Импульсные понижающие стабилизаторы. Понижающий стабилизатор напряжения


Импульсные понижающие стабилизаторы » Портал инженера

В предлагаемой вниманию читателей статье описаны два импульсных понижающих стабилизатора: на дискретных элементах и на специализированной микросхеме. Первое устройство разработано для питания автомобильной аппаратуры напряжением 12 Вот 24-вольтной бортовой сети грузовых автомобилей и автобусов. Второе устройство - основа для лабораторного источника питания.

Импульсные стабилизаторы напряжения (понижающие, повышающие и инвертирующие) занимают особое место в истории развития силовой электроники. Еще не так давно каждый источник питания с выходной мощностью более 50 Вт имел в своем составе понижающий импульсный стабилизатор. Сегодня область применения подобных устройств сократилась в связи с удешевлением источников питания с бестрансформаторным входом. Тем не менее применение импульсных понижающих стабилизаторов в ряде случаев оказывается экономически более выгодным, чем каких-либо других преобразователей постоянного напряжения.

Функциональная схема понижающего импульсного стабилизатора показана на рис. 1, а временные диаграммы, поясняющие его работу в режиме непрерывного тока дросселя L, - на рис. 2. Во время tвкл электронный коммутатор S замкнут и ток протекает по контуру: плюсовой вывод конденсатора Свх, резистивный датчик тока Rдт, накопительный дроссель L, конденсатор Свых, нагрузка, минусовый вывод конденсатора Свх. На этом этапе ток дросселя lL равен току электронного коммутатора S и практически линейно увеличивается от lLmin до lLmax.

Импульсные понижающие стабилизаторы
Импульсные понижающие стабилизаторы

По сигналу рассогласования от узла сравнения либо по сигналу перегрузки от датчика тока или по их сочетанию генератор переводит электронный коммутатор S в разомкнутое состояние. Поскольку ток через дроссель L мгновенно измениться не может, то под действием ЭДС самоиндукции откроется диод VD и ток lL потечет по контуру: катод диода VD, дроссель L, конденсатор СВыХ, нагрузка, анод диода VD. Во время tlKл, когда электронный коммутатор S разомкнут, ток дросселя lL совпадает с током диода VD и линейно уменьшается от

lLmax до lL min. За Период Т конденсатор Свых получает и отдает приращение заряда ΔQсвых. соответствующее заштрихованной области на временной диаграмме тока lL [1]. Это приращение и определяет размах напряжения пульсаций ΔUСвых на конденсаторе Свых и на нагрузке.

При замыкании электронного коммутатора диод закрывается. Этот процесс сопровождается резким увеличением тока коммутатора до значения Ismax из-за того, что сопротивление цепи - датчик тока, замкнутый коммутатор, восстанавливающийся диод - очень мало. Для уменьшения динамических потерь следует применять диоды с малым временем обратного восстановления. Кроме того, диоды понижающих стабилизаторов должны выдерживать большой обратный ток. С восстановлением закрывающих свойств диода начинается следующий период преобразования.

Если импульсный понижающий стабилизатор работает при малом токе нагрузки, возможен его переход в режим прерывистого тока дросселя. В этом случае ток дросселя к моменту замыкания коммутатора прекращается и его увеличение начинается от нуля. Режим прерывистого тока нежелателен при токе нагрузки, близком к номинальному, поскольку в этом случае возникают повышенные пульсации выходного напряжения. Наиболее оптимальна ситуация, когда стабилизатор работает в режиме непрерывного тока дросселя при максимальной нагрузке и в режиме прерывистого тока, когда нагрузка уменьшается до 10...20% от номинальной.

Выходное напряжение регулируют изменением отношения времени замкнутого состояния коммутатора к периоду следования импульсов. При этом, в зависимости от схемотехники, возможны различные варианты реализации способа управления. В устройствах с релейным регулированием переход от включенного состояния коммутатора к выключенному определяет узел сравнения. Когда выходное напряжение больше заданного, коммутатор выключен, и наоборот. Если зафиксировать период следования импульсов, то выходное напряжение можно регулировать изменением длительности включенного состояния коммутатора. Иногда используют методы, при которых фиксируют либо время замкнутого, либо время разомкнутого состояния коммутатора. В любом из способов регулирования необходимо ограничивать ток дросселя на этапе замкнутого состояния коммутатора для защиты от перегрузки по выходу. Для этих целей применяют резистивный датчик или импульсный трансформатор тока.

Выбор основных элементов импульсного понижающего стабилизатора и расчет их режимов проведем на конкретном примере. Все соотношения, которые при этом используются, получены на основе анализа функциональной схемы и временных диаграмм, а за основу взята методика [1].

Пусть необходимо рассчитать импульсный понижающий стабилизатор со следующими параметрами: UBX=18...32 В, Ulx=12B, Iвых=5А.

1. На основе сравнения исходных параметров и предельных допустимых значений тока и напряжения ряда мощных транзисторов и диодов предварительно выбираем биполярный составной транзистор КТ853Г (электронный коммутатор S) и диод КД2997В (VD) [2, 3].

2. Рассчитаем минимальный и максимальный коэффициенты заполнения:

γmin=tи min /Tmin=(UBыX+Uпр)/(UBX max+Usвкл - URдТ+Uпр)=(12+0,8)/(32-2-0,3+0,8)=0,42;

γmах = tи max /Tmax = (UBыx+Uпp)/(UBx min - Usbкл -URдт+Uпp)=( 12+0,8)/( 18-2-0,3+0,8)=0,78, где Uпp=0,8 В - прямое падение напряжения на диоде VD, полученное из прямой ветви ВАХ для тока, равного IВыХ в наихудшем случае; Usbкл = 2 В - напряжение насыщения транзистора КТ853Г, выполняющего функцию коммутатора S, при коэффициенте передачи тока в режиме насыщения h31э = 250; URдТ = 0,3 В - падение напряжения на датчике тока при номинальном токе нагрузки.

3. Выбираем максимальную и минимальную частоту преобразования.

Этот пункт выполняется, если период следования импульсов не постоянен. Выбираем способ управления с фиксированной длительностью разомкнутого состояния электронного коммутатора. При этом выполняется условие: t=( 1 - γmax)/fmin = ( 1 -γmin)/fmax=const.

Поскольку коммутатор выполнен на транзисторе КТ853Г, который имеет плохие динамические характеристики, то максимальную частоту преобразования выберем сравнительно низкой: fmax=25 кГц. Тогда минимальную частоту преобразования можно определить как

fmin=fmax( 1 - γmax)/( 1 - γmin) =25·103]( 1 - 0,78)/(1-0,42)=9,48 кГц.

4. Вычислим мощность потерь на коммутаторе.

Статические потери определяются действующим значением тока, протекающим через коммутатор. Поскольку форма тока - трапеция, то Is = Iвых

Импульсные понижающие стабилизаторы

где α=lLmax /llx=1,25 - отношение максимального тока дросселя к выходному току. Коэффициент а выбирают в пределах 1,2... 1,6. Статические потери коммутатора PScтaт=lsUSBKn=3,27-2=6,54 Вт.

Динамические потери на коммутаторе Рsдин·0,5fmax·UBX max(lsmax·tф+α·llx·tcn),

где Ismax - амплитуда тока коммутатора, обусловленная обратным восстановлением диода VD. Приняв lSmax=2lBыX, получаем

Рsдин=0, 5fmax·UBX max ·Iвых( 2tф+ α∙ tcn )=0,5· 25·103·32·5(2·0,78-10-6+1,25-2-10-6)=8,12 Вт, где tф=0,78·10-6 с - длительность фронта импульса тока через коммутатор, tcn=2·10-6 с - длительность спада.

Общие потери на коммутаторе составляют: Рs=Рscтат+Рsдин=6,54+8,12=14,66 Вт.

Если бы преобладающими на коммутаторе были статические потери, расчет следовало проводить для минимального входного напряжения, когда ток дросселя максимален. В случае, когда трудно прогнозировать преобладающий вид потерь, их определяют как при минимальном, так и при максимальном входном напряжении.

5. Рассчитываем мощность потерь на диоде.

Поскольку форма тока через диод - также трапеция, его действующее значение определим как

Импульсные понижающие стабилизаторы

Статические потери на диоде PvDcTaT=lvD·Uпр=3,84-0,8=3,07 Вт.

Динамические потери диода обусловлены в основном потерями при обратном восстановлении: РVDдин=0,5fmax·lsmaxvUBx max·toB·fmax·lBыx·Uвх max ·toв·25-103 -5-32·0,2·10-6=0,8 Вт, где tOB=0,2-1C-6 с - время обратного восстановления диода.

Суммарные потери на диоде составят: PVD=PМDcтaт+PVDдин=3,07+0,8=3,87 Вт.

6. Выбираем теплоотвод.

Основная характеристика теплоотвода - его тепловое сопротивление, которое определяется как отношение между разностью температур окружающей среды и поверхности теплоотвода к рассеиваемой им мощности: Rг=ΔТ/Ррасс. В нашем случае следует закрепить коммутирующий транзистор и диод на одном теплоотводе через изолирующие прокладки. Чтобы не учитывать тепловое сопротивление прокладок и не усложнять расчет, температуру поверхности выбираем низкой, примерно 70°С. Тогда при температуре окружающей среды 40°СΔТ=70-40=30°С. Тепловое сопротивление теплоотвода для нашего случая Rt=ΔT/(Ps+Pvd)=30/(14,66+3,87)=1,62°С/Вт.

Тепловое сопротивление при естественном охлаждении приводят, как правило, в справочных данных на теплоотвод. Для уменьшения габаритов и массы устройства можно применить принудительное охлаждение с помощью вентилятора.

7. Рассчитаем параметры дросселя.

Вычислим индуктивность дросселя: L= (UBX max - Usbkл-URдт - UBых)γmin /[2Iвыx·fmax(α-1)]=(32-2-0,3-12)·0,42/[2·5·25·103 (1,25-1)]=118,94 мкГн.

В качестве материала магнитопровода выбираем прессованный Мо-пермаллой МП 140 [4]. Переменная составляющая магнитного поля в магнитопроводе в нашем случае такова, что потери на гистерезис не являются ограничивающим фактором. Поэтому максимальную индукцию можно выбрать на линейном участке кривой намагничивания вблизи точки перегиба. Работа на криволинейном участке нежелательна, поскольку при этом магнитная проницаемость материала будет меньше по сравнению с начальной. Это, в свою очередь, повлечет за собой уменьшение индуктивности по мере увеличения тока дросселя. Выбираем максимальную индукцию Вm равной 0,5 Тл и вычисляем объем магнитопровода: Vp=μμ0·L(αIвыx)2/Bm2=140·4π·10-7·118,94· 10-6(1,25-5)20,52=3,27 см3, где μ=140 - начальная магнитная проницаемость материала МП140; μ0=4π·10-7 Гн/м - магнитная постоянная.

По вычисленному объему выбираем магнитопровод. Из-за конструктивных особенностей магнитопровод из пермаллоя МП140 выполняют, как правило, на двух сложенных кольцах. В нашем случае подходят кольца КП24х13х7. Площадь поперечного сечения магнитопровода Sc=20,352 =0,7 см2, а средняя длина магнитной линии λс=5,48 см. Объем выбранного магнитопровода составляет: VC=SC· λс=0,7·5,48=3,86 cm3>Vp.

Рассчитываем число витков:

Импульсные понижающие стабилизаторы

Принимаем число витков равным 23.

Диаметр провода с изоляцией определим исходя из того, что обмотка должна уложиться в один слой, виток к витку по внутренней окружности магнитопровода: dиз=πdKk3/w=π·13-0,8/23= 1,42 мм, где dK=13 мм - внутренний диаметр магнитопровода; к3=0,8 - коэффициент заполнения окна магнитопровода обмоткой.

Выбираем провод ПЭТВ-2 диаметром 1,32 мм.

Перед тем как наматывать провод, магнитопровод следует изолировать пленкой ПЭТ-Э толщиной 20 мкм и шириной 6...7 мм в один слой.

8. Вычислим емкость выходного конденсатора: CBыx=(UBX max-UsBкл - URдт) ·γmin/[8·ΔUCBыx·L·fmax2]=(32-2-0,3)·0,42/ [8·0,01·118,94-·10-6(25·103)2]=1250 мкФ, где ΔUСвыx=0,01 В - размах пульсаций на выходном конденсаторе.

Приведенная формула не учитывает влияния внутреннего, последовательного сопротивления конденсатора на пульсации. С учетом этого, а также допуска 20% на емкость оксидных конденсаторов выбираем два конденсатора К50-35 на номинальное напряжение 40 В емкостью 1000 мкФ каждый. Выбор конденсаторов с завышенным номинальным напряжением связан с тем, что с увеличением этого параметра у конденсаторов уменьшается последовательное сопротивление.

Схема, разработанная в соответствии с полученными в ходе расчета результатами, показана на рис. 3.

Импульсные понижающие стабилизаторы

Рассмотрим работу стабилизатора подробнее. Во время открытого состояния электронного коммутатора - транзистора VT5 - на резисторе R14 (датчик тока) формируется пилообразное напряжение. Когда оно достигнет определенного значения, откроется транзистор VT3, который, в свою очередь, откроет транзистор VT2 и разрядит конденсатор C3. При этом закроются транзисторы VT1 и VT5, а также откроется коммутирующий диод VD3. Ранее открытые транзисторы VT3 и VT2 закроются, но транзистор VT1 не откроется, пока напряжение на конденсаторе C3 не достигнет порогового уровня, соответствующего напряжению его открывания. Таким образом, будет сформирован временной интервал, в течение которого коммутирующий транзистор VT5 будет закрыт (приблизительно 30 мкс). По окончании этого интервала откроются транзисторы VT1 и VT5 и процесс повторится снова.

Резистор R10 и конденсатор С4 образуют фильтр, подавляющий всплеск напряжения на базе транзистора VT3 из-за обратного восстановления диода VD3.

Для кремниевого транзистора VT3 напряжение база-эмиттер, при котором он переходит в активный режим, составляет около 0,6 В. В этом случае на датчике тока R14 рассеивается относительно большая мощность. Чтобы уменьшить напряжение на датчике тока, при котором открывается транзистор VT3, на его базу поступает постоянное смещение около 0,2 В по цепи VD2R7R8R10.

На базу транзистора VT4 подается напряжение, пропорциональное напряжению выхода, с делителя, верхнее плечо которого образуют резисторы R15, R12, а нижнее - резистор R13. Цепь HL1R9 формирует образцовое напряжение, равное сумме прямого падения напряжения на светодиоде и эмиттерном переходе транзистора VT4. В нашем случае образцовое напряжение составляет 2,2 В. Сигнал рассогласования равен разности между напряжением на базе транзистора VT4 и образцовым.

Выходное напряжение стабилизируется благодаря суммированию усиленного транзистором VT4 сигнала рассогласования с напряжением на базе транзистора VT3. Предположим, что напряжение на выходе увеличилось. Тогда напряжение на базе транзистора VT4 станет больше образцового. Транзистор VT4 приоткроется и сместит напряжение на базе транзистора VT3 так, что он тоже начнет открываться. Следовательно, транзистор VT3 откроется при меньшем уровне пилообразного напряжения на резисторе R14, что приведет к сокращению интервала времени, при котором коммутирующий транзистор будет открыт. Выходное напряжение при этом будет снижаться.

Если выходное напряжение уменьшится, процесс регулирования будет аналогичен, но происходит в обратном порядке и приводит к увеличению времени открытого состояния коммутатора. Поскольку ток резистора R14 непосредственно участвует в формировании времени открытого состояния транзистора VT5, то здесь, кроме обычной обратной связи по выходному напряжению, имеется обратная связь по току. Это позволяет стабилизировать выходное напряжение без нагрузки и обеспечить быструю реакцию на скачкообразное изменение тока на выходе устройства.

В случае замыкания в нагрузке или перегрузки стабилизатор переходит в режим ограничения тока. Напряжение на выходе начинает уменьшаться при токе 5,5...6 А, а ток замыкания примерно равен 8 А. В этих режимах время открытого состояния коммутирующего транзистора сокращается до минимума, что уменьшает рассеиваемую на нем мощность.

При неправильной работе стабилизатора, вызванной отказом одного из элементов (например, пробоем транзистора VT5), на выходе возрастает напряжение. В этом случае нагрузка может выйти из строя. Для предотвращения аварийных ситуаций преобразователь снабжен узлом защиты, который состоит из тринистора VS1, стабилитрона VD1, резистора R1 и конденсатора С1. Когда выходное напряжение превысит напряжение стабилизации стабилитрона VD1, через него начинает протекать ток, который включает тринистор VS1. Его включение приводит к уменьшению практически до нуля выходного напряжения и перегоранию предохранителя FU1.

Устройство предназначено для питания 12-вольтной аудиоаппаратуры, рассчитанной в основном на легковой автотранспорт, от бортовой сети грузовых автомобилей и автобусов напряжением 24 В. Из-за того, что входное напряжение в этом случае имеет низкий уровень пульсаций, у конденсатора С2 сравнительно небольшая емкость. Она недостаточна при питании стабилизатора непосредственно от сетевого трансформатора с выпрямителем. В этом случае выпрямитель следует снабдить конденсатором емкостью не менее 2200 мкФ на соответствующее напряжение. Трансформатор должен иметь габаритную мощность 80... 100 Вт.

В стабилизаторе применены оксидные конденсаторы К50-35 (С2, С5, С6). Конденсатор C3 - пленочный К73-9, К73-17 и т. д. подходящих размеров, С4 - керамический с малой собственной индуктивностью, например, К10-176. Все резисторы, кроме R14, - С2-23 соответствующей мощности. Резистор R14 выполнен из отрезка длиной 60 мм константановой проволоки ПЭК 0,8 с погонным сопротивлением примерно 1 Ом/м.

Чертеж печатной платы, выполненной из односторонне фольгированного стеклотекстолита, показан на рис. 4.

Импульсные понижающие стабилизаторы

Диод VD3, транзистор VD5 и тринистор VS1 прикреплены к теплоотводу через изолирующую теплопроводящую прокладку с помощью пластиковых втулок. На этом же теплоотводе закреплена и плата. Внешний вид собранного устройства показан на рис. 5.

Импульсные понижающие стабилизаторы

Сегодня разработка импульсных стабилизаторов значительно упростилась. Стали доступны (в том числе и по цене) интегральные микросхемы, включающие в себя все необходимые узлы. Кроме того, производители полупроводниковых приборов стали сопровождать свои изделия большим количеством информации по применению, содержащей типовые схемы включения, которые удовлетворяют потребителя в подавляющем большинстве случаев. Это практически исключает из разработки этапы предварительных расчетов и макетирования. Пример тому - микросхема КР1155ЕУ2 [5].

В ее состав входят коммутатор, датчик тока, источник образцового напряжения (5,1 В ±2%), узел управления тринистором для защиты от превышения напряжения на нагрузке, узел плавного запуска, узел сброса для внешних устройств, узел для дистанционного выключения, узел защиты микросхемы от перегрева.

Рассмотрим лабораторный источник питания, разработанный на основе КР1155ЕУ2.

Технические характеристики

  • Входное нестабилизированное напряжение, В......35...46
  • Интервал регулирования выходного стабилизированного напряжения, В......5,1...30
  • Максимальный ток нагрузки, А......4
  • Размах (двойная амплитуда) пульсаций выходного напряжения при максимальной нагрузке, мВ......30
  • Интервал регулирования срабатывания защиты по току, А......1...4

Схема устройства приведена на рис. 6. Она мало отличается от стандартной схемы включения, причем позиционные обозначения элементов совпадают. Здесь реализован способ управления с фиксированным периодом следования импульсов, т. е. широтноимпульсное управление.

Импульсные понижающие стабилизаторы

Конденсатор С1 - входной фильтр. Он имеет большую, чем указано в типовой схеме включения, емкость, что обусловлено сравнительно большим потребляемым током.

Резисторы R1 и R2 управляют уровнем защиты по току. Максимальному суммарному их сопротивлению соответствует максимальный ток срабатывания защиты, а минимальному сопротивлению - минимальный ток.

С помощью конденсатора С4 осуществляется плавный запуск стабилизатора. Кроме того, его емкость определяет период перезапуска при превышении порога защиты по току.

Резистор R5 и конденсаторы С5, С6 - элементы частотной компенсации внутреннего усилителя ошибки.

Конденсатор C3 и резистор R3 определяют несущую частоту широтно-импульсного преобразователя.

Конденсатор С2 задает время между резким уменьшением выходного напряжения (вызванного внешними причинами, например, кратковременной перегрузкой по выходу) и переходом сигнала RESO (вывод 14 DA1) в состояние, соответствующее нормальной работе, когда транзистор, включенный между выводами RESO и GND внутри микросхемы, закрывается. Резистор R6 обеспечивает нагрузку открытого коллектора этого транзистора. Если планируется использовать сигнал RESO с привязкой его к напряжению, отличному от выходного напряжения стабилизатора, то резистор R6 не устанавливают, а нагрузку открытого коллектора подключают внутри приемника сигнала RESO.

Резистор R4 обеспечивает нулевой потенциал на входе INHI (вывод 6 DA1), что соответствует нормальной работе микросхемы. Стабилизатор можно выключить внешним сигналом высокого ТТЛ уровня.

Применение диода КД636АС (его суммарный допустимый ток значительно превосходит требуемый в этом стабилизаторе) позволяет увеличить КПД на 3...5% при незначительном удорожании устройства. Это приводит к снижению температуры теплоотвода и, следовательно, к уменьшению его габаритов и массы.

Резисторы R7 и R8 служат для регулирования выходного напряжения. Когда движок резистора R7 находится в нижнем по схеме положении, напряжение на выходе минимально и равно образцовому напряжению микросхемы DA1, соответственно, когда в верхнем - выходное напряжение максимально.

Тринистор VS1 открывается сигналом СВО (вывод 15 DA1), если напряжение на входе CBI (вывод 1 DA1) превышает внутреннее образцовое микросхемы DA1 приблизительно на 20%. Так осуществляется защита нагрузки от превышения напряжения на выходе.

Все оксидные конденсаторы - К50-35, кроме С1 - К50-53. Конденсатор С6 - керамический К10-176, остальные пленочные (К73-9, К73-17 и т. д.). Все постоянные резисторы - С2-23. Переменные резисторы R2 и R7 - СПЗ-4аМ мощностью 0,25 Вт. Их устанавливают на плате с помощью кронштейнов. Дроссель L1 наматывают на двух сложенных кольцевых магнитопроводах К20х 12x6,5 из пермаллоя МП140. Обмотка содержит 42 витка провода ПЭТВ-2 1,12, намотанных в два слоя: первый - 27-28 витков, второй - остальные.

Стабилизатор собран на плате из односторонне фольгированного стеклотекстолита. Чертеж платы показан на рис. 7.

Импульсные понижающие стабилизаторы

Микросхему, диод и тринистор закрепляют на одном теплоотводе. При этом микросхему в большинстве случаев можно не изолировать от поверхности теплоотвода, поскольку ее фланец соединен с выводом 8 (GND). Диод и тринистор необходимо изолировать. Теплоотвод выбирают из расчета рассеиваемой мощности приблизительно 15...20 Вт и перегрева 30°С. Уменьшить габариты и массу теплоотвода можно, применяя вентилятор (если это возможно).

Следует уделить особое внимание сетевому трансформатору и выпрямителю. Трансформатор рассчитывают на выходную мощность не менее 150 Вт и выходное напряжение холостого хода приблизительно 33 В. При максимальной нагрузке допустимо уменьшение выходного напряжения не более чем на 1,5 В относительно напряжения холостого хода. Выпрямитель выбирают на ток З...3,5 А при суммарном падении напряжения на его диодах не более 2 В. Выпрямитель (в случае монолитного исполнения) или отдельные диоды можно закрепить на том же теплоотводе, что и стабилизатор.

Хорошей альтернативой сетевому трансформатору и выпрямителю может служить импульсный преобразователь.

Анализируя два рассмотренных устройства, можно увидеть их различия. Очевидно, что первый стабилизатор дешевле второго. Более того, пути дальнейшего удешевления первого весьма очевидны (замена диода КД2997В на КД213В при незначительном ухудшении КПД и дорогостоящего пермаплоевого дешевым ферритовым магнитопроводом). Во втором устройстве КД213В (как, впрочем, и КД2997В) уже не подойдет из-за инерционности, а замена магнитопровода не приведет к заметному уменьшению стоимости. Детали для первого стабилизатора можно найти в рабочем столе любого радиолюбителя, чего не скажешь о втором.

Однако первое устройство требует повышенных затрат времени на этапе проектирования. Кроме этого, оно имеет большее число элементов при меньших функциональных возможностях.

Литература

  1. Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем. - М.: Мир, 1982.
  2. Полупроводниковые приборы. Транзисторы средней и большой мощности: Справочник/ А. А. Зайцев, А. И. Миркин, В. В. Мо-кряков и др. Под ред. А. В. Голомедова. - М.: Радио и связь, 1989.
  3. Полупроводниковые приборы. Диоды выпрямительные, стабилитроны, тиристоры: Справочник/ А. Б. Гитцевич, А. А. Зайцев, В. В. Мокряков и др. Под ред. А. В. Голомедова. - М.: Радио и связь, 1988.
  4. http:/ /www.ferrite.ru
  5. https://www.bryansk.ru/siV1155EU2.zip

Автор: Ю.Семенов, г.Ростов-на-Дону

Обсудить на форуме

ingeneryi.info

Стабилизатор напряжения - это... Что такое Стабилизатор напряжения?

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного тока и переменного тока. Как правило, тип питания (постоянный либо переменный ток) такой же, как и выходное напряжение, хотя возможны исключения.

Стабилизаторы постоянного тока

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, т. е. должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.

В зависимости от расположения элемента с изменяемым сопротивлением линейные стабилизаторы делятся на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на стабилитроне

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

Uout = Uz — Ube.

По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремния приблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β - коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (т.е. опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения (напряжение стабилизации стабилитрона) должна быть выбрана меньше требуемого минимального выходного напряжения.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ (Gopenloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).

Импульсный стабилизатор

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно конденсатор или дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но, в случае дросселя, уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):

  • Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
  • Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
  • Повышающе-понижающий стабилизатор: выходное напряжение стабилизировано, может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение незначительно отличается от требуемого и может изменяться, принимая значение как выше, так и ниже необходимого.
  • Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение выходного напряжения может быть любым.

Стабилизаторы переменного напряжения

Феррорезонансные стабилизаторы

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а в некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.

Современные стабилизаторы

В настоящее время основными типами стабилизаторов являются:

  • электродинамические сервоприводные (механические)
  • статические (электронные переключаемые)
  • релейные
  • компенсационные (электронные плавные)

Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15%, ±20%, ±25%, ±30%, -25%/+15%, -35%/+15% или -45%/+15%. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности.

Важной характеристикой стабилизатора напряжения является его быстродействие, то есть чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие это промежуток времени (миллисекунды) за которое стабилизатор способен изменить напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия, например у электродинамических быстродействие 12...18 мс/В, статические стабилизаторы обеспечат 2 мс/В, а вот у электронных, компенсационного типа этот параметр 0,75 мс/В.[источник не указан 943 дня]

Ещё одним важным параметром является точность стабилизации выходного напряжения. Согласно ГОСТ 13109-97 предельно допустимое отклонение напряжения питания ±10% от номинального. Точность современных стабилизаторов напряжения колеблется в диапазоне от 1% до 8%. Точности в 8% вполне хватает для обеспечения исправной работы абсолютного большинства бытовой и промышленной электротехники. Более жесткие требования (1%) обычно предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора работать на заявленной мощности во всем диапазоне входного напряжения, но далеко не все стабилизаторы соответствуют этому параметру. Некоторые стабилизаторы выдерживают десятикратные перегрузки, при покупке такого стабилизатора запас по мощности не требуется.

См. также

Литература

  • Вересов Г.П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • В.В. Китаев и др Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В.Г. Парфенов Е.М. Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.

Ссылки

Примечания

dik.academic.ru

Что нужно светодиоду - стабилизатор напряжения или тока?

Все светодиоды, независимо от форм-фактора и электрических параметров, питаются током. Правильно заданный ток – это гарантия длительной и стабильной работы осветительного прибора. Так почему же производители светодиодной продукции часто вместо стабилизатора тока устанавливают стабилизатор напряжения? Как это сказывается на работе светодиодных ламп, лент, фонарей и прожекторов? Попробуем разобраться.

Стабилизаторы напряжения

Исходя из названия, эти устройства предназначены для поддержания напряжения в нагрузке на определённом уровне. При этом величина выходного тока зависит от самой нагрузки. Другими словами, сколько потребуется нагрузки, столько она возьмёт, но не более максимально возможного значения. Допустим, стабилизатор напряжения обладает такими выходными параметрами: 12В и 1 А. То есть на выходе всегда будет поддерживаться 12В, а ток потребления может быть в диапазоне от нуля до одного ампера. Существует два вида стабилизаторов напряжения: линейные и импульсные.

Как правило, регулирующим элементом в схеме стабилизатора является биполярный или полевой транзистор. Если этот транзистор работает в активном режиме, то стабилизатор называют линейным. Если же регулирующий транзистор работает в ключевом режиме, то стабилизатор называют импульсным.

Наиболее распространенными и недорогими являются линейные стабилизаторы напряжения, однако они имеют ряд недостатков:

  • низкий КПД;
  • при большом токе нагрузки нуждаются в теплоотводе;
  • имеют достаточно высокое падение напряжения.

Чтобы не сталкиваться с подобными недостатками, рекомендуется использовать стабилизаторы напряжения импульсного типа. Они бывают трех типов: повышающие, понижающие и универсальные. Импульсные стабилизаторы имеют высокий КПД, не нуждаются в дополнительном отводе тепла при больших токах нагрузки, но имеют более высокую стоимость.

Стабилизаторы тока

Простейший ограничитель тока – резистор. Его часто называют простейшим стабилизатором, что неверно, так как резистор не способен стабилизировать ток при колебании напряжения на своем входе.

Применение резистора в схеме питании светодиода допустимо только при стабилизированном входном напряжении. В противном случае все скачки напряжения передаются в нагрузку и негативно отражаются на работе светодиода. Эффективность резистивных ограничителей тока очень низкая, так как вся потребляемая ими энергия рассеивается в виде тепла.

Немного выше КПД у конструкций на базе готовых интегральных микросхем (ИМ) линейных стабилизаторов. Схемы линейных стабилизаторов на базе ИМ выделяющиеся минимальным набором элементов, отсутствием помех и простой настройкой.

Чтобы избежать перегрева регулирующего элемента, разность входного и выходного напряжения должна быть небольшой, но достаточной (3-5 вольт). Иначе корпус микросхемы вынужден будет рассеивать невостребованную энергию, тем самым снижая КПД.

Драйверы для светодиодов на основе готовых ИМ линейных стабилизаторов выделяются дешевизной и доступностью элементов для сборки своими руками.

Наиболее эффективными принято считать токовые драйверы с широтно-импульсной модуляцией (ШИМ). Их конструируют на базе специализированных микросхем с цепью обратной связи и элементами защиты, что в несколько раз повышает надёжность всего устройства. Наличие в них импульсного трансформатора ведет к удорожанию схемы, но оправдано высоким КПД и сроком службы. Токовые ШИМ стабилизаторы с питанием от источника 12В несложно сделать своими руками, используя специализированную микросхему. Например, ИМС PT4115 от компании PowTech, которая разработана специально для схем питания светодиодов мощностью от 1 до 10 Вт.

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт — амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

Правильное и неправильное включение

Больше всего ошибок допускают автомобилисты, когда пытаются сэкономить на схеме питания светодиодного освещения. Часто автолюбители включают светодиодные приборы напрямую от аккумулятора, а потом жалуются на разные неполадки: моргание, потерю яркости и полное погасание кристалла. Всё это происходит из-за отсутствия промежуточного преобразователя, который должен компенсировать перепады напряжения в интервале от 10 до 14,5В. Ещё одна ошибка владельцев авто – подключение только через резистор, рассчитанный на среднее показание аккумулятора 12В. Резистор – линейный элемент, а значит, ток через него растет пропорционально напряжению. Подключение через резистор допускается при условии его расчета на 14,5В, но тогда придется смириться с неполной светоотдачей светодиодов при низких и средних значениях напряжения в бортовой сети. Поэтому однозначный верный способ подключения светодиодов в автомобиле – это использование стабилизатора тока, желательно импульсного типа.

В различных осветительных конструкциях на основе светодиодов часто используются именно стабилизаторы напряжения. Почему так происходит? Во-первых, они намного дешевле качественных токовых драйверов. Во-вторых, чтобы из стабилизатора напряжения получился более-менее надёжный драйвер достаточно на выходе установить резистор, грамотно рассчитав его мощность и сопротивление. Такое схемотехническое решение часто применяется в недорогих LED лампах и осветительных конструкциях с применением светодиодных лент.

Большинство светодиодных лент питается стабильным напряжением 12В. Если рассмотреть конструкцию ленты более детально, то можно увидеть, что она разделена на небольшие участки. Как правило, каждый участок состоит из трёх SMD­ светодиодов и одного токозадающего резистора. Падение напряжения на одном светоизлучающем элементе в среднем составляет 2,5-3,5 В, то есть максимум 10,5В в сумме. Остаток гасится резистором, номинал которого изготовитель подбирает под тип используемых светодиодов. Поэтому подключение светодиода через связку из стабилизатора напряжения и резистора можно считать правильной.

Выходная мощность стабилизатора должна быть больше потребляемой мощности нагрузки примерно на 30%.

Если использовать простой блок питания без стабилизации (трансформатор, диодный мост и конденсатор), то при небольшом увеличении напряжения сети, его пропорционально уменьшенная часть будет равномерно распределяться на всех четырёх элементах каждого участка ленты. В итоге вырастет ток, температура кристалла и, как следствие, начнется необратимый процесс деградации светодиодов.

Самым правильным схемотехническим решением является применение стабилизатора тока импульсного типа. На сегодняшний день – это оптимальный вариант, который используют все ведущие производители светодиодных изделий. Токовый драйвер с ШИМ регулятором практически не греется, эффективен и надёжен.

Так чему же отдать предпочтение: дешевому стабилизатору напряжения с резистором или более дорогому токовому драйверу? Правильный ответ скрыт в выражении: «Любая экономия должна быть оправдана». Если Вам нужно подключить десяток слаботочных светодиодов или не более одного метра ленты, то выбор в пользу первого варианта нельзя назвать ошибочным.

Но если ваша цель – запитать фирменные светодиоды с мощностью каждого кристалла более 1 Вт, то без качественного токового драйвера не обойтись. Потому что стоимость таких излучающих диодов намного выше цены на драйвер.

Читайте так же

ledjournal.info