Дайджест - Промышленная безопасность. Получение из карбида кальция ацетилена
Получение ацетилена из карбида кальция, взаимодействие с: друзья не разлей вода
Для разложения 1 кг химически чистого карбида кальция теоретически необходимо 0,562 кг воды, при этом получается 0,406 кг ацетилена (285 л) и 1,156 кг гашеной извести.
Прильем из капельной воронки раствор хлорида натрия в колбу с карбидом кальция. Наблюдаем выделение газа. Это — ацетилен. Вторым продуктом реакции является гидроксид кальция. Соблюдать правила работы с горючими газами, поджигать ацетилен можно только после проверки на чистоту.
Карбид кальция представляет собой твердое кристаллическое вещество. Технический продукт дает кристаллический излом серого цвета с различными оттенками в зависимости от чистоты. Застывший карбид кальция дробится и сортируется на куски определенных размеров. Карбид кальция используют при проведении автогенных работ и освещения, а также в производстве ацетиленовой сажи и продуктов органического синтеза, из которых главным является синтетический каучук.
Получение карбида кальция
Карбид кальция используют для получения карбидно-карбамидного регулятора роста растений, изготовления порошкового карбидного реагента. Опыты получения ацетилена и исследования его свойств демонстрируются одновременно. Заготавливать ацетилен для урока заранее и хранить его в газометре не следует ввиду опасности взрыва.
При перемешивании воды с находящимся в ней карбидом кальция разложение происходит быстрее и равномернее
Колбу для реакции следует брать не слишком малого объема, так как при реакции происходит вспучивание образующейся густой жидкости и пену может погнать газом по отводной трубке. В случае применения слишком большой колбы пройдет много времени, пока из прибора не будет вытеснен весь воздух, и если ждать этого момента, то произойдет большая потеря ацетилена. При приливании воды к карбиду кальция реакция идет всегда очень бурно; ацетилен поэтому расходуется непроизвольно, и его может не хватить для показа всех намеченных опытов.
Образующийся газ собирают в цилиндры по способу вытеснения воды (после проверки на полноту вытеснения воздуха) или же непосредственно используют для соответствующих опытов. Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах.
Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно. Карбид кальция имеет резкий чесночный запах и сильно поглощает воду. Его плотность повышается с увеличением количества примесей и изменяется в пределах 2,22-2,8 г/см3. Молекулярная масса — 64,102.
С конца 19 в., когда был разработан дешевый способ получения ацетилена из карбида кальция (СаС2 + 2Н2О ® С2Н2 + Са(ОН)2), этот газ стали использовать для освещения
На этом заводе карбид кальция впервые стал выпускаться не только как товарный продукт, но и для получения цианамида кальция. Технический карбид кальция получают в результате взаимодействия обожженной извести (СаО) с коксом (3С) или антрацитом в электрических печах при температуре 1900-2300оС. Технический карбид кальция, получаемый в электропечах, содержит ряд примесей, попадающих в него из исходных материалов, которыми пользуются при его производстве.
Расплавленный карбид кальция сливают из печи в специальные изложницы, в которых он остывает и затвердевает. Карбид кальция применяют для получения ацетилена и в производстве цианамида кальция, из которого получают удобрения, цианистые соединения.
merotudly.ru
Производство ацетилена из карбида кальция
Производство ацетилена из карбида кальция
Ацетилен получают разложением карбида кальция водой в ацетиленовых генераторах. При методе «вода на карбид» разложение проводят в генераторах, в которые воду подают на движущийся по полкам карбид, а из аппарата выводят известь-пушонку. При методе «карбид в воду» карбид подают в избыток воды, а известь выводят в виде шламовых вод. Ацетилен из карбида кальция получается высокой концентрации с незначительным количеством примесей (Н25, РН3, Г4Н3), от которых ацетилен очищают раствором щелочи, серной кислотой или гипохлоритом натрия. Влажный или осушенный ацетилен (в зависимости от потребителя) направляют на дальнейшую переработку или в баллоны.[ ...]
Отмечены случаи взрыва ацетилено-воздушных смесей в бункерах карбида, кожухах транспортеров и элеваторов, шахтах генераторов и барабанах-охладителях карбида кальция при попадании в них влаги. Некоторые аварии, связанные с загазованностью производственных помещений и открытых площадок, происходили в результате разрушения предохранительных мембран, установленных на аппаратах и трубопроводах, и отсутствия отводных труб, а также вследствие неисправности оборудования, трубопроводов, ошибок, допускаемых в расчетах гидрозатворов, и внезапных выбросов газа в атмосферу из генераторов. Известны случаи образования взрывоопасных ацетилено-воздушных смесей в «свободных объемах» аппаратов с последующим взрывом.[ ...]
Отстойник «Дорра» представляет собой вертикальный цилиндрический аппарат с коническим днищем емкостью 600 м3. Аппарат снабжен мешалкой с электроприводом, которая автоматически включается и выключается через каждые 30 мин. Шламовая вода поступает в верхнюю часть каждой камеры отстойника. Через решетки вода стекает в камеру, где осаждается шлам. Шлам гребками перемещается к центру и проваливается через направляющие стаканы в нижнюю часть отстойника, откуда самотеком по трубопроводу поступает в приямок 7. Шламовый трубопровод отстойника промывается водой через каждый час работы.[ ...]
После отстаивания осветленная вода из верхней части камеры по трубам диаметром 100 мм поступает в сливные бачки 5 и из них в общую линию слива и далее в сборник осветленной воды 6. Шлам из приямка 7 центробежным насосом 8 откачивается на шламовые поля. Осветленная вода из приямка 6 центробежным насосом подается в промывную колонну в отделение генерации.[ ...]
Слесарь, получив задание, отремонтировал редуктор вышедшей из строя мешалки и стал стальным тросЛ1 чистить засорившуюся сливную трубу. В это время произошел взрыв. Причина взрыва — накопление ацетилено-воздушной смеси внутри отстойника «Дорра». Очевидно, при протаскивании стального троса через сливной штуцер в результате трения возникла искра, что и привело к взрыву.[ ...]
Известны несчастные случаи от взрыва газа при транспортировании и вскрытии барабанов с карбидом кальция, а также от взрыва в канализации вследствие десорбции ацетилена из недега-зированных шламовых вод.[ ...]
Для предупреждения образования взрывоопасных ацетиленовоздушных смесей в закрытую аппаратуру и оборудование для транспортирования карбида кальция и извести-пушонки непрерывно подают инертный газ в количестве, обеспечивающем содержание в газовой среде ацетилена не более 0,5%. При увеличении содержания ацетилена в газовой среде выше допустимого автоматически возрастает подача инертного газа в соответствующий аппарат.[ ...]
Для безаварийной работы производство ацетилена снабжается инертным газом от двух источников питания или буферными емкостями с постоянным запасом инертного газа, обеспечивающим двухчасовую работу производства.[ ...]
Безопасный режим работы достигается прежде всего строгой регулировкой соотношения подачи карбида кальция и воды в генераторы, обеспечивающей необходимые давления и температуру в аппарате, а также остаточное содержание карбида кальция (в пересчете на ацетилен) в извести-пушонке не более 0,4%.[ ...]
Чтобы избежать нарушения режима генерации и повышенного содержания карбида в извести-пушонке, размер гранул карбида кальция, подаваемого в «сухие» генераторы, не должен превышать 4 мм. Для предупреждения чрезмерно быстрого разложения карбида и внезапного повышения давления газа до опасных пределов ограничивают содержание пыли и мелочи в карбиде, поступающем на разложение в генераторы методом «карбид в воду». Чрезмерное повышение давления в генераторах предупреждается аварийной системой сбора газа через гидрозатвор в газгольдер, с относительно более низким давлением. Для поступления избыточного ацетилена из генератора максимальное заполнение газгольдера при нормальном режиме ограничивается. При гипохлоритной очистке ацетилена не допускается снижение щелочности очистительного раствора гипохлорита во избежание его разложения и выделения хлора. Шламовые воды из генераторов, работающих по методу «карбид в воду», перед подачей их в шламоотстойники или на переработку должны подвергаться дегазации от растворенного ацетилена.[ ...]
ru-safety.info
Развитие производства ацетилена из карбида кальция
В настояш ее время карбид кальция можно производить не в электропечах. Был разработан, по крайней мере частично, процесс получения карбида бария. На пилотной установке в Канаде был разработан процесс получения 100% карбида, вместо обычно получаемых 80%. Тем пе менее практически весь карбид все еще получают с помощью классического метода. Естественно, за это время были достигнуты некоторые успехи в конструкциях и технологии классических карбидных печей. Однако ни один из этих факторов не является ответственным за непрерывное развитие производства карбида и ацетилена, поскольку они не изменили радикально основное соотношение цен между ацетиленом и продуктами, конкурирующими с ним. [c.57]
Ацетилен стал доступен в конце XIX в., после того как был получен в промышленных условиях карбид кальция, явившийся сырьем для производства ацетилена. Использование дешевого природного газа и продуктов переработки нефти стало новым мощным стимулом для получения ацетилена и последующего развития на его основе крупной промышленности органического синтеза. Предпочтительное и пользование методов получения ацетилена из углеводородов или карбидного метода зависит главным образом от наличия в данном районе страны нефтяного сырья, природного газа или кокса и энергетических ресурсов. Из новых способов получения ацетилена чаще применяются окислительный пиролиз природного газа, электрокрекинг углеводородов и пиролиз нефтяных фракций в потоке высокотемпературных газов, образующихся в кислородной горелке. [c.9]
Данные табл. 1 свидетельствуют о том, что в настоящее время все промышленно развитые страны получают ацетилен и из карбида кальция, и из нефтяного сырья и природного г-аза, причем доля углеводородного ацетилена заметно растет. Производство различных продуктов, для синтеза которых используется ацетилен, также из года в год возрастает. В 1967 г. по основным видам промышленной продукции, получаемой из ацетилена (винилхлорид, винилацетат, хлоропрен, трихлорэтилен и акрилонитрил), объем производства значительно превысил прежний уровень. Вероятно, общая потребность в этих продуктах столь велика, что в переработку оказываются вовлеченными известные и новые виды сырья (табл. 2). [c.11]
Следующий этап в развитии карбидного производства связан с органическим синтезом ацетилен начали использовать для производства синтетических каучуков, пластмасс, химических волокон и др. В результате доля ацетилена, используемого в качестве горючего, начинает снижаться за счет роста потребления его в органическом синтезе (табл. 1.1). В последние годы карбид кальция стали применять в литейном производстве (схема 1). [c.7]
Чем ограниченнее были в странах возможности переработки нефти, тем больше использовался ацетилен из карбида кальция. Но абсолютные размеры производства карбида кальция не сокра-ш ались, ибо они зависели от обш,его уровня развития промышленности органического синтеза. Под влиянием этих условий в 1962 г. было произведено карбида кальция [c.6]
Последнее десятилетие характеризуется дальнейшим развитием производства ацетилена, общий выпуск которого во всех странах мира в 1958 г. составил более 2,15 млн. т. Это объясняется увеличивающимся с каждым годом потреблением ацетилена в одной из ведущих областей современной химии — промышленности органического синтеза. Так, в 1936 г. лишь 20% мировой продукции карбида кальция перерабатывалось в ацетилен для органического синтеза, а в 1959 г. — уже 60% [112]. [c.116]
Быстрому росту мировой промышленности органического синтеза в 20—30-х годах XX в. способствовали многие научно-технические достижения. Особенно важное значение имело развитие процессов крекинга и пиролиза нефти, переработки природных газов, производства карбида кальция и электролиза поваренной соли, позволившее обеспечить промышленность органического синтеза углеводородным сырьем—низшими олефинами и ацетиленом, а также хлором (для получения хлорорганических продуктов). [c.296]
До недавнего времени в производстве органических химикатов ФРГ базировалась преимущественно на продуктах переработки угля и ацетилене. Высокоразвитая коксовая промышленность, газовые заводы и предприятия синтетического горючего давали большое количество сырья для химической переработки. ФРГ являлась также крупнейшим производителем карбида кальция, из которого получается ацетилен. Однако быстрое развитие нефтехимии в США и Англии заставило западногерманские монополии уделить этой отрасли большое внимание. Химические концерны этих стран, основываясь на дешевом нефтехимическом сырье, имели возможность успешно конкурировать на внешних рынках и получать громадные сверхприбыли. Эти обстоятельства побудили западногерманские химические монополии форсировать организацию нефтехимических производств. Этому способствовали также следующие обстоятельства [c.40]
Длительное время ацетилен вырабатывали действием воды на карбид кальция, однако быстрое увеличение спроса на продукты его переработки способствовало развитию новых, более экономичных способов его производства путем пиролиза газообразных и жидких углеводородов в электрических дугах либо за счет энергии, выделяющейся при сгорании части сырья. Так как запасы природных углеводородов ограничены, то в последние годы идут поиски новых видов сырья, в качестве которых могут быть использованы отходы некоторых органических производств, а также твердое топливо — кокс, различные типы углей. Плазмохимические способы малочувствительны к перемене вида сырья, поэтому они [c.155]
Если учесть, что наирит получается из непищевого сырья (исходный продукт—ацетилен из карбида кальция или из углеводородов, в том числе из природного газа), становятся ясными перспективы развития производства хлоропренового каучука. [c.7]
До настоящего времени ацетилен получают почти исключительно из карбида кальция, производимого электротермически из извести и кокса. При этом расход электроэнергии настолько высок (10 — 11 квт ч на 1 кг ацетилена), что, с появлением и широким развитием производства этилена и других олефинов на базе деструктивных процессов переработки нефтяного сырья, ацетилен становится неконкурентноспособным, несмотря на то, что он является химически более активным и переработка его в ряде случаев более проста, чем переработка олефинов. [c.330]
На первых порах, когд 1 ацетилен производился, как правило, только из карбида кальция, развитие синтезов на основе ацетилена шло относительно медленно однако но мере разработки новых процессов его получения производство ацетилена начало расти несколько быстрее, особенно в результате использования нефтехимического сырья. [c.19]
В г. Кливленд и его пригородах развито производство основных неорганических и органических продуктов, а также лакокрасочных материалов. В г. Аштабьюла вырабатывают карбид кальция, хлор, каустическую соду, кислород, азот, ацетилен. Заводы по производству неорганических продуктов связаны трубопроводами. Транспортировка по ним азота, кислорода, ацетилена, соляной кислоты обходится на - "35% дешевле, чем автомобильным транопортом [19]. [c.516]
Ацетилен является одним из важнейших полупродуктов современного промышленного органического синтеза. Возможность получения ацетилена из угля (через карбид кальция) и из нефти (окислительным пиролизом метана) обеспечивает ему важную роль и в химической промышленности стран, ориентирующихся на каменноугольное сырье, и в странах с развитой нефтехимической промышленностью. Первым процессом тяжелого органического синтеза с применением ацетилена было осуществленное в начале XX века производство уксусного альдегида (и уксусной кислоты) по методу Кучерова. В 1930-х и начале 1940-х гг. в результате детальных исследований советских (Фаворский, Назаров, Шостаковский), немецких (Реппе) и американских (Ньюланд) химиков был открыт и доведен до промышленного использования ряд интересных реакций ацетилена и его производных. Теперь из ацетилена могут быть получены такие важнейшие мономеры как дивинил, хлоропрен и изопрен, которые применяются для производства основных видов синтетического каучука, и не менее важные мономеры, образующие некаучукоподобные полимеры с самыми разнообразными свойствами. Из числа последних необходимо упомянуть винилхлорид, простые и сложные виниловые эфиры, акриловую кислоту и ее эфиры, винилэтинилкарбинолы. Приготовляемые из тих полимеры находят широкое и многообразное применение в качестве пластмасс, органического стекла, присадок к смазочным маслам, синтетических клеев и медицинских препаратов. Среди многочисленных реакций ацетилена особенно интересны превращения с участием ацетиленового водорода, связанного с sp-гибридизованным углеродным атомом. Относящиеся сюда реакции нашли столь широкое применение, что практическое знакомство с ними необходимо для всех химиков-органиков. [c.40]
chem21.info
Кальций карбид, ацетилен из него
Подобно карбиду кальция реагируют с водой и ацетилениды других щелочноземельных и щелочных металлов, а также карбид лантана все они при этом образуют ацетилен. [c.78]
Неприятный запах технического ацетилена, напоминающий запах чеснока, обусловлен примесью фосфористого водорода. Согласно ГОСТ 1460—56 па карбид кальция, в ацетилене допускается содержание фосфористого водорода не более 0,08% (об.) и сернистых соединений в пересчете на сероводород не более 0,15% (об.). Фактически содержание фосфористого водорода в ацетилене иногда достигает 0,11%. Содержание фосфористого водорода должно быть строго ограничено, так как он не только ядовит (см. с. 203), по и склонен к самовоспламенению, особенно при [c.72]
Хотя карбид кальция и ацетилен были открыты еще в 1836 г., широкое промышленное применение они получили лишь в начале XX в., когда стала доступной и дешевой электрическая энергия, необходимая для производства карбида кальция. [c.57]
Ацетилен, получаемый разложением карбида кальция, и сухой природный газ, содержащий в основном метан, могут быть непосредственно использованы для дальнейшей переработки. Углеводородные газы крекинга и пиролиза нефтяных дистиллятов, коксовый газ, а также жирные природные газы являются сложными смесями веществ различного состава. Они могут использоваться в качестве химического сырья только после предварительного разделения на компоненты. В зависимости от требований, предъявляемых к сырью при дальнейшей переработке, газы разделяют на индивидуальные углеводороды четкое разделение) или на группы (фракции) углеводородов с близкими свойствами грубое разделение). [c.155]
В принципе все основные продукты, производимые в настоящее время на основе нефти, можно вырабатывать и из угля, тем более, что до начала 1920-х годов он являлся основным источником сырья для химической промышленности. Так называемые смоляные краски (азо-, ализариновые, индантреновые и другие красители) и сегодня производят на основе бензола, нафталина и антрацена, которые раньше получали только из каменноугольной смолы, а позднее — из сырого бензола коксохимических заводов. На основе химии красителей были созданы производства фармацевтических препаратов и средств защиты растений, другие отрасли промышленности органического синтеза. Из коксового газа выделяли аммиак, который шел на производство минеральных удобрений. Водород для синтетического аммиака также получали газификацией угля либо кокса. Отрасли собственно углехимии основывались на карбиде кальция и ацетилене, а также на синтез-газе, из которого затем получали углеводороды или метанол. Карбид кальция получали из угля и известняка в электрических дуговых печах, а затем перерабатывали в цианамид кальция (ценное удобрение) или ацетилен. Таким образом, для возрождения углехимии имеются [c.15]
Ацетилен, простейший представитель ацетиленовых углеводородов, образуется в небольших количествах прямым соединением углерода с водородом в вольтовой дуге при угольных электродах в атмосфере водорода (Вертело). Также в небольших количествах он образуется при сухой перегонке каменного угля и когда различные органические вещества горят при неполном доступе воздуха. Обычным способом его получения в лабораториях служила вышеприведенная реащия спиртового едкого кали на бромистый этилен, пока Муассан во Франции и Вильсон в Америке в 1898 г. не открыли способа получения карбида кальция. Карбид кальция получается при накаливании в электрической печи (до 2500 — 3000°) смеси из негашеной извести и угля [c.62]
При нагревании кальций реагирует с серой (сульфид aS), с фосфором (фосфид СазРа), с углеродом (карбид СаСг), Карбид кальция представляет собой в действительности ацетиленид (ацетилен проявляет свойства слабой кислоты). При взаимодействии с водой он разлагается с выделением ацетилена [c.148]
В промышленных условиях ацетилен получают из карбида кальция при взаимодействии последнего с водой (см. стр. 257). В больших количествах он получается из метана (см. стр. 343). [c.352]
Гидратация ацетилена в ацетальдегид (ацетилен, полученный из карбида кальция, не содержащий сернистых и фосфористых соединений) можно употреблять большой избыток ацетилена и поддерживать достаточно высокую температуру серной кислоты во избежание полимеризации образовавшегося ацетальдегида он должен удаляться из сферы действия серной кислоты гидратация ацетилена в газовой фазе водяным паром при высокой температуре не находит широкого применения [c.120]
Реакция гидролиза СаС представляет исторический интерес. Во времена газового освещения с помощью этой реакции получали ацетилен, который использовался для многих нужд. Ацетиленовыми лампами освещались частные дома и общественные здания их устанавливали даже на первых автомобилях. В тахтах до сих пор используются портативные ацетиленовые лампы. С помощью реакции гидролиза карбида кальция в наше время получают гораздо больше ацетилена, чем кот да-либо раньше, но теперь уже ацетилен не является конечным продуктом синтеза. Он используется как полупродукт для синтеза самых разнообразных органических соединений (см. гл. 26). [c.333]
В пробирку а (см. рис. 19) поместите маленький кусочек карбида кальция СаСг (47). Добавьте 2 капли воды (1). Немедленно начинается выделение газообразного ацетилена. Обратите внимание на х а р а к-терный запах технического ацетилена, обусловленный наличием ядовитых примесей (фосфористого водорода РНз). Химически чистый ацетилен не имеет запаха. Зажгите ацетилен у отверстия пробирки. Убедившись, что он горит светящимся или даже коптящим пламенем, немедленно закройте отверстие пробирки а пробкой с газоотводной трубкой и конец трубки погрузите в пробирку [c.34]
Свойства. Ацетилен — бесцветный газ, превращающийся в жидкость при —35°С. Он довольно хорошо растворим в воде и органических растворителях. Чистый ацетилен обладает слабым эфирным запахом. Всем известный присущий ему неприятный запах объясняется наличием примесей в карбиде кальция, из которого получают ацетилен. Ацетилен горит сильно коптящим пламенем из-за высокого процентного содержания в нем углерода. С воздухом и кислородом образует взрывоопасные смеси в широком интервале концентраций — от 3 до 90%. Жидкий ацетилен легко взрывается от толчка или удара. Поэтому в баллонах он находится в виде раствора в ацетоне, которым пропитан какой-либо пористый материал, например асбест. В таком виде ацетилен безопасен. [c.53]
Успехи в области по.лимерной химии ацетилена приобрели исключительно большое значение для Германии 1930-х годов, где производилось более 40% мировой продукции карбида кальция, а ацетилен являлся основным исходным материалом промышленности органического синтеза. В качестве наиболее подходящего мономера немецкие химики рассматривали бутадиен, поэтому исследовательская работа в области СК направлялась на поиски методов синтеза бутадиена из ацетилена. В 1936 г. в Дюдвигсгафене начал работать опытный завод концерна И. Г. Фарбениндустри , производивший дивинил из ацетальдегида (через альдоль и бу-тиленгликоль). В 1937 г. вступил в строй завод в Леверкузене. Крупный завод был построен в Шкопау, и в 1937 г. он выдал первую продукцию. В 1938 г. Германия выпускала несколько разновидностей дивинилового каучука буна , в том числе сополимеры дивинила с нитрилом акриловой кислоты (получался из ацетилена) и со стиролом [385]. [c.79]
Ацетилен получают в промышленности двумя основными методами из карбида кальция и путем пиролиза углеводородного сырья на этилен, при котором ацетилен образуется в качестве побочного продукта (гл. 2). Кроме того, существует несколько методов, в которых ацетилен получается из углеводородов как основной продукт (гл. 3). При этом используется тот факт, что, будучи термодинамически неустойчивым при обычной температуре, ацетилен гораздо более устойчив при повышенных температурах. Так, при температуре 1200 °С он является самым устойчивым из углеводородов (гл. 3, рис. 3.2) и поэтому может быть получен путем их пиролитического расщепления. [c.91]
Примеси и очистка ацетилена. По выходе из генераторов ацетилен имеет высокую концентрацию (свыше 99 % об.) и содержит небольшие примеси КНз, НгЗ, РНз и др. Они образуются при разложении водой соединений, всегда присутствующих в карбиде кальция, в частности нитридов, сульфидов и фосфидов кальция и других металлов [c.77]
Карбид кальция получается из угля (кокса, антрацита) и извести. В дальнейшем он превращается в ацетилен, который используется в химической промышленности всех стран во все возрастающих масштабах (см. стр. 105). Из карбида получают также кальций-цианамид. [c.16]
Опробование другого образца кокса сланцевой смолы показало, что он пригоден для выплавки карбида кальция, хотя содержание сероводорода в ацетилене несколько превышает нормы ГОСТ 1460—46. [c.358]
Как видно из приведенного состава, основной примесью технического карбида кальция является известь. Карбид кальция активно взаимодействует с водой, образуя при этом ацетилен и гидрат окиси кальция — гашеную известь. Химическая активность карбида кальция по отношению к воде столь велика, что он разлагается даже кристаллизационной водой, содержащейся в солях. [c.23]
Сернистые соединения образуются в основном из сернистого кальция (СаЗ), содержащегося в виде примеси в карбиде кальция. Сероводород содержится в неочищенном ацетилене лишь в незначительных количествах или совсем отсутствует, так как он хорошо поглощается карбидным илом. Однако при высокой температуре карбидного ила происходит выделение из него сероводорода. [c.51]
В настоящее время одним из наиболее простых и надея -ных высокочувствительных детекторов является пламенно-ионизационный детектор. Он позволяет надежно регистрировать следы разнообразных органических соединений, но практически нечувствителен к таким важным неорганическим соединениям, как окислы углерода, кислород, сероуглерод, сероокись углерода, вода и т. д. Для регистрации этих соединений пламенно-ионизацион-ным детектором были предложены методы предварительного количественного превращения этих соединений в метан или ацетилен, которые могут быть определены таким детектором в очень малых концентрациях. Г. Найт и Ф. Вейсс [26] для определения следов воды применили реактор (30 X 0,5 см) с карбидом кальция. Образующийся ацетилен отделяли от других углеводородов состава Сд на колонке со смешанной фазой (13% диметилсульфолана и 17% сквалана). При определении микроконцентраций влаги в углеводородах для регистрации ацетилена применяли нламенно-иопизационный детектор. В этом случае можно определять содержание влаги при концентрациях 10 % (проба — 0,5 мл). Недостатком метода является гетерогенность используемой реакции, которая протекает относительно медленно, что является возможным источником ошибок. [c.100]
Распрострапеппым полупродуктом, получаемым из углеводородного сырья, является ацетилен. Он используется для получения хлоропреново-го синтетического каучука, ацетальдегида, уксусной кислоты, поливинилового спирта, вини.яацетата, винилхлорида и других продуктов. Ацетилен долгое время получался из карбида кальция. Кроме того, производство ацетилена осуществляют следующими методами электрокрекингом метана, окислительным пиролизом метана, высокотемпературным пиролизом. В СССР производство ацетилена для получения хлоропренового каучука — основного потребителя ацетилена — осуществляется термо-окислихельным пиролизом. На наших предприятиях ацетилен те[)мо-окнслительного пиролиза дешевле карбидного примерно на 20%, капитальные затраты его ниже на 20—30% [29]. [c.184]
По той же причине — отсутствие практического интереса — не привлекло внимания и сообщение Р. Хэйра [60], который получил ацетилен способом, аналогичным методу Дэви. О Хэйре больше известно как об изобретателе хэлектрической печи, которую он использовал для восстановления щелочноземельных металлов из расплавов их солей в струе водорода. В 1839 г. в одном из опытов со смесью извести и цианида ртути на катоде образовалась черная стеклообразная масса, при смачивании водой выделявшая газ с неприятным запахом [61, стр. 355]. Таким образом, Хэйр впервые получил карбид кальция и ацетилен из него, но не определил состав продуктов. Хотя сообщение американского исследователя было напечатано во французском журнале [62], но работа прошла незамеченной, о ней вспомнили только в XX в. в ходе горячих споров о приоритете открытия карбида кальция [61, 63]. [c.31]
До настоящего времени ацетилен получают почти исключительно из карбида кальция, производимого электротермически из извести и кокса. При этом расход электроэнергии настолько высок (10 — 11 квт ч на 1 кг ацетилена), что, с появлением и широким развитием производства этилена и других олефинов на базе деструктивных процессов переработки нефтяного сырья, ацетилен становится неконкурентноспособным, несмотря на то, что он является химически более активным и переработка его в ряде случаев более проста, чем переработка олефинов. [c.330]
Сам ацетилен получается в промышленности при взаимодействии карбида кальция с водой СаС2+2Н О — С,Нг+Са(ОН), [c.142]
В пробирку а (см. рис. 16) поместите маленький кусочек карбида кальция СаСа. Добавьте 2 капли воды (1). Немедленно начинается выделение газообразного ацетилена. Обратите внимание на характерный запах технического ацетилена, обусловленный наличием ядовитых примесей (фосфористого водорода PF з). Химически чистый ацетилен не имеет запаха. Зажгите ацетилен у отверстия пробирки. Убедившись, чго он горит светящимся или даже коптящим пламенем, немедленно закройте отверстие пробирки с/ пробкой с газоотводной трубкой и конец трубки погрузите в пробирку б с 5 каплями воды (1), подкрашенной 1 каплей 0,1 н. КМп04(101). Розовый раствор быстро обесцвечивается. Добавьте в пробирку а с СаСг еще 2 капли воды и опустите конец газоотводной трубки в пробирку б с 5 каплями бромной воды (9). Наблюдается постепенное обесцвечивание бромной воды. Под конец реакции введите в отверстие пробирки а полоску фильтровальной бумаги, смоченной бесцветным аммиачным раствором хлорида меди (1) СиС1 (34). Появляется красновато-коричневое окрашивание вследствие образования ацетиленистой меди Си - С = С - Си. [c.28]
При обработке водой карбида кальция был получен ацетилен объемом 30 л (н. у.)- Найдите массовую долю СаСа в карбиде, если для реакции он был взят массой 100 г. Ответ 85,7%. [c.68]
Эта реакция открыта в 1852 г. Вёлером, но практическое значение она приобрела лишь после того, как был разработан способ получения карбида кальция сплавлением извести и кокса в электрической печи. В настоящее время большое промышленное значение приобретают способы получения ацетилена из нефтяного сырья и природных газов. Метан превращается в ацетилен под кратковременным (сотые доли секунды) воздействием очень высоких температур 0400 С и выше) [c.93]
При. высоких температурах углерод взаимодействует с металлами, образуя карбиды (см. также гл. 1). Все карбиды представляют собой твердые, хорошо кристаллизующиеся вещества. Они нелетучи и не растворяются ни в одном из известных растворителей. В связи с этим истинные молекулярные веса карбидов неизвестны и их обычно обозначают простейшими формулами. По отношению к воде и разбавленным кислотам все карбиды распадаются на две большие группы — разлагаемые этими веществами и не разлагаемые ими. Карбиды первого типа следует рассматривать как продукты замещения металлом атомов водорода в ацетилене. Эти карбиды образуют главным образом активные металлы. Общая формула их такова МегСг для одновалентного металла, МеСг —для двухвалентного и МегСв — для трехвалентного. Межатомное, расстояние (С—С) в карбиде кальция равно 1,19 А. [c.40]
Известняки и уголь, содержащие значительное количество соединений серы, фосфора, мышьяка, магния, кремния и алюминия, не пригодны для производсгва карбида, как в том случае, когда последний должен быть употреблен для получения ацетилена, так и тогда, когда он идет в производство цианамида кальция. Если карбид содержит соединения серы, фосфора, кремния и мышьяка, то при разложении его водой вместе с ацетиленом выделяются водородистые соединения этих элементов. Водородистые соединения фосфора и кремния—легко разлагающиеся вещества они воспламеняются сами собой при обыкновенной комнатной температуре. Ясно, что их присутствие в ацетилене может быть причиной взрыва последнего. Кроме того, ацетилен, загрязненный водородистыми соединениями фосфора, мышьяка и серы, оказывает весьма вредное действие на организм человека. Мышьяковистый водород является сграшным ядом, который даже при вдыхании в весьма малых количествах причиняет смерть. Менее опасны, но все же очень вредны, фосфористый водород и сернистый водород. Их присутствие в аммиаке, выделенном из - цианамида кальция, крайне нежелательно, так как при окислении аммиака в азотную кислоту, они способны отравлять катализаторы, вследствие чего, процесс окисления замедляется и может остановиться вовсе. [c.88]
В некоторой мере этому условию удовлетворяет ацетилен, выделя-емыйпри взаимодействии воды с карбидом кальция. Он имеет максимум поглощения при 3,05 мкм, что не совпадает с поглощением бензола, и поэтому дает возможность повысить чувствительность определения его влажности. Однако другие соединения с близким характером связей, например 1,3-бутадиен, 1-бутен, имеют поглощение в той же области, что и у ацетилена, поэтому таким путем не удается повысить чувствительность анализа. Но неоспоримое преимущество реакционного способа с карбидом состоит в том, что выделяемый ацетилен можно удалить из анализируемого вещества потоком [c.163]
В бункеры или реторты газообразователей ацетиленовых генераторов периодически загружается карбид кальция. При каждой загрузке в генератор неизбежно попадает некоторое количество воздуха. Во избежание образования в газообразователях взрывоопасной ацетилено-воздушной смеси они должны продуваться ацетиленом или инертным газом в момент загрузки или после загрузки карбида. В передвижных небольших стационарных генераторах производительностью примерно до 10 ж час для продувки применяют ацетилен, образующийся в том же газообразователе. В более крупных генераторах для целей продувки лучше применять азот или углекислоту. Ацетилен не следует применять для целей про-58 [c.58]
Если известняк, применяемый для производства карбида, содержит примесь фосфатов, они могут в электрической печи перейти в фосфиды. Ацетилен, полученный из такого карбида, вследствие примеси фосфиноа 1Может самопроизвольно воспламеняться, а это может оказаться причиной больших несчастий. Умышленно же смесь фосфида и карбида кальция иногда применяют в световых буях , ослепительное пламя которых не гаснет в самую сильную бурю. [c.355]
chem21.info
Ацетилен Ацетилен ил карбида - Справочник химика 21
Причиной многочисленных случаев пожаров и взрывов может быть неправильное и неосторожное обращение с ацетиленом и карбидом кальция. Приемы работы с ацетиленом и методика его получения, а также меры безопасности подробно описаны в соответствующих правилах и инструкциях [5, 8, 9] (см. также гл. 12). [c.171]
Измельченный карбид подается в цилиндрические барабаны с несколько большим, чем требуется но расчету, количеством воды, нри этом образуется свободный ацетилен. Ацетилен выделяется в виде примерно 97%-ного продукта. При разложении карбида образуется еще некоторое количество сероводорода и фосфористый водород (фосфин), от которых ацетилен перед использованием должен быть освобожден. Это можно сделать промывкой газа разбавленной хлорной водой, которая разрушает оба эти загрязнения. В заключение ацетилен промывают концентрированной натронной щелочью и просушивают. [c.93]
Схема ацетиленового генератора карбид в воду изображена на рис. 22. Аппарат примерно на 3/4 заполнен водной суспензией гидроксида кальция. Карбид кальция в виде кусков размером 50—80 мм попадает вначале в промежуточный бункер куда подают азот для вытеснения воздуха. Затем открывают коническую пробку 2 и карбид кальция пересыпается в питающий бункер 3. Подача его автоматически дозируется секторным барабаном 4, скорость вращения которого регулируют в зависимости от потребности в ацетилене. Куски карбида кальция через трубу 6, конец которой погружен в жидкость, попадают на конус 5 и равномерно распределяются по сечению генератора. Разложение карбида кальция происходит на наклонных дырчатых полках 9, причем куски его перемещаются от центра полок к периферии и обратно скребковой мешалкой 10. С помощью мешалки с кусков карбида снимается слой известкового ила. [c.76]
Чем ограниченнее были в странах возможности переработки нефти, тем больше использовался ацетилен из карбида кальция. Но абсолютные размеры производства карбида кальция не сокра-ш ались, ибо они зависели от обш,его уровня развития промышленности органического синтеза. Под влиянием этих условий в 1962 г. было произведено карбида кальция [c.6]
Ацетилен из карбида получают двумя путями. Так называемый влажный процесс заключается в том, что карбид в мешалке обрабатывают водой и образующееся согласно уравнению [c.93]
Углерод. Изотопы углерода. Простейшие углеводороды метан, этилен, ацетилен. Карбиды кальция, алюминия и железа. Оксиды углерода (II) и (IV). Карбонилы переходных металлов. Угольная клслота и ее соли [c.305]
Ацетилен из карбида можно получать двумя путями. [c.125]
Следует осторожно обращаться с ацетиленом и карбидом кальция, во избежание пожара или взрыва. [c.32]
При нагревании лантаноидов в токе азота до 740—1000° С образуются нитриды, главным образом состава RN. Свойства их изучены пока не достаточно. При нагревании лантаноидов с углеродом образуются карбиды двух типов. Один из них при взаимодействии с водой выделяет ацетилен (подобно карбиду кальция), а другие — метан (подобно карбиду алюминия). [c.283]
При продолжительном нагревании ацетилена в фарфоровом сосуде при температуре около 550°С М. Бертло удалось получить бензол в качестве основного продукта полимеризации (1866). Ацетилен, таким образом, дает начало бензолу — родоначальнику ароматического ряда он также дает начало этилену — одному из основных веществ жирного ряда. В дальнейшем, развивая мысль о различных путях полимеризации ацетилена, Бертло высказал предположение, что ацетилен может образоваться в недрах земли в результате взаимодействия карбидов с водой и затем в условиях высоких температур и давления, конденсируясь, дать начало нефти. Позднее аналогичные представления были положены в основу минеральной теории происхождения нефти (Д. И. Менделеев, А. Муассан, П. Сабатье и др.). [c.253]
Ацетилен. Для лабораторных целей можно получать ацетилен гидролизом карбида кальция. Во избежание местных перегревов рекомендуется применять такие генераторы, в которых карбид кальция при полном погружении вводится в сравнительно большой объем воды. Выделяющийся по реакции ацетилен загрязнен примесями кислорода, аммиака (меньше 0,15%), сероводорода (меньше 0,1% главная масса его поглощается воднощелочной средой), водородистого кремния, фосфористого водорода (0,15—0,25 /о) и мышьяковистого водорода (меньше 0.0003%). [c.20]
АЦЕТИЛЕН. Ацетилен получают взаимодействием карбида кальция с водой. Исходным веществом служит известняк. [c.359]
Реакция гидролиза СаС представляет исторический интерес. Во времена газового освещения с помощью этой реакции получали ацетилен, который использовался для многих нужд. Ацетиленовыми лампами освещались частные дома и общественные здания их устанавливали даже на первых автомобилях. В тахтах до сих пор используются портативные ацетиленовые лампы. С помощью реакции гидролиза карбида кальция в наше время получают гораздо больше ацетилена, чем кот да-либо раньше, но теперь уже ацетилен не является конечным продуктом синтеза. Он используется как полупродукт для синтеза самых разнообразных органических соединений (см. гл. 26). [c.333]
Ацетилен Карбид кальция при температуре 300 °С Метанол в углеводах [9 [c.52]
Ацетилен из карбида кальция очень дорог и для промышленного использования труднодоступен [c.388]
На заводе синтетического каучука в цехе получения ацетилена из карбида кальция, в отделении отстоя и осветления шламовой воды, произошел взрыв ацетилено-воздушной смеси в отстойнике Дорра , в котором отстаивается шламовая вода,, насыщенная ацетиленом, с последующим возвратом осветленной воды в промывную колонну 1 отделения регенерации ацетилена (рис. 2). Ацетилен, получаемый в ацетиленовом генераторе, выходит из генератора при 130—140 °С и поступает на охлаждение в промывную колонну 1, орошаемую осветленной водой, которая подается насосом из отделения отстоя шлама. После охлаждения ацетилен [c.25]
Ацетилен из карбида кальция..................2,0 [c.148]
Свойства. Ацетилен — бесцветный газ, превращающийся в жидкость при —35°С. Он довольно хорошо растворим в воде и органических растворителях. Чистый ацетилен обладает слабым эфирным запахом. Всем известный присущий ему неприятный запах объясняется наличием примесей в карбиде кальция, из которого получают ацетилен. Ацетилен горит сильно коптящим пламенем из-за высокого процентного содержания в нем углерода. С воздухом и кислородом образует взрывоопасные смеси в широком интервале концентраций — от 3 до 90%. Жидкий ацетилен легко взрывается от толчка или удара. Поэтому в баллонах он находится в виде раствора в ацетоне, которым пропитан какой-либо пористый материал, например асбест. В таком виде ацетилен безопасен. [c.53]
Использование новых видов сырья. Для производства многих химикатов можно использовать различные виды исходного сырья. Так, водород для синтеза аммиака можно получать из водяного, коксового и природного газа, нефти и ее фракций ацетилен — из карбида кальция, природного газа и нефти поливинилхлорид — из ацетилена и этилена и т. д. Получение конечного продукта из более дешевого исходного сырья при прочих равных условиях дает возможность монополиям снижать в ходе конкурентной борьбы цены и получать при этом сверхприбыль. [c.201]
Ацетилен, получаемый по данному методу, имеет высокую концентрацию после очистки от примесей —99,9% и наиболее пригоден для любых целей органического синтеза. До сих пор еще существует мнение, что ацетилен из карбида кальция является наиболее чистым и не может быть заменен ацетиленом, получаемым из углеводородного сырья, для ряда процессов органического синтеза. [c.8]
Подробно рассмотрим только ацетилен. Ацетилен при обычных условиях представляет собой бесцветный газ. Чистый ацетилен почти не пахнет для технического ацетилена, получающегося обычно из карбида кальция, характерен довольно сильный неприятный запах, принадлежащий примесям ацетилена, например фосфористому водороду РНз и мышьяковистому водороду АзНз. Эти примеси очень ядовиты. [c.102]
Нефть, по сравнению с углем, имеет то досгоинство, что в ней содержится значительно больше связанного водорода, который участвует в образовании промежуточных продуктов, а по сравнению с продуктами растительного происхождения,—дает намного больший выход конечных продуктов. Однако иногда сСЦновременно используют несколько источников сырья для получения какого-либо продукта. Так, бензол получают из нефти и посредством сухой перегонки углей ацетилен—из карбида кальция и метана формальдегид — из продуктов сухой перегонки дерева и окислением метана. [c.10]
Метан. Метан отходящих газов гидрогенизационных заводов в Гельзенкирхене и Шольвене перерабатывался на ацетилен электрокрекингом в Хюльсе. Общая продукция ацетилена превышала здесь 40 ООО т в год. Большая часть этого ацетилена перерабатывалась через уксусный альдегид, алдоль в дивинил. Но здесь же находилась и установка по гидрированию ацетилена в этилен над палладием на силикагеле, установка по выделению водорода глубоким холодом и др. В дуге напряжением в 7 ООО в получается ацетилен чистотой 97—98%. Его приходится подвергать весьма сложной очистке. Помимо водорода, окиси углерода и этнлена, такой ацетилен содержит следующие иримеси (вгр на 1 м ) H N 1—3, нафталина 1—3, бензола 1—6, диацетилена 15—20, сажи 20—25. Однако при этом процессе себестоимость ацетилена меньше, чем генерируемого из карбида кальцпя. [c.167]
Толучают ацетилен из карбида кальция СаСг, действуя на него водой [c.315]
По теории космического происхождения нефти углеводороды, составляющие нефть, образовались непосредственно из углерода и водорода в начальной стадии существования земного шара. Эта теория объясняет наличие значительных количеств метана в атмосферах больших планет. По мнению Д. И. Менделеева, нефть образовалась в результате действия воды на карбиды металлов (в частности, на углеродистое железо), из которых состоит ядро земного и ара. Действительно, карбиды металлов, реагируя с водой или разбавленными кислотами, образуют углеводороды, главным образом метан и ацетилен. Карбид железа и марганцовистый чугун при взаимодействии с водой дают нефтеподобную смесь жидких углеводородов. Несмотря на то, что эти факты как будто подтверждают теорию Менделеева, она в настоящее время 1ЮЧТИ совершенно оставлена. Против нее говорит содержание в нефти азотистых соединений и ее оптическая активность (стр. 154), что определенным образом указывает на органическое происхождение нефти. [c.66]
При. высоких температурах углерод взаимодействует с металлами, образуя карбиды (см. также гл. 1). Все карбиды представляют собой твердые, хорошо кристаллизующиеся вещества. Они нелетучи и не растворяются ни в одном из известных растворителей. В связи с этим истинные молекулярные веса карбидов неизвестны и их обычно обозначают простейшими формулами. По отношению к воде и разбавленным кислотам все карбиды распадаются на две большие группы — разлагаемые этими веществами и не разлагаемые ими. Карбиды первого типа следует рассматривать как продукты замещения металлом атомов водорода в ацетилене. Эти карбиды образуют главным образом активные металлы. Общая формула их такова МегСг для одновалентного металла, МеСг —для двухвалентного и МегСв — для трехвалентного. Межатомное, расстояние (С—С) в карбиде кальция равно 1,19 А. [c.40]
Синтез МОНО- и дизамещенных ацетиленов из карбида кальция и галоидных или гидроксилсодержагцих соединений проходит Б большинстве случаев - при высокой температуре более подробно этот метод освещен только в патентной литературе [148 в, г, д]. [c.32]
Дазуолт и Брандт [2 предложили способ определения углерода и водорода, при котором аробу (2—6 мг) окисляют на окиси меди при температуре 750° С в потоке кислорода. Продукты окисления (двуокись углерода и вода) проходят через реактор с карбидом кальция, где пары воды превращаются в ацетилен. Ацетилен и двуокись углерода конденсируют в ловушке, охлаждаемой жидким азотом. Давление в ловушке поддерживают на уровне 110 мм рт. ст во избежание конденсации кислорода. После сожжения пробы сконденсированные продукты размораживают и в потоке гелия вводят в хроматографическую колонку с силикагелем. В качестве детектора был применен катарометр. Продолжительность анализа 20 мин. Ошибка определения по углероду 0,5 абс. % по водороду — 0,1 абс. %. [c.115]
Найтингел и Уолкер 8] разработали метод одновременного определения углерода, водорода и азота быстрым сожжением (в течение 30 сек.) анализируемой пробы с помощью индукционной печи. В качестве окислителей использованы перманганат серебра и окись меди. Быстрое сожжение пробы с катализатором в потоке гелия позволяет непосредственно без предварительного концентрирования разделять простые продукты окисления в хроматографической колонке. Навеску анализируемого вещества, смешанного с окислителем, сжигали в угольном тигле, футерованном кварцем. Продукты окисления проходили через реактор, заполненный на /з окисью меди и на /з металлической медью для завершения окисления и восстановления окислов азота. Далее газовый поток проходил через реактор с карбидом кальция, где вода превращалась в ацетилен. Карбид кальция в реакторе заменяли новым перед каждым анализом. Смесь простых продуктов (азот, двуокись углерода, ацетилен) разделяли на хроматографической колонке с молекулярными ситами 5А. Среднее отклонение при определении углерода 0,52%, водорода 0,22%, азота 0,58%. [c.116]
В предложенном Чумаченко и Пахомовой [10] методе одновременного определения углерода, водорода и азота с применением газовой хроматографии окисление вещества осуществляют окисью никеля при температуре 900—950° С в атмосфере гелия в герметично закрывающейся реакционной пробирке. Продолжительность сожжения 1—2 мин. Образовавшаяся вода превращается в ацетилен над карбидом кальция. Полученные азот, двуокись углерода и ацетилен разделяют на колонке, заполненной активированным углем при температуре 120° С, скорость газа-носителя 170 мл1мин. Точность определения 0,2%. [c.116]
Карбид рубидия Rb2 2 может быть получен при взаимодействии рубидия с ацетиленом по реакции ЗКЬ+гНгСг- -гКЬНСг+Нг. Кислый ацетилид рубидия при слабом нагреве распадается на карбид и ацетилен. Карбид рубидия обладает высокой химической активностью, самовоспламеняется в среде СО2 и 802. При взаимодействии карбида рубидия с водой происходит взрыв, причем металл сгорает, а углерод выделяется в виде угля. [c.54]
Соображения, с которыми выступил Гинриксен, относятся к общей проблеме теории валентности. Согласно Гинриксену, представления о ненасыщенных органических соединениях существенным образом отличаются от представлений о ненасыщенных неорганических соединениях. В то время как принятие свободных валентностей было вполне достаточным для неорганической химии, введение двойных связей в органической химии для объяснения состояния ненасыщенности атома углерода никоим образом не оправдано. Кроме того, согласно теории напряжения Байера, неустойчивость веществ должна повышаться с увеличением кратности связей в них. В противоположность этому опыт показывает, что ацетилен и карбиды, его производные, в действительности образуются при высоких температурах. [c.315]
В первое десятилетие после первой мировой войны спрос на ароматические углеводороды полностью удовлетворялся коксохимической промышленностью. Сырьем для производства алифатических химикатов служили продукты ферментации растительного сырья, сухой перегонки древесины и переработки каменного угля (этилен из kok oiBoto газа и ацетилен из карбида кальция). [c.3]
Число органических соединений, получаемых синтетическим путем, из года в год увеличивалось, заполняя кажущуюся пропасть между органической и неорганической природой. Еще при жизии Ф, Энгельса (умер в 1895 г.) химиками было осуществлено много различных синтезов. В частности, были полученны ацетилен из карбида кальция (в 1863 г.), ализарин (в 1868 г.), индиго (в 1870 г.), кумарин (в 1875 г.), хинолин (в 1880 г.), ацетальде-гид из ацетилена (в 1881 г.), синтетические полипептиды (в 1882 г.), Конго красный (в 1884 г.), осуществлен первый синтез алкалоидов (в 1886 г.), синтез глюкозы, фруктозы и маинозы (1890 г.) и т. д. Эти синтезы окончательно разгромили виталистические воззрения. Стало всем ясно, что биосинтез в растительных и животных организмах проходит не благодаря жизненной силе ,, а на основе законов химии. [c.6]
chem21.info
Ацетилен из карбида кальция пропилена
Ацетилен. Карбид кальция как источник ацетилена для органического синтеза также начинает терять свои позиции. Хотя ФРГ является крупнейшим производителем карбида кальция, она все в больших размерах использует для указанных целей нефтехимический этилен и пропилен. Если в 1957 г. отношение потребляемого в химической промышленности ацетилена к этилену составляло 1 0,4, то в 1964 г. оно достигло уже 1 2, а в 1968 г., согласно прогнозу, составит 1 4,3. [c.138]
Пропан, этилен, пропилен на ГПЗ подается по трубопроводной сети, бутан, ацетилен, пропан - в баллонах. Ацетилен чаще получают из карбида кальция в генераторах типа карбид в воду (КВ) или вода в карбид (ВК) и контактных (К). Типы однопостовых генераторов АНВ-1,25 - принцип (ВК), АСМ-1,25-3 - принцип (КВ), АСИ-1,25-6, АСИ-1,25-7 производительность по ацетилену 1,25 мVч, загрузка 3,5 кг карбида. Ацетилен поставляют в баллонах вместимостью 40 л на давление до 1,9 МПа, объем ацетилена 5,5 м , цвет баллона - белый, надпись Ацетилен . Баллон заполнен пористой массой. Кислород поставляют в баллонах вместимостью 40 л при давлении 15 МПа, объем кислорода 5 м , цвет баллона -голубой, надпись Кислород . [c.391]
Можно получить органические соединения из карбида кальция, минуя, промежуточное образование ацетилена или цианамида кальция. В одной из работ [53] утверждалось, что при воздействии сухого водяного пара при 130° С степень превращения составляет только 20% за два часа и что не происходит никакого взаимодействия при 450° С, однако при пропускании водяного пара в смеси с азотом над кдрбидом [54] при 100—650° С образуются метан, этилен, ацетилен, пропилен, циклопропан, бутилены, диацетилен и другие насыщенные и ненасьпценные углеводороды. Катализаторами этого процесса являются пемза, окись алюминия, двуокись кремния, ВаО, СаО или сажа скорость реакции зависит также от кристаллического состояния карбида кальция [55]. [c.248]
Окись этилена была заводского производства. Перед проведением опытов она перегонялась для очистки от альдегидов над щелочью и натронной известью. От растворенного кггслорода окись этилена дополнительно очищалась металлическим натрием перед самым началом опыта. Этилен и пропилен брались понос ре дст] енно из баллонов. Ацетилен готовился из карбида кчльция и затем тщательно очищался. Бензол и толуол были осушены прокаленным хлористым кальцием и затем разогнаны в колбе с 6-шариковым дефлегматором. [c.177]
chem21.info
Получение ацетилена из карбида кальция
Пиролиз в струе низкотемпературной плазмы
Этот процесс находится в стадии разработки с 70-х годов прошлого столетия, но пока не реализован в промышленном масштабе, хотя является весьма перспективным, так как характеризуется высоким выходом ацетилена и сравнительно небольшим расходом электроэнергии (5000-7000 кВт×ч). Сущность процесса заключается в том, что метан вводят в струю низкотемпературной плазмы, где под влиянием высоких температур и ионизированного газа происходит его пиролиз.
Плазма представляет собой нейтральный ионизированный газ (аргон, водород), состоящий из электронов, атомов и ионов, который образуется в электродуговом разряде.
При пиролизе метана в плазменной струе удается достигнуть высоких выходов ацетилена. Конверсия метана в ацетилен достигает 87 % в аргоновой плазме и до 73 % в водородной плазме при суммарной конверсии метана до 99 и 94 % соответственно. Кроме ацетилена в газе содержатся водород, этилен, этан и пропан. Однако содержание С2Н2 в конечных продуктах очень низкое вследствие присутствия "газа-разбавителя", стабилизирующего плазму.
Карбидный метод является наиболее старым способом получения ацетилена. Он существует с конца ХIХ века, но не потерял своего значения до настоящего времени. Процесс состоит из двух стадий.
Предварительное получение карбида кальция сплавлением оксида кальция и кокса в электропечах при 2500-3000 °С:
СаО + 3С ® СаС2 + СО
Требуемая для процесса известь (СаО) получается в известково-обжигательных печах по реакции:
СаСО3 ® СаО + СО2
Обработка карбида кальция водой с получением ацетилена и известкового молока (мокрый способ) или сухой извести (сухой способ):
СаС2 + 2Н2О ® С2Н2 + Са(ОН)2
Ацетилен, полученный карбидным методом, имеет высокую степень чистоты –99,9 %. Основным недостатком этого метода является высокий расход электроэнергии: 10000-11000 кВт× ч на 1 т ацетилена.
Из 1 кг технического карбида кальция, содержащего примеси кокса, оксида кальция и других веществ, получается 230-280 л ацетилена (эта величина называется литражом карбида ). Теоретически из 1 кг чистого карбида кальция должно образоваться 380 л ацетилена.
При разложении карбида кальция следует соблюдать некоторые условия для нормального протекания процесса. Реакция является гетерогенной, и ее скорость зависит от размера кусков карбида, особенно сильно возрастая при использовании карбидной мелочи и пыли. Из реакционной зоны нужно постоянно отводить тепло, чтобы предохранить ацетилен от возможной полимеризации и разложения.
Аппараты, в которых проводится разложение карбида кальция водой, называют ацетиленовыми генераторами. По принципу отвода тепла они бывают двух типов.
1. Генераторы «мокрого типа», в которых реакционное тепло воспринимается избыточной водой, нагревающейся при этом до температуры 50-60 0С. В них на 1 кг карбида кальция расходуется около 10 кг воды, причем гидроксид кальция получается в виде суспензии в воде, мало пригодной для последующей утилизации.
2. Генераторы «сухого» типа, в которых реакционное тепло отводится небольшим количеством избыточной воды за счет ее испарения. В этом случае гидроксид кальция получается в сухом состоянии (известь-пушонка), и ее легко использовать для приготовления строительных материалов.
Генераторы «мокрого» типа делят по способу загрузки реагентов на следующие системы: «карбид в воду», «вода на карбид» и контактные, в которых вода и карбид кальция находятся в постоянном соприкосновении. Наиболее безопасными и применимыми для производства ацетилена в крупных масштабах являются генераторы типа «карбид в воду». В этих аппаратах куски карбида сразу погружаются в избыток воды, чем исключаются перегревы и создаются условия для лучшего отвода реакционного тепла. Генераторы типа «карбид в воду» имеют производительность до 500 м3 в час.
Еще большая мощность у « сухих» генераторов, в которых перерабатывают карбидную мелочь. Основным условием их успешной работы является тесный контакт между частицами карбида и небольшим количеством воды. Это достигается введением воды через специальные разбрызгиватели и наличием в генераторе перемешивающих устройств (вращающиеся барабаны, скребковые мешалки). Благодаря этому исключается перегрев ацетилена и поддерживается равномерная температура 110-115 0С.
studlib.info