия, которым может служить, например, в случае кремния, оксидная пленка. Для получения тонких легированных слоев широко используется метод ионной имплантации, позволяющей вводить практически любую примесь и управлять ее концентрацией и профилем ее распределения.

megabook.ru

Легирование металла - Справочник химика 21

    Легирование металлов. Методы защиты, связанные с изменением свойств корродирующего металла, осуществляются при помощи легирования. Легирование — эффективный (хотя обычно дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава обычно вводят компоненты, вызывающие пассивирование металла. В качестве таких компонентов применяются хром, никель, вольфрам и др. Широкое применение нашло легирование для защиты от газовой коррозии. При этом используют сплавы, обладающие высокой жаростойкостью и жаропрочностью. [c.217]     Рассмотренные три теории жаростойкого легирования металлов не исключают, а дополняют друг друга и дают возможность не только теоретически" обосновать существующие сплавы, но и более рационально подойти к разработке рецептуры новых жаростойких сплавов. [c.116]

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9 % хрома, молибденом или кремнием, применяют, например, в парогенераторе- и турбостроении. Сплав, содержащий 9—12% хрома, применяют для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.235]

    Коррозию металлов можно затормозить изменением потенциала металла, пассивированием металла, снижением концентрации окислителя, изоляцией поверхности металла от окислителя, изменением состава металла и др. При разработке методов защиты от коррозии используют указанные способы снижения скорости коррозии, которые меняются в зависимости от характера коррозии и условий ее протекания. Выбор того или иного способа определяется его эффективностью, а также экономической целесообразностью. Все методы защиты условно делятся на следующие группы а) легирование металлов, б) защитные покрытия (металлические, неметаллические), [c.217]

    Вертикальные трубчатые печи получили широкое распространение за рубежом и в настоящее время применяются в отечественной промышленности. Обусловлено это двумя их существенными преимуществами по сравнению с печами с горизонтальным расположением труб змеевика 1) значительное сокращение расхода легированного металла на подвески и опоры труб змеевика в связи с уменьшением числа этих креплений и вынесением их за пределы обогреваемой зоны  [c.107]

    Основное преимущество котла с трубчаткой состоит в том, что материал трубок может быть отличным от материала корпуса аппарата. Это особенно важно для сосудов, изготовленных из цветных и легированных металлов. Трубчатка изготовляется для давления до 250 ата. [c.191]

    Второй способ защиты - введение в металл компонентов, повышающих его коррозионную стойкость в-данных условиях, или удаление вредных примесей, ускоряющих коррозию. Он применяется на стадии изготовления металла, а также при термической и механической обработке металлических деталей. Во многих случаях легирование металла, мало склонного к пассивации, металлом, легко пассивируемым в данной среде, приводит к образованию сплава, обладающего той же (или почти той же) пассивируемостью, что и легирующий металл. Таким путем получены многочисленные коррозионно-стойкие сплавы, например нержавеющие стали, легированные хромом и никелем. Однако широкое внедрение этого способа сдерживается высокой стоимостью нержавеющих металлов. [c.15]

    Легирование металлов. Для улучшения свойств металлов, в том числе для обеспечения их коррозионной стойкости, в состав сплавов вводят различные вещества (легирующие добавки). Так, коррозионная стойкость стали может быть повышена введением хрома, никеля, молибдена. Коррозионная стойкость меди возрастает при добавлении к ней бериллия и алюминия. Легирование с целью повышения коррозионной стойкости применяется также для алюминия, к которому добавляют молибден, хром или никель. [c.219]

    Таким образом, изложенную выше теорию жаростойкого легирования металлов можно представить в виде следующих требований, предъявляемых к легирующему элементу Ме  [c.112]

    Имеется способ уменьшения коррозии металлов, который строго нельзя отнести к защите, — это легирование металлов, т. е. получение сплавов. Например, в настоящее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали, действительно, не покрываются ржавчиной, но их поверхностная коррозия хотя и с малой скоростью, но имеет место. Оказалось, что при добавлении легирующих добавок коррозионная стойкость меняется скачкообразно. Установлено правило (правило Таммана), согласно которому резкое повышение устойчивости к коррозии железа наблюдается при введении легирующей добавки в количестве /в атомной доли, т. е. один атом легирующей добавки приходится на восемь атомов железа. Считается, что при таком соотношении атомов происходит их упорядоченное расположение в кристаллической решетке твердого раствора, что и затрудняет коррозию. [c.140]

    А. Н. Мень и А. Н. Орлов дополняют эту теорию жаростойкого легирования металлов некоторыми рекомендациями (см. с. 103)  [c.116]

    Легирование металлов. Легирование стали небольшими количествами меди, фосфора, никеля и хрома особенно эффективно для защиты от атмосферной коррозии. Добавление меди более эффективно в умеренном, чем в тропическом морском климате добавки хрома и никеля в сочетании с медью и фосфором повышают стойкость как в умеренном, так и в тропическом климате (табл. 8.5). Скорость коррозии конструкционных сталей в тропиках (например, в Панаме) в два и более раза выше, чем в умеренном климате (например, Кюр Бич), главным образом вследствие более высоких средних температур и относительной влажности. [c.180]

    Железо, кобальт и никель поглощают водород, но определенных соединений с ними не дают. Нитриды их неустойчивы, ио, образуясь на поверхности стальных изделий при насыщении их азотом в атмосфере аммиака, делают эти изделия более коррозионно устойчивыми и более твердыми. Стали, легированные металлами, имеющими большое сродство к азоту (титан, ванадий, хром, марганец), лучше азотируются.  [c.346]

    Для сокращения расхода дорогостоящих легирующих добавок получило распространение поверхностное катодное легирование металлов и сплавов в условиях возможного возникновения пассивности. [c.77]

    Основными способами защиты от газовой коррозии являются легирование металлов, создание защитных покрытий и замена агрессивной газовой среды. Для изготовления аппаратуры, подвергающейся действию коррозионно-активных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома — термохромирования. Для защиты используют и неметаллические покрытия, изготовленные из керамических и керамико-металлических (керметы) материалов. [c.687]

    При легировании металла шва и выборе присадочных материалов в металле шва при прочих равных условиях стремятся создать двухфазную аустенитно-ферритную структуру. Эта структура, как показано выше, устойчива против межкристаллитной коррозии и снижает чувствительность к образованию горячих трещин. [c.367]

    Во избежание легирования металла шва углеродом в покрытиях и флюсах не применяют вещества, содержащие углерод. По тем же причинам на поверхности электродной проволоки недопустимы даже следы графитной и иной смазки. [c.367]

    Сопротивление изнашиванию легированного металла обычно характеризуется двумя главными параметрами способностью металлической матрицы и карбидной фазы претерпевать превращения в поверхностных слоях, приспосабливаться к условиям трения и иметь минимальный износ. [c.28]

    Важнейшим параметром в уравнении (15) является допускаемое напряжение 3 в металле, которое в весьма сильной степени зависит от точного значения температуры металла трубы. Следовательно, обязательной предпосылкой для надежной работы радиант-ных нечей является существование достаточно точного и надежного метода расчета температуры металла печных труб. Важное значение температуры металла отчетливо видно из рис. 5, где показана типичная зависимость между температурой и допускаемым напряжением (ведущим к деформации ползучести 1% за 10 тыс. час.) для легированной стали, содержащей 4—6% хрома и 0,5% молибдена. Быстрое падение допускаемого напряжения в металле с повышением температуры характерно для большинства легированных металлов, применяемых для высокотемпературных процессов. [c.56]

    Легированный металл должен иметь высокую температуру плавления, по крайней мере на 100 - 150°С выше заданной рабочей температуры. [c.14]

    Вертикальные трубчатые печи менее дороги, чем печи с горизонтальным распололвертикальные печи только там, где нагреваемая среда не склонна к коксованию и где нет необходимости быстро удалять продукт в случае аварии. С целью снижения стоимости строительства во всех случаях, когда нагреваемый продукт не образует коксовых или зольных отложений, используют безретурбендные змеевики. [c.116]

    ЗАЩИТА ОТ КОРРОЗИИ, осуществляется след. осн. методами 1) созданием условий для образования на пов-сти металла при взаимод. с агрессивной средой защитных слоев (оксидов, солей), обеспечивающих пассивность металлов. Формирование таких слоев достигается легированием металла, введением в среду пассиваторов и ингибиторов коррозии или с помощью анодной электрохим. защиты. Защитные слои могут образовываться также при адсорбции орг. ингибиторов из среды 2) нанесением лакокрасочных, эмалевых, пластмассовых и др. защитных покрытий на пов-сть металлич. изделий 3) понижением содержания в среде в-в, вызывающих или ускоряющн с коррозию, путем спец. очистки или введением добавок, реагирующих со стимуляторами коррозии 4) электрохим. защитой 5) гомогенизирующей термич. обработкой металлов и сплавов с целью получ. возможно более однородной структуры 6) рациональным конструированием, исключающим наличие или сокращающим число и размеры особо опасных с точки зрения корро,зии зон в изделиях и конструкциях (щелей, сварных швов, застойных участков, электрич. контактов разнородных металлов и др.) илн обеспечивающим усиленную защиту таких зон (см. Контактная коррозия. Коррозионная усталость, Коррозия под напряжением, Фреттинг-коррозия)] 7) повышением термодинамич. стабильности сист. металл — среда, напр, использ. благородных и полублагородных металлов, подбором равновесного состава газовых атмосфер, в к-рых производится обработка металлов и т. д. Часто использ. комбинированные методы 3. о. к. В кач-ве нер защиты рассматривают также замену металлич. конструкц. материалов химически стойкими неметаллическими. [c.205]

    Чтобы увеличить срок службы оборудования, на наиболее опасных его участках применяются стойкие против коррозии материалы— легированные стали Х5М, 0X13, латунь, сплав никеля и меди, называющийся моиель-металлом. Для снижения стоимости аппаратуры ее изготавливают из двухслойного металла внутренняя поверхность, подверженная действию вредных соединений, делается из легированных металлов, нарул[c.153]

    Некоторые из цветных металлов обладают устойчивостью к действию ряда агрессивных сред. Поэтому при изготовлении аппаратуры для промышленности органических полупродуктов и красителей наряду со сталью, чугуном и легированными металлами и сплавами применяют некоторые цветные металлы. Наибольшее применение имеют алюминий и никел)). [c.86]

    Антикоррозионное легирование металла. Способ состоит в в преднамеренном изменении состава металла путем введения в него специальных легирующих добавок (лат. ligare — связывать, соединять). Подобные добавки подбирают с таким расчетом, чтобы при их помощи повысить коррозионную стойкость основного металла. Иногда для тех же целей из металла, наоборот, удаляют примеси, своим присутствием убыстряющие коррозию. Например, медистые стали в своем составе содержат 0,2—0,5% Си и уже одно это в l /a— 3 раза повышает стойкость металла по сравнению с обычной углеродистой сталью. С другой стороны, необходимо стремиться к максимально полному освобождению алюминия от примесей железа, так как последнее, даже при малом своем присутствии в техническом металле, во много раз убыстряет его коррозию. [c.369]

    Легирование металлов — эффективный (хотя и дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты, вызывающие пассивацию металла. В качестве таких компош итов применяют хром, никель, вольфрам и др. Широкое применение нашло легирование [c.234]

    Для решения этой задачи большое значение приобретает разработка оптимальных методов поверхностного легирования, таких, как термодиффузионная обработка, электроискровое легирование, ионная имплантация, электронно-лучевая обработка, которые позволяют обрабатывать поверхности, непосредственно соприкасающиеся с рабочими средами, расширяют возможности и эффективность использования катодных покрытий. Перспективным методом поверхностного легирования металлов и сплавов является ионная имплантация. Она позволяет регулировать толщину легированного слоя, концентрацию вводимых компонентов, их распределение по глубине за счет изменения энергии и рпзы внедрения. Толщина имплантированного слоя в зависимости от энергии может составлять от 0,1 до 3 мкм. Изменение коррозионной стойкости после ионной имплантаций происходит за счет обеспечивания пассивного состояния при имплантации металлами, разупрочнения структуры, приводящего к повышению сродства поверхности к кислороду, изменения дефект-но сти решетки. При этом важно, что для повышения защитных свойств вводимый элемент может образовывать с защищаемым металлом или сплавом метастабильный твердый раствор внедрения или замещения в широком диапазоне концентраций. [c.73]

    Легирование металла шва осуществляют в соответствии со свариваемой сталью, технологической прочностью и свойствами металла шва. Легируюпще компоненты вводят в электродную проволоку. [c.367]

    Неуклонное повышение температуры технологического потока в сочетании с более жесткими требованиями к эксплуатационным показателям печи вызвало необходимость создания экспериментальных конструкций с использованием необычных и весьма ценных легированных металлов и сплавов. Успехи в области металлургии привели к разработке новых преспективных сплавов для работы при высоких и сверхвысоких температурах (980° С и выше). В настоящее время трубопрокатные заводы выпускают трубы центробежной отливки из жароупорных и высокопрочных материалов для весьма жестких условий работы по цене, допускающей их широкое применение. Предельные допускаемые напряжения (из расчета ползучести 1% после 10 000 час. работы) для некоторых литых жароупорных сплавов показаны на рис. 18. [c.70]

    На авторемонтных предприятиях при восстановлении стальных коленчатых валов автоматической наплавкой широко применяется способ легирования металла через плавленый флюс марки АН-348А с добавкой компонентов. [c.62]

    При автоматической сварке под флюсом в качестве присадочного материала применяют необмазанную сварочную проволоку в катушках. Шлаковый покров, образующийся из расплавившихся флюса и окислов, предохраняет сварочную ванну от воздействия кислорода и азота воздуха. Многие флюсы способны передавать некоторые входящие в их состав элементы ванне расплавленного металла. Поэтому легирование металла шва можно осуществлять как применением присадочной проволоки из легированной стали, так и переводом в металл шва примесей, входящих в состав флюса. [c.137]

    В реальных условиях наблюдаются все рассмотренные виды А.к. Защитные св-ва слоя продуктов А.к., предохраняющего металл от дальнейшего разрушения, можно усилить легированием металла Ni, u, Сг (низколегированные атмосферостойкие стали, сплавы на основе Си, А и др.). Для А,к. характерны все виды коррозионного разрушения равномерное, язвенное, питтинговое, щелевое, межкристал-литное, коррозионное растрескивание и др. По стойкости к А.к. металлы и сплавы образуют ряд в такой же последовательности, как и по стойкости к коррозии в нейтральных электролитах, а именно благородные металлы, легко пассивирующиеся металлы (Ti, AI Zr), конструкц. сплавы на основе Fe, Ni, u, d. [c.213]

    Для изучения закономерностей процессов концентрирования, извлечения, получетшя, рафинирования и легирования металлов, а также процессов, связанных с изменением состава, структуры и св-в сплавов и материалов, полуфабрикатов и изделий из них в М. используют физ., хим., физ.-хим. и мат. методы исследования. [c.50]

    В современных трубчатых печах в основном применяют гладкие трубы. Однако некоторые модели трубчатых печей, например печи конвекционного типа для деструктивной гидрогенизации топлив, имеют змеевики из толстостенных легированных труб с ребристой насадкой из углеродистой сталп. Насадка предста вляет приварные ребра диаметром 270 мм, толш иной 4 мм. Расстояние между ребрами около 14 мм. Трубы с ребристой насадкой резко увеличивают размеры поверхности нагрева при сравнн-тельно небольшом расходе легированного металла. [c.423]

chem21.info

Легирующие элементы в стали

Легированные стали — это углеродистые стали, содержащие менее 1% углерода, однако с добавками других металлов в количествах достаточных, чтобы существенио изменить свойства стали. Наиболее важные легирующие элементы

 

Алюминий Вплоть до 1% алюминия в легированных сталях позволяет им, в  процессе азотирования образовать более твердый, износоустойчивый наружный слой.

 

Хром. Присутствие небольшого количества хрома стабилизирует структуру твердых карбидов. Это улучшает отклик стали на термообработку. Присутствие большого количества хрома улучшает коррозионную стойкость и термостойкость стали (например, нержавеющая сталь). К сожалению, присутствие хрома в стали приводит к росту зернистости (см. никель).

 

Кобальт. Кобальт повышает критическую скорость закалки стали при tермобработке. Это позволяет инструментальным сталям работать при высоких температурах без разупрочнения (смягчающего отпуска). Кобальт — важный легирующий элемент в некоторых быстрорежущих (инструментальных) сталях

 

Медь. Вплоть до 0,5 % содержания меди улучшает коррозионную стойкость легированных сталей.

 

Свинец. Присутствие вплоть до 0,2 % свинца улучшает обрабатываемость сталей, однако за счет уменьшения прочности и вязкости.

 

Марганец. Этот легирующий элемент всегда присутствует в сталях до максимального содержания 1,5 % для нейтрализации вредного влияния примесей, остающихся после процессов её удаления. Он также способствует формированию устойчивых карбидов в подвергающихся закалке сталях. В больши количествах (вплоть до 12,5 %) марганец улучшает износоустойчивость сталей самопроизвольно формируя твердый наружный слой под воздействием истирания (самозакалка).

 

Молибден. Этот легирующий элемент поднимает сопротивление ползучести сталей при высоких температурах; стабилизирует в них карбиды; улучшает характеристики режущих инструментов при высоких температурах и уменьшает восприимчивость хромоникелевых сталей к «отпускной хрупкости».

 

Никель. Присутствие никеля в легированных сталях способствует увеличению прочности и улучшению структуры. Он также улучшает коррознонную стойкость стали. К сожалению, никель имеет склонность разупрочнять сталь графитизируя любые присутсвующие карбиды. Так как никель и хром обладают противоположными свойствами, их часто используют в сочетании (хромо-никелевые стали). Их преимущества дополняют друг друга, в то время как их нежелательные воздействия взаимно уравновешиваются.

 

Фосфор. Это остаточный элемент после процессов удаления. Он может стать причиной непрочности стали, и обычно стремятся уменьшить его присутствие до уровня ниже 0,05 %. Тем не менее фосфор способен улучшить обрабатываемость, действуя как внутренняя смазка. В больших количествах он также улучшает текучесть литых сталей и чугуна.

 

Кремний. Присутствие кремния вплоть до 0,3 % улучшает текучесть литых сталей и чугунов, причем в отличие от фосфора без снижения прочности. Вплоть до 1% кремния улучшает термостойкость сталей. К сожалению, как и никель, фосфор — сильный графитизирующий элемент, и его никогда не добавляют в больших количествах в высокоуглеродистые стали. Кремний используется для улучшения магнитных свойств магнитно-мягких материалов, тех, которые используются для пластин трансформаторов и штампованных листов для изготовления статоров и роторов электромотора.

 

Сера. Сера также является остаточным элементом после процессов удаления. Ее присутствие сильно ослабляет сталь, и используются все возможности для ее удаления; кроме того, марганец всегда присутствует в сталях, чтобы сводить к нулю влияние остаточной серы. Однако сера иногда преднамеренно добавляется в низкоуглеродистые стали для улучшения их обрабатываемости, в тех случаях, когда допустимо уменьшение прочности компоненты (сульфидированные легкообрабатываемые (автоматные) стали).

 

Вольфрам. Присутствие вольфрама в легированных сталях способствует формированию очень твердых карбидов и, так же как и присутствие кобальта, повышает критическую скорость закалки стали при термообработке. Это позволяет вольфрамовым сталям (быстрорежущим сталям) сохранять свою твердость при высоких температурах. Вольфрамовые сплавы составляют основу высокопроизводительных инструментов и штамповой стали.

 

Ванадий. Этот элемент усиливает влияние других присутствующих легирующих элементов и сам оказывает на легированные стали множество самых разнообразных воздействий:

 

1. Его присутствие способствует формированию твердых карбидов.

2. Он стабилизирует мартенсит в закаленных сталях и таким образом улучшает прокаливаемость и увеличивает предельное критическое сечение стали.

3. Он уменьшает рост зернистости при термообработке и процессах горячей обработки.

4. Он увеличивает «твердость при высоких температурах» инструментальных сталей и игтамповой стали.

5. Он улучшает усталостную прочность сталей

 

  • Модификация AD атрибутов >>

www.abakbot.ru