Большая Энциклопедия Нефти и Газа. Применение ацетилен


Ацетилен - это... Что такое Ацетилен?

Ацетиле́н (по ИЮПАК — этин) — ненасыщенный углеводород C2h3. Имеет тройную связь между атомами углерода, принадлежит к классу алкинов.

Физические свойства

При нормальных условиях — бесцветный газ, малорастворим в воде, легче воздуха. Температура кипения −83,8 °C. При сжатии разлагается со взрывом, хранят в баллонах, заполненных кизельгуром или активированным углем, пропитанным ацетоном, в котором ацетилен растворяется под давлением в больших количествах. Взрывоопасный. Нельзя выпускать на открытый воздух. C2h3 обнаружен на Уране и Нептуне.

Химические свойства

Ацетилено-кислородное пламя(температура «ядра» 2621 °C)

Для ацетилена (этина) характерны реакции присоединения:

HC≡CH + Cl2 -> СlСН=СНСl

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³. При сгорании в кислороде температура пламени достигает 3150 °C. Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в 400 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди.

Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.):

Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации, сводная таблица 2.):

История

Открыт в 1836 г. Э. Дэви, синтезирован из угля и водорода (дуговой разряд между двумя угольными электродами в атмосфере водорода) М. Бертло (1862 г.).

Способ производства

В лаборатории ацетилен получают действием воды на карбид кальция см. видео данного процесса (Ф. Вёлер, 1862 г.),

CaC2+ 2 Н2О = С2Н2↑ + Са(ОН)2

а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:

2СН4 = С2Н2↑ +3Н2↑

Применение

Ацетиленовая лампа

Ацетилен используют:

  • для сварки и резки металлов,
  • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидная лампа),
  • в производстве взрывчатых веществ (см. ацетилениды),
  • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.
  • для получения технического углерода
  • в атомно-абсорбционной спектрофотометрии при пламенной атомизации
  • в ракетных двигателях(вместе с аммиаком)[2]

Безопасность

Поскольку ацетилен растворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном. При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест».

ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), так как концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5-100 %.

Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углем) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5-2,5 МПа.

Примечания

Ссылки

biograf.academic.ru

Применение - ацетилен - Большая Энциклопедия Нефти и Газа, статья, страница 1

Применение - ацетилен

Cтраница 1

Применение ацетилена в химической промышленности очень многообразно и основано на реакциях, рассмотренных выше.  [1]

Применение ацетилена в химической промышленности в последние годы быстро растет. Следует отметить, что в 1961 г. эта доля возросла примерно до 80 %; в дальнейшем производство ацетилена будет расти в среднем приблизительно на 12 % в год.  [2]

Применение ацетилена в химической промышленности в последние годы быстро растет. Следует отметить, что в 1961 г. эта доля возросла Примерно до 80 %; в дальнейшем производство ацетилена будет расти в среднем приблизительно на 12 % в год.  [3]

Применение ацетилена для автогенной сварки металлов основано на том, что когда ацетилен - соединение эндотермическое - сгорает в смеси с вдуваемым в пламя кислородом, развивается температура, при которой легко могут быть расплавлены многие металлы. Этим пользуются, например, для сваривания рельсов, стальных листов и пр.  [4]

Применение ацетилена в химической промышленности очень многообразно и основано на реакциях, рассмотренных выше.  [5]

Применение ацетилена в баллонах обеспечивает ряд преимуществ. К ним относятся: хорошее качество газа, возможность работы при пониженной температуре, большая степень безопасности.  [6]

Поэтому применение ацетилена в органическом синтезе сохраняет свою актуальность и непрерывно ведутся работы по усовершенствованию способов его производства из углеводородного сырья. В последнее время большое внимание привлекает пиролиз углеводородных газов в дуге водородной плазмы при 2000 - 4000 С. При этой температуре происходит диссоциация молекул газа теплоносителя и углеводородного сырья, образование различных радикалов и ионизация атомов. Плазма представляет смесь электронов, атомов, различных осколков молекул в возбужденном состоянии. Реакция образования ацетилена из углеводородного сырья заканчивается за 10 - 3 - Ю-4 сек. По данным Л. С. Поллака, при пиролизе в плазменной струе ( при 2000 С) пропан-бутановой смеси в реакционном газе образуется 14 % ацетилена и 48 % этилена, а при окислительном пиролизе ( 1050 С) только около 9 % ацетилена и 32 % этилена. Пиролизом в плазменной дуге фирмой Дюпон предполагается получать ацетилен по цене, равной стоимости этилена, если образующийся при этом процессе водород использовать для синтеза аммиака.  [7]

Рост применения ацетилена не был основан на каком-либо одном главном успехе технологии его производства. Все установки для получения ацетилена из углеводородов, которые появились в нескольких странах, были созданы в результате развития процессов электрокрекинга, регене ратив-ного или окислительного пиролиза, разработанных ранее ( см. стр.  [8]

Области применения ацетилена очень разнообразны. В химической промышленности продукты тонкого органического синтеза получают главным образом из карбидного ацетилена.  [9]

О применении ацетилена к определению палладия и платины в медно-никелевых шламах. Сектора платины и др. благородных металлов ( Ин - т общей и неорган, химии им.  [10]

Сама возможность применения ацетилена при повышенном давлении для органического синтеза считалась на первых этапах развития химии ацетилена технически неосуществимой из-за опасения взрывного разложения ацетилена.  [11]

Работы с применением ацетилена должны проводиться в хорошо действующем вытяжном шкафу. Непоглощенный ацетилен следует выводить непосредственно в вытяжной канал.  [12]

Присутствие примесей затрудняет применение ацетилена в основном органическом синтезе, так как они вызывают протекание различных побочных реакций, нарушающих технологический процесс.  [14]

Ацетальдегидный метод исключает применение взрывоопасного ацетилена и токсичного ртутного катализатора и упрощает технологическую схему процесса.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Использование - ацетилен - Большая Энциклопедия Нефти и Газа, статья, страница 1

Использование - ацетилен

Cтраница 1

Использование ацетилена без растворителя при высоком давлении опасно: возможен взрыв.  [1]

Использование ацетилена при термической резке, газопламенной наплавке, пайке и напылении покрытий позволяет решить серьезные задачи по созданию уникальных инженерных сооружений, надежных металлоконструкций, работающих в широком интервале температур и давлений в различных средах.  [2]

Использование ацетилена ограничено тем, что в образующемся диоксане в положении 2 должна находиться одна метильная группа. Замещение при других атомах углерода зависит от гликоля, примененного для реакции.  [3]

Использование IG ацетилена в синтезе органических промежуточных продуктов описано в нескольких информационных изданиях. Среди полученных продуктов имеются бутадиен, сукци-новая, глутаровая и адипиновая кислоты, малеиновый ангидрид, поливинилпирролидон ( перистон, заменяет плазму крови), винил-хлорид, акрилонитрил, акриловые эфиры и этилен.  [4]

При использовании ацетилена в сварочном пламени имеются также три зоны: ядро А, зона неполного сгорания В, зона полного сгорания С. Температура пламени зависит от состава смеси, подаваемой в горелку, и различна для отдельных зон пламени.  [5]

При использовании ацетилена вместо пропан-бутана исходить из следующего расчета: 0 3 кг пропан-бутана соответствуют 1 кг карбида кальция или 0 235 м3 растворенного ацетилена.  [6]

При использовании ацетилена в качестве горючего ацетиленовый генератор с относящейся к нему аппаратурой необходимо помещать в специальном здании или пристройке, отвечающей особым требованиям, предъявляемым к ацетиленовым установкам. Если закалочная установка работает на керосине, то отдельного помещения не требуется.  [8]

При использовании ацетилена в качестве горючего ацегиленовый генератор с относящейся к нему аппаратурой необходимо помещать в специальном здании или пристройке, отвечающей особым требованиям, предъявляемым к ацетиленовым установкам.  [9]

При использовании ацетилена для некоторых синтезов остаточный хлор поглощают пропусканием через нагретый слой окиси цинка.  [10]

При использовании ацетилена в производстве ацетальдегида, поливинилхлорида и других продуктов допустимые нормы содержания этих примесей ниже, поэтому требуется дополнительная тонкая очистка ацетилена.  [11]

При использовании ацетилена для получения замещенного 1 3-диоксана возможно получение только одного моноалкильного производного, а именно 2-метил - 1 3-диоксана. Для реакции необходимо применять триметиленгли-коль, так как в противном случае образуются полизамещенные 1 3-диоксаны.  [12]

При использовании ацетилена для газопламенной обработки металлов единственным устройством, предохраняющим генераторы и трубопроводы от распространения взрывной волны, является жидкостный предохранительный затвор.  [13]

Производство и использование ацетилена немыслимы без применения электрического оборудования. Однако в связи с тем, что в производственных условиях нельзя полностью исключить возможность образования взрывоопасных смесей ацетилена с воздухом, применяемое электрооборудование должно обладать достаточной степенью безопасности при работе во взрывоопасной среде.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Ацетилен применение - Справочник химика 21

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]     Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Обезболивающее действие различных газообразных углеводородов различно. Этилен и ацетилен действуют довольно сильно — сильнее, чем предельные углеводороды с прямой цепью. Однако самым сильным обезболивающим действием обладает циклопропан. В медицине он был впервые применен еще в 1929 году и используется до сих пор. [c.55]

    В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]

    В промышленных условиях используют гомогенные газовые реакции, имеющие достаточно высокую скорость. При температурах реакции между газами обычно очень мала. При высокой температуре скорость таких реакций становится большой (превышает скорость обычной каталитической реакции), поэтому промышленное их использование экономически выгодно. Например, широкое применение в промышленности имеют следующие реакции, протекающие в гомогенной газовой фазе при высокой температуре синтез соляной кислоты из элементов крекинг метана в ацетилен или сажу крекинг углеводородов (пропан, бензин) в этилен и пропилен окисление, хлорирование и нитрование углеводородов. [c.53]

    Ацетилен, его свойства, получение и применение, т. I. [c.365]

    Превращенпе трихлорэтилена в перхлорэтилен целесообразно только в тех случаях, когда трнхлорэтилеп нельзя использовать как таковой. Методы, основанные на ацетилене и других углеводородах как исходных веществах, всегда дают хлористый водород в качестве побочного продукта. Такие процессы проводятся иногда в несколько стадий II при повышенных телшературах. Выход хлористого водорода повышается прп применения в качестве сырья ацетилена, поэтому рентабельность процесса зависит от использования хлористого водорода. Это осуществляют получением из НС1 хлора по методу Dea on . [c.208]

    Производство карбида кальция термической реакцией между коксом и окисью кальция имеет широкое распространение. Так, в 1965 г. для этих целей потреблялось более 2 500 ООО т кокса во всем мире, из которых, вероятно, от 800 до 900 тыс. т в странах Западной Европы. Но не следует ожидать развития производства карбида кальция в ближайшие годы. Основной областью его применения является производство ацетилена, себестоимость которого по этому методу оценивается во Франции немногим больше 1000 франков/т. Во многих случаях ацетилен может быть заменен этиленом, который более экономичен. Кроме того, для производства ацетилена с карбидным процессом конкурируют другие процессы, принцип которых — пиролиз таких углеводородов, как метан, этап и легкие бензины. Этот пиролиз может происходить при внешнем обогреве, частичном сгорании или под действием электрического тока в форме дуги или разряда. Эти процессы обычно дают смеси ацетилена и этилена, пригодные для использования. Нельзя сказать, что эти процессы были хорошо отработаны и надежны к 1967 г., но можно надеяться, что многие из них позволят получать ацетилен с ценой менее 0,80 франков/кг в связи с этим будет ограничена замена его на этилен. [c.221]

    При изучении реакции алкилирования ацетиленом и его гомологами ароматических соединений, в частности фенолов , синтезированные дифенолы анализировали с помощью хроматографии в тонком слое окиси алюминия. Матовую стеклянную пластинку покрывали товарной хроматографической окисью алюминия в сухом виде (слой толщиной 0,5 мм, без применения фиксирующих средств). Дифенолы лучше всего разделялись элюэнтом, представляющим собой раствор этанола в бензоле в отношении 1 15. Хроматогргмму проявляли, используя пары иода. Для количественного определения компонентов был опробован метод измерения и сравнения площадей их пятен. Оказалось, что при хорошем разделении компонентов и при резких границах пятен этот метод расчета дает достаточно точные данные. Ошибка определения менее 6%. Этим методом были разделены дифенолы и их орто-пара-замещенные изомеры. Необходимо отметить, что в этой работе количество определяемого компонента было 10% и выше, поэтому о возможности применения метода для анализа микроколичеств судить трудно. [c.188]

    В рабочих помещениях производства цианамида кальция и цианплава должны быть установлены автоматические газоанализаторы, сигнализирующие о наличии в воздухе ацетилена взрывоопасных концентраций. Не менее одного раза в смену должен проводиться лабораторный анализ воздуха. В помещениях, взрывоопасных по ацетилену, не допускается применение контрольно-измерительных приборов, клапанов и других устройств, изготовленных из красной меди или сплавов, содержащих более 70% меди. [c.76]

    Применение. Более половины получаемого кислорода расходуется в черной металлургии для интенсификации выплавки,. чугуна и стали. В смеси с ацетиленом С2Н2 кислород используют для сварки и резки металлов, при горении этой смеси пламя имеет [c.442]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    При применении этих способов необходимо учитывать, что ацетилен и водород растворимы в нефтепродукте, а карбоновые кислоты нефти и прочие кислые соединения могут реагировать с гидридом и карбидом кальция, металлическим натрием и калием и другими Ьеществами, как вода, давая неточные определения ее количественного содержания. [c.18]

    При эксплуатации взрывоопасных производств неоднократно происходили взрывы в результате воспламенения огнеопасных веществ. В ряде случаев взрывы были вызваны проскоком газов, воспламенявшихся в присутствии кислорода. В производстве ацетилена, а также в ряде других производств, в которых присутствует ацетилен, особую опасность представляет образование ацети-ленистой меди, которая на воздухе может взорваться. Поэтому з производствах, связанных с применением газовых фракций, содержащих ацетилен, не допускается применение оборудования и деталей из меди. В процессах, связанных с переработкой ацетилена на. медьсодержащем катализаторе, принимают другие меры, исключающие образование ацетиленидов меди. Например, для предупреждения образования металлической меди и контакта ее с ацетиленом процесс ведут в кислой среде солей меди. [c.337]

    Она основана на воздействии карбонила никеля на ацетилен и идет без применения давления в присутствии соляной кислоты. В присутствии спиртов образуется соответствующий эфир акриловой кислоття. Выход составляет до 9Г)% от теоретического. Реакция может быть представлена следующим образом  [c.254]

    Как показывают данпые табл. 11, процесс алкилирования бензола и толуола ацетиленом и метилацетилеиом при атмосферном давлении и. температурах 300—800° К может протекать практически до конца, степень конверсии 97—99%. С применением повышенного давления. при осуществленни процесса алкилирования область температур может [c.292]

    Все большее распространение получает растворенный ацетилен, применение которого повышает производительность труда сварщиков, освобождает их от обслуживания генератора и обеспечивает безопасность работы. Там, где используют газообразный ацетилен, стремятся перейти к системе стационарных газопроводов, устанавливая на рабочих местах стационарные газосварочные посты. [c.3]

    НОЙ диссоциации бензола. Очевидно, если энергия света способна разорвать бензольное кольцо, то аналогичный эффект должно произвести применение и тепловой энергии. При температуре электрической дуги бензол подобно другим углеводородам дает газовые смеси, содержащие водород, ацетилен, метан, этан и аналогичные продукты. [c.97]

    Избирательность адсорбции на цеолитах еще более резко выражена для углеводородов с тройной связью в молекуле, например ацетилена, особенно при низких концентрациях его в газе. При обычных производственных температурах (20° С) активность цеолитов в 2—3 раза выше активности угля СКТ. С повышением температуры разница в адсорбционной способности цеолитов и активированного угля еще более увеличивается, что является отличительной особенностью адсорбции на синтетических цеолитах колебания температур перерабатываемого газа не играют столь существенной роли, как в случае применения активированного угля. В незначительном числе случаев ацетилен приходится извлекать из смесей, содержащих этилен. Высокий коэффициент разделяющей способности цеолитов по смеси этилен — ацетилен указывает на возможность их применения для целей очистки этилена от примесей ацетилена. [c.113]

    Современный интерес к применению ацетплена стимулируется развитием процессов его получения из углеводородов низкого молекулярного веса. Все эти процессы включают некаталитический пиролиз углеводородов при высоких температурах в качество начальной стадии. Ацетилен получается в виде относительно разбавленной газовой смеси и концентрируется и очищается при последующих операциях. [c.57]

    Промышленное применение. Как было показано, ацетилен образуется при пиролизе углеводородов от метана до бутана . Следует под- [c.89]

    Примечания 1. Применение механической вытяжки из верхней зоны в производствах, где отходами, основным сырьем или готовым продуктом является ацетилен, не допускается. [c.131]

    Ацетиленовая сажа. Ацетиленовая сажа занимает особое место среди других саж по применяемому сырью, способам производства и качествам. Как показывает название, сырьем для производства ацетиленовой сажи служит ацетилен. Применение такого относительно дорогого сырья оправдывается специфическими свойствами получающейся сажи. Ацетиленовая сажа обладает более высокой электропроводностью и высокоразвитой вторичной структурой. Это значит, что ее частицы связаны между собой в прочные разветвленные цепочки. Применяется ацетиленовая сажа главным образом в качестве компонента агломераторной массы сухих элементов. Для этой цели важна не только высокая электропроводность сажи, но и ее развитая вторичная структура, которая позволяет связать относительно большое количество электролита. [c.550]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Главной целью этой монографии является обзор тех областей органической технологии, в которых применение нефти как сырья наиболее экономично. Однак(/ следует упомянуть, что в некоторых случаях наряду с нефтью используют также каменный уголь или растительное сырье. Так, например, в США и Великобритании этиловый спирт производят как нз этилена нефтяного происхождения, так и методом брожения в США, Германии и Италии ацетилен получают как неполным окислением природного газа — мегана, так и из угля, через карбид кальция. [c.11]

    Взрывобезопасность ацетилена. Важнейшим из применяемых в химической промышленности эндотермических соединений является ацетилен. Он находит все возрастающее применение не только в процессах резки и сварки, но и в качестве исходного продукта органического синтеза в ряде многотоннажных производств. [c.86]

    Для создания независимого и равномерного режима работы цехов, вырабатывающих ацетилен, и цехов-по требителей ацетилена между этими цехами устанавли вают газгольдеры. В производстве ацетилена исполь зуют мокрые газгольдеры. Применение их, как прави ло, позволяет транспортировать ацетилен под абсолют ным давлением до 1,03—1,05 ат. [c.114]

    Интересное видоизмзнение KW-процесса в приложении к этану было осуществлено на одной опытной установке в Германии. Углеводород и кислород сжигались в описанных выше условиях, но в отсутствие катализатора и при более высокой температуре (120u ). Применение этого процесса для химического синтеза, повидимому, весьма заманчиво. Приблизительно 25% углерода углеводородных газов превращается в ацетилен, а остальные 75% представляют собою газ синтеза , весьма приблизительно эта реакция может быть представлена уравнением  [c.196]

    Из рассмотренного следует, что при распаде ацетилена может развиваться давление порядка нескольких сотен атмосфер. Поэтому кажущийся на первый взгляд наиболее простым и надежным способ обеспечения безопасной работы с ацетиленом путем применения аппа ратов, рассчитанных на указанные высокие давления, в большинстве случаев практически неприемлем и нецелесообразен. Что же касается трубопроводов, то в отдельных случаях на основании оценки возможной опасности для сооружаемой системы транспортирования ацетилена и определения возникающих в ней давлений, по-видимому, можно для этих целей ИСПОЛЬЗ )-вать трубы, рассчитанные на давление детонационного распада ацетилена. Однако осуществить указанные мероприятия для промышленных трубопроводов большо го диаметра не представляется возможным. [c.66]

    М и л л е р С. А., Ацетилен, его свойства, получение и применение, т. I, Изд Химия , 1969. [c.151]

    При применении поршневых компрессоров необхо-ди.м строгий контроль за работой системы смазки цилиндров и подшипников. Для смазки цилиндров применяется масло с высокой температурой вспышки (не менее 215 С). Отработанное. масло, уже использованное для смазки цилиндров,. может содержать растворенные ацетилен и высшие ацетиленовые углеводороды. Реге нерацию. масла следует производить в отдельной установке, чтобы исключить проникание ацетилена или высших ацетиленовых углеводородов в другие машины, имеющие детали из меди или ее силавов (кольца, прокладки и т. д.). [c.101]

    Реакция проводится непрерывно следующим образом. Смесь ацетилен и окиси углерода в соотиошении 1 1с температурой 170° и под давлением 30 ат нагнетается в реакционную камеру, содержащую спирт с расгв( рен-ным в ном катализатором. Последний состоит из бромистого пи келя и бромистого алкила в присутствии трифенилфосфита, который служит комплексо-образователем. Алкильный состав бромида соответствует примененному в реакции спирту. [c.254]

    Применение Н3РО4-ВР3 при алкилировании ацетиленом алкилбензолов позволило повысить выход соответствующих 1,1-ди-арилэтанов и осуществить ряд других реакций. В результате взаимодействия триэтилбензола с ацетиленом в присутствии этилалюминийдихлорида и метанола удалось с количественным выходом получить 2,4,6-триэтилстирол. Состав дитолилэтанов, получаемых при алкилировании ацетиленом толуола, зависит от используемой каталитической системы (% масс.)  [c.105]

    Опубликованные данные о применении процессов адсорбции (или типерсорбции) для выделения ацетилена из смесей пока мало убедительны. Указываются затруднения при отделении СОа, имеющего изотермы адсорбции, близкие к изотермам адсорбции ацетилена, и трудности, связанные со склонностью высших ацетиленовых углеводородов к полимеризации. По другим данным, процессы гиперсорбции позволили получить ацетилен высокой чистоты. [c.118]

    Способ каталитического гидрирования, по-видимому, технологически наиболее прост и нашел промышленное применение в СССР на установках получения изопрена двухстадийным дегид-рйрованнем изопентана. Принципиальная схема установки, включающая выделение изопрена экстрактивной ректификацией с ДМФА, обычную ректификацию от пипериленов и циклопента- , диена, химическую очистку изопрена от циклопентаднена с цикло-гексаноном, отмывку и очистку от а-ацетиленов каталитическим гидрированием, приведена на рис. 6. [c.679]

    При оптимальных условиях процесса, то есть применении нагретого до 400—600°С 98% -ного кислорода, температуре пиролиза 1450—1500 С и времени контактирования 0,004—0,006 с, степень конверсии метана в ацетилен достигает 0,3 при общей степени превращения метана 0,9 и кислорода 0,99. Газ процесса окислительного пиролиза метана имеет состав (% об.) С2Н2 —8,0 С2Н4 — 0,5 СОа — 4,0 СО — 26,5 На — 54,0 Na — 3,0 СН4 — 4,0. Кроме того, в газе содержится 0,2—0,3% гомологов ацетилена, следы ароматических соединений и 1—3 г/м сажи и смолы. [c.254]

    Применение серебра и серебряных припоев при изготовлении аппаратуры также запрещается. Особо следует оговорить применение ртути. Хотя ртуть и не взаимодействует с ацетиленом, но ее окислы достаточно химически активны по отношению к С2Н2. Поэтому приборы с ртутным заполнением обязательно дожны иметь защитный слой жидкости, в которой плохо растворяется ацетилен. В качестве такой защитной жидкости рекомендуется употреблять 30%-ный раствор хлорида кальция. [c.109]

    Метионовая кислота получается в небольших количествах при помощи ряда реакций, ведущихся с применением серного ангидрида или дымящей серной кислоты. Она выделена из реакционной смеси, полученной сульфированием этилового эфира [432] диэтилсульфата [433], ацетонитрила, ацетамида, сульфоуксусной [434], уксусной [435] и молочной кислот [436]. Ацетилен легко растворяется в 50%-ной дымящей серной кислоте [437], образуя в качестве основного продукта формилметионовую кислоту, небольшая часть которой разлагается на окись углерода и метионовую кислоту  [c.175]

    Ацетилен компримируют в специальных компрессорах со скор(Рстью движения поршня не более 0,7 м/с, температурой посл( нагнетательного клапана на каждой ступени сжатия не выш( 140 °С, давление — не выше 2,6 МПа (26 кгс/см ). Для предотвращения образования взрывчатой ацетиленистой меди в этгх компрессорах не допускается применение меди и сплавов, содержащих более 707о меди. [c.313]

    Сгорание аммиака активизируется при добавке к запальному топливу присадок, в частности пентилнитрата или диметилгидразина, причем применение последнего предпочтительнее ввиду близости его свойства к свойствам аммиака. С обеими присадками достигается устойчивое сгорание аммиачных смесей при обычных степенях сжатия с добавкой пентилнитрата при 8=12, й диметилгидразина — при 8=13,7. Улучшению работы двигателя на аммиаке способствует и подача в камеру сгорания таких активных газов, как водород и ацетилен. [c.190]

    При применении бо гсе старого, мокрого процесса , которым в боль-шинстве случаев нользуются и в настоящее время, карбид вносят в мешалку с водой, а образующееся известковое молоко постоянно отводят. Работу выполняют таким образом, чтобы воздух в ацетилен не попадал. [c.125]

Общая химия в формулах, определениях, схемах (1996) -- [ c.265 , c.266 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.265 , c.266 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.265 , c.266 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.265 , c.266 ]

Общая химическая технология (1964) -- [ c.510 ]

Подготовка сырья для нефтехимии (1966) -- [ c.10 , c.14 , c.18 , c.19 ]

Общая химическая технология (1970) -- [ c.319 , c.498 , c.518 ]

Курс технологии связанного азота (1969) -- [ c.175 ]

Газовый анализ (1955) -- [ c.38 ]

Общая химическая технология (1977) -- [ c.332 ]

Газовый анализ (1961) -- [ c.38 ]

Общая технология синтетических каучуков Издание 3 (1955) -- [ c.52 , c.53 ]

Органическая химия Том 1 (1963) -- [ c.295 ]

Технология нефтехимических производств (1968) -- [ c.118 ]

Основы общей химии Том 2 (1967) -- [ c.48 ]

Органическая химия Том 1 (1962) -- [ c.295 ]

chem21.info

Производство и применение ацетилена - Справочник химика 21

    Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений — спиртов, альдегидов, кислот. Получаемый при термическом разложении метана (реакция 1) мелкодисперсный углерод (газовая сажа) используется как наполнитель при производстве резины, типографских красок. Водород используется в различных синтезах, в том числе в синтезе аммиака. При высокотемпературном крекинге метана (реакция 2) получается ацетилен, необходимая высокая температура (1400—1600 С) создается электрической дугой. Одной из важных областей применения метана является получение так называемого синтез-газа — смеси оксида углерода(П) и водорода (реакции 3 и 4), используемого в дальнейшем для получения многих органических соединений. [c.69]     Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24]

    Производство карбида кальция термической реакцией между коксом и окисью кальция имеет широкое распространение. Так, в 1965 г. для этих целей потреблялось более 2 500 ООО т кокса во всем мире, из которых, вероятно, от 800 до 900 тыс. т в странах Западной Европы. Но не следует ожидать развития производства карбида кальция в ближайшие годы. Основной областью его применения является производство ацетилена, себестоимость которого по этому методу оценивается во Франции немногим больше 1000 франков/т. Во многих случаях ацетилен может быть заменен этиленом, который более экономичен. Кроме того, для производства ацетилена с карбидным процессом конкурируют другие процессы, принцип которых — пиролиз таких углеводородов, как метан, этап и легкие бензины. Этот пиролиз может происходить при внешнем обогреве, частичном сгорании или под действием электрического тока в форме дуги или разряда. Эти процессы обычно дают смеси ацетилена и этилена, пригодные для использования. Нельзя сказать, что эти процессы были хорошо отработаны и надежны к 1967 г., но можно надеяться, что многие из них позволят получать ацетилен с ценой менее 0,80 франков/кг в связи с этим будет ограничена замена его на этилен. [c.221]

    Книга представляет интерес для работников химической промышленности, проектных и научно-исследовательских институтов, занимающихся изучением свойств ацетилена, его производством и применением для промышленных синтезов, а также тех отраслей производства, где ацетилен используется для газопламенной обработки металлов. [c.2]

    В рабочих помещениях производства цианамида кальция и цианплава должны быть установлены автоматические газоанализаторы, сигнализирующие о наличии в воздухе ацетилена взрывоопасных концентраций. Не менее одного раза в смену должен проводиться лабораторный анализ воздуха. В помещениях, взрывоопасных по ацетилену, не допускается применение контрольно-измерительных приборов, клапанов и других устройств, изготовленных из красной меди или сплавов, содержащих более 70% меди. [c.76]

    Взрывобезопасность ацетилена. Важнейшим из применяемых в химической промышленности эндотермических соединений является ацетилен. Он находит все возрастающее применение не только в процессах резки и сварки, но и в качестве исходного продукта органического синтеза в ряде многотоннажных производств. [c.86]

    Примечания 1. Применение механической вытяжки из верхней зоны в производствах, где отходами, основным сырьем или готовым продуктом является ацетилен, не допускается. [c.131]

    Свыше 60% всего промышленного кислорода используется в металлургии. При выплавке чугуна и стали (в доменном, кислородно-конверторном и мартеновском производствах) для интенсификации процессов окисления применяется кислородное дутье или дутье обогащенным кислородом воздухом. Кислород в смеси с ацетиленом используют также для сварки и резки металлов. Широкое применение кислород находит практически во всех отраслях химической промышленности. Кислород используют в лечебных целях в медицине (кислородные подушки, кислородные коктейли и др.). [c.359]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]

    Ацетилен Н—С = С—Н является первым членом гомологического ряда углеводородов, содержащих тройные связи. За исключением ацетилена, эти вещества (называемые алкинами) еще не получили широкого применения и их используют лишь для производства других химических продуктов. [c.190]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    Среди ненасыщенных С4-углеводородов наиболее важную роль в химической промышленности играет дивинил. Ограниченное количество этого диолефина присутствует в -фракции, получаемой при производстве этилена пиролизом жидких углеводородов. Вследствие высокой концентрации дивинила в этой фракции выделение его обходится дешево. Эта фракция и была первым источником дивинила, на который США ориентировались в 1941—1942 гг. Эту же фракцию используют и в Англии при современных полупроизводственных испытаниях. В том случае, когда дивинила требуется больше, чем его имеется в качестве побочного продукта производства этилена, этот диолефин производят дегидрированием н-бутиленов. Одностадийный процесс получения дивинила из н-бутана по существу не отличается от метода, в котором исходят из бутиленов. Его можно использовать в тех случаях, когда вследствие относительной доступности бутана последний будет более дешевым исходным веществом. В других методах производства дивинила сырьем служит ацетилен или этиловый спирт. Первый из этих методов использовали в Германии вплоть до 1945 г., по второму методу в США во время второй мировой войны получали подавляющую часть дивинила, необходимого для производства синтетического каучука. Считается, что в нормальных условиях наиболее экономичным является производство дивинила из н-бутиленов. Из других применений н-бутиленов в химической промышленности следует указать на производство растворителей втор-бутилового спирта и метилэтилкетона. Изобутилен применяют для получения бутил-каучука, полиизобутиленов, диизобутилена и полупродуктов в производстве искусственных моющих средств. [c.405]

    Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затрудненном дыхании. [c.455]

    Широкое применение в нефтехимической промышленности находят также водород, метан и ацетилен. Большое количество водорода используется при получении аммиака из метана получают метанол, формальдегид и пластмассы ацетилен служит сырьем для производства акрилонитрила, тетрахлорэтана, моновинилацетилена, соответственно даюш,их бутадиен-акрило-нитрильный каучук, неопрен, раз-ати личные растворители и пр. [3 ]. [c.258]

    План развития народного хозяйства в СССР предусматривает значительное увеличение производства ацетилена в ближайшие годы, главным образом за счет применения методов, основанных на использовании углеводородного сырья. В качестве побочных продуктов при этом способе получения ацетилена образуется ряд так называемых высших ацетиленов , это главным образом, диацетилен, винилацетилен и метилацетилен. При этом количество диацетилена оказывается в 1,5—2 раза большим, чем количество винилацетилена и метилацетилена вместе взятых. [c.7]

    Ацетальдегид — важнейший из продуктов, получаемых рассматриваемым методом. Его свойства и применение описаны раньше (стр. 322). Здесь целесообразно сопоставить различные методы производства ацетальдегида, которые можно классифицировать либо по типу исходного углеводородного сырья (ацетилен, парафины, этилен), либо по применяемым процессам (гидратация, окисление и др.). [c.568]

    При возможности использования в качестве дешевого сырья парафиновых углеводородов большего молекулярного веса, чем метан, и при возможности сочетания установки по производству ацетилена с установкой, производящей аммиак и метанол, можно применять процессы пиролиза типа СБА. Объединение установок, производящих и потребляющих ацетилен, с установками для получения аммиака и метанола, ведет при полном использовании промышленных мопщостей к повышению их экономичности. Для создания таких комбинатов требуются очень большие капитальные затраты в течение довольно короткого времени, а также наличие рынков сбыта для всех продуктов. При наличии дешевых парафиновых углеводородов тяжелее метана возможно применение процессов тина процесса Вульфа для производства одного ацетилена (или ацетилена и этилена), не связанного с производством аммиака или другими процессами. Для процесса Вульфа не требуются установки, разделяющие воздух, и, следовательно, отсутствует побочный продукт такого разделения — азот, а выход остаточного газа в результате использования большей его части для обогрева печи и парообразования снижается до минимума. Возможно проведение процесса в таком режиме, когда весь остаточный газ будет расходоваться в самом процессе для обогрева печи, парообразования и для газогенераторного привода компрессоров. Этим обеспечиваются минимальные энергетические затраты и не остается побочных продуктов для использования за пределами установки. Возможно использование установок типа Вульфа или Копперс-Хаше для совместного производства ацетилена и бытового газа. [c.188]

    Хотя карбид кальция и ацетилен были открыты еще в 1836 г., широкое промышленное применение они получили лишь в начале XX в., когда стала доступной и дешевой электрическая энергия, необходимая для производства карбида кальция. [c.57]

    Если ремонт проводится в действующем цехе, где постоянно существует опасность образования горючих и взрывоопасных смесей, то запрещается не только проведение огневых работ, но и применение искрящего инструмента (в производствах, где используются ацетилен, водород и некоторые другие газы), а также не допускаются сверловка, резка, опиловка, пескоструйная обработка деталей, т. е. такие работы, при которых возможен нагрев инструмента или отдельных частей оборудования до температуры воспламенения (самовоспламенения) горючих паров и газов. [c.200]

    Ацетилен найдет применение в производстве галоидпроизводных, в первую очередь винилфторида и винилбромида, которые затем полимеризуются для получения ценных полимеров. В частности, одним из перспективных полимеров может явиться поливинил фторид. [c.8]

    Производство ацетилена развивается и будет совершенствоваться. Это вызывается более экономически выгодными условиями получения ряда продуктов органического синтеза на основе ацетилена (хлорпропен, винилаце-тат и т. д.). Особое значение имеет ацетилен в производстве хлористого винила благодаря необходимости использовать не находящие применения большие [c.15]

    Для удаления диацетилена из предварительно очищенного ацетилена применяются различные способы и, в частности, поглощение маслом газа с последующим выдуванием диацетилена из масла и ступенчатое низкотемпературное охлаждение газа, позволяющее удалять все примеси, кроме метилацетилена. Однако при этом создается опасность образования газовой фазы с содержанием более чем 12% диацетилена. Такая смесь при атмосферном давлении разлагается со взрывом от искры или легкого удара. Тем не менее, оба способа очистки приводят к ацетилену (с содержанием 1 г диацетилена в 1 ж газа), который может быть применен во многих производствах, кроме производства ацетальдегида, где диацетилен является нежелательной примесью, так как при содержании около 0,01% он уже дезактивирует катализатор. [c.14]

    При переработке топлива, добываемого из недр земли (каменного угля, нефти, природного и попутных газов), получают все главные исходные вещества для основного органического и нефтехимического синтеза 1) парафины и нафтены 2) олефины 3) ароматические углеводороды 4) ацетилен 5) окись углерода и син-тез-газ. В данной главе рассмотрены свойства, применение, методы производства и очистки этих веществ. [c.27]

    Кроме указанных областей применения ацетилен широко ис1юльзуется при автогенной сварке металлов, так как горение ацетилена в смеси с кислородом дает температуру выше ЗОООХ. Ацетилен находит широкое применение в качестве исходного сырья для многочисленных синтезов, из которых наиболее важное значение имеют производства синтетического каучука, пластических масс, этилового спирта, уксусной кислоты и др. [c.142]

    При эксплуатации взрывоопасных производств неоднократно происходили взрывы в результате воспламенения огнеопасных веществ. В ряде случаев взрывы были вызваны проскоком газов, воспламенявшихся в присутствии кислорода. В производстве ацетилена, а также в ряде других производств, в которых присутствует ацетилен, особую опасность представляет образование ацети-ленистой меди, которая на воздухе может взорваться. Поэтому з производствах, связанных с применением газовых фракций, содержащих ацетилен, не допускается применение оборудования и деталей из меди. В процессах, связанных с переработкой ацетилена на. медьсодержащем катализаторе, принимают другие меры, исключающие образование ацетиленидов меди. Например, для предупреждения образования металлической меди и контакта ее с ацетиленом процесс ведут в кислой среде солей меди. [c.337]

    Для создания независимого и равномерного режима работы цехов, вырабатывающих ацетилен, и цехов-по требителей ацетилена между этими цехами устанавли вают газгольдеры. В производстве ацетилена исполь зуют мокрые газгольдеры. Применение их, как прави ло, позволяет транспортировать ацетилен под абсолют ным давлением до 1,03—1,05 ат. [c.114]

    Получение ацетилена и хлористого водорода. Современное промышленное производство ацетилена основано на переработке углеводородного сырья — природного газа, этана, газового бензина и других нефтяных про- дуктов — электрокрекингом, термоокнслнтельным пиролизом и др. Находит применение и старый метод получения ацетилена разложением карбида кальция водой. Ацетилен, используемый для синтеза хлоропрена,"должен отвечать следующим требованиям [65, с. 78]  [c.226]

    Непрерывно расширяется сырьевая база и области применения синтетических волокон. В крупных промышленных масштабах вырабатываются, помимо полиамидного волокна, полиэфирные, полиакрилонитрильные и другие карбоценные волокна. Исходным сырьем для этих волокон, кроме бензола и фенола, являются п-ксилол, циклогексан, дивинил, этилен, ацетилен и др., т. е. все возрастает значение нефтехимической промышленности в обеспечении исходным сырьем производства синтетических волокон. [c.36]

    Ацетиленовая сажа. Ацетиленовая сажа занимает особое место среди других саж по применяемому сырью, способам производства и качествам. Как показывает название, сырьем для производства ацетиленовой сажи служит ацетилен. Применение такого относительно дорогого сырья оправдывается специфическими свойствами получающейся сажи. Ацетиленовая сажа обладает более высокой электропроводностью и высокоразвитой вторичной структурой. Это значит, что ее частицы связаны между собой в прочные разветвленные цепочки. Применяется ацетиленовая сажа главным образом в качестве компонента агломераторной массы сухих элементов. Для этой цели важна не только высокая электропроводность сажи, но и ее развитая вторичная структура, которая позволяет связать относительно большое количество электролита. [c.550]

    О. о. с. зародился в кон. 19 в. на базе продуктов переработки каменного угля (арены, ацетилен, СО), а затем интенсивно развился в 40-60-х гг. 20 в. на основе переработки нефти и прир. газа (парафины, олефины, арены, ацетилен, СО). Представляет собой мощную отрасль пром-сти, отличающуюся высокой динамичностью. Для нее характерно больщое разнообразие получаемых продуктов, используемых технол. процессов и оборудования, применение автоматизир. систем. Б. ч. отрасли сконцентрирована на крупных производств, комплексах, включающих непрерывные и высокоавтоматизир. агрегаты большой единичной мощности (до 200-500 тыс. т/год). Мировое произ-во продуктов О. о. с. ок. 180 млн. т/год. [c.421]

    Реакция линейной полимеризации ацетилена в моновинил-ацетилен, дивинилацетилен и т. д., происходящая под каталитическим влиянием кислого раствора полухлористой меди, была открыта 35 лет назад Ньюлендом. Процесс этот получил широкое промышленное применение для производства хлоропрена и хлоро-преновых каучуков (см. гл. VIII, работа 29). [c.197]

    Проблема гидрирования или выделения сопутствует и образующейся при пиролизе бензинов метилацетилен-алленовой фракции (МАФ). Эта фракция, подобно ацетилену, также может быть использована в процессах газопламенной обработки металлов, однако больший интерес представляет применение компонентов фракции в качестве сырья для малотоннажных синтезов ценных продуктов (например, полиаллена, метилизопропенилового эфира). Так, при производстве метилизопропенилового эфира из метанола и МАФ может быть достигнут значительный экономический эффект по сравнению с технологией, использующей в качестве исходного сырья метанол и ацетон. И, в первую очередь, он обусловливается тем, что специально производимый продукт—ацетон в данном случае, заменяется попутно образующимся продуктом — МАФ. [c.369]

    Ацетилен впервые карбидным методом был получен немецким химиком Ф. Вёлером в 1862 г. Его широкое применение, в том числе в качестве сырья в органическом синтезе, стало возможным в последней декаде XIX в., после внедрения карбидного метода в промышленное производство. И до настоящего времени этот метод является одним из промышленных источников ацетилена  [c.307]

    Ацетон находит наиболее важное применение в производствах бездымного пороха и целлулоида. Он применяется также для получения раств о ров ацетил- и нитроцеллюлозы и в производстве некоторых сортов искуоственного шелка. Его растворяющие свойства используются для экстрагирования или очистки большого количества органических продуктов, например жиров и смол, а также для многочисленных других целей, как например для мойки пгерсти. Растворитель, полученный смешением ацетона с ароматическими углеводородами, например бензолом или толуолом, был предложен в качестве средства для удаления восков из смазочных масел . Способность ацетона растворять ацетилен используется в широком масштабе при хранении этого газа в стальных цилиндрах для целей сварки. Ацетилен поглощается (пористым материало.м, пропитанным ацетоном, и в таком виде может безопасно сохраняться даже под значительным давлением, тогда как обычно ацетилен при сжатии его до нескольких атмосфер взрывает с страшной силой. Ацетон с примесью других жидкостей был предложен в качестве топлива для двигателей внутреннего сгорания Смесь равных количеств цианпедрина ацетона и хлористого этилена была предложена в качестве инсектисида [c.447]

    В ранние периоды карбидной промышленности ацетилен применялся главным образом для осветительных целей. Хотя и теперь еще значительные количества карбида затрачиваются для ацетиленового освещения, все же глазными областями применения ацетилена являются, во-первых, автогенная сварка (с помощью кислоро1дно-ацетиленового пламени) и, во-вторых, производства весьма разнообразных органических веществ, к которым, поми.мо галоидопроизводных, принадлежат также уксусный альдегид, уксусная кислота, ацетон и виниловые производные. Прогресс в области химического использования ацетилена, начиная с 1910 г., необычайно велик. [c.729]

    Ацетиленовый баллон представляет собой своеобразную газо-жидкост-ную хроматографическую колонку. Основным отличием является отсутствие протока газа и применение летучей жидкости (ацетона) в качестве не-лодвижпой фазы. Ацетилен содержит в виде примесей 1—1,5% воздуха. Вследствие значительно меньшей растворимости воздуха в ацетоне по сравнению с ацетиленом содержание воздуха в газовой фазе, находящейся в нижней части наполненного баллона, значительно больше, чем в верхней части. Кривая, характеризующая изменение содержания воздуха в ацетилене, при равномерном опорожнении баллона имеет типичный крутой хроматографический фронт ж диффузионный хвост. Выравнивание содержания воздуха в баллоне происходит через 12—15 суток. Для контроля содержания лримесей при производстве растворенного ацетилена пробы газа должны отбираться из наполнительной рампы, так как пробы, отбираемые из баллонов, не соответствуют среднему содержанию примесей. [c.378]

chem21.info

Ацетилен Этим применение - Справочник химика 21

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]     Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Ацетилен СН=СН Первый член ряда алкинов и вместе с тем наиболее важный его представитель — ацетилен — образуется при многих пирогенных реакциях разложения органических веществ и поэтому содержится в небольшом количестве в светильном газе. Большое значение имеет образование его при неполном сгорании углеводородов, например метана, при высокой телшературе эта реакция находит все более широкое применение в промышленности  [c.78]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Хотя реакция присоединения хлора к олефинам была открыта еще в 1795 г., однако промышленное значение получило оно лишь в начале нашего века. В настоящее время в крупных промышленных масштабах осуществлено хлорирование этилена, пропилена, ацетилена и других ненасыщенных углеводородов. Получаемые при этом 1,2-дихлорэтан, 1,2-дихлорпропан, 1,1,2,2-тетрахлорэтан находят широкое применение в качестве растворителей, фумиганта и полупродуктов в синтезе таких важных соединений, как хлорвинил, этилен-диамин, трихлорэтилен и т. д. Присоединение галогенов к олефинам и ацетилену сопровождается образованием продуктов дальнейшего замещения водорода на хлор и другими реакциями. [c.133]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24]

    Среди ненасыщенных С4-углеводородов наиболее важную роль в химической промышленности играет дивинил. Ограниченное количество этого диолефина присутствует в -фракции, получаемой при производстве этилена пиролизом жидких углеводородов. Вследствие высокой концентрации дивинила в этой фракции выделение его обходится дешево. Эта фракция и была первым источником дивинила, на который США ориентировались в 1941—1942 гг. Эту же фракцию используют и в Англии при современных полупроизводственных испытаниях. В том случае, когда дивинила требуется больше, чем его имеется в качестве побочного продукта производства этилена, этот диолефин производят дегидрированием н-бутиленов. Одностадийный процесс получения дивинила из н-бутана по существу не отличается от метода, в котором исходят из бутиленов. Его можно использовать в тех случаях, когда вследствие относительной доступности бутана последний будет более дешевым исходным веществом. В других методах производства дивинила сырьем служит ацетилен или этиловый спирт. Первый из этих методов использовали в Германии вплоть до 1945 г., по второму методу в США во время второй мировой войны получали подавляющую часть дивинила, необходимого для производства синтетического каучука. Считается, что в нормальных условиях наиболее экономичным является производство дивинила из н-бутиленов. Из других применений н-бутиленов в химической промышленности следует указать на производство растворителей втор-бутилового спирта и метилэтилкетона. Изобутилен применяют для получения бутил-каучука, полиизобутиленов, диизобутилена и полупродуктов в производстве искусственных моющих средств. [c.405]

    Гидриды кремния присоединяются к олефинам и ацетиленам. Эта реакция формально аналогична гидроборированию (обобщение 7). В отсутствие катализатора для протекания реакции необходимо нагревание до температуры около 300 и применение давления [112], но в этих условиях олефины часто дают олигомеры схема (89) . Поэтому реакцию обычно проводят в присутствии радикальных инициаторов или (чаще) в присутствии некоторых переходных металлов и их комплексов [112]. [c.99]

    План развития народного хозяйства в СССР предусматривает значительное увеличение производства ацетилена в ближайшие годы, главным образом за счет применения методов, основанных на использовании углеводородного сырья. В качестве побочных продуктов при этом способе получения ацетилена образуется ряд так называемых высших ацетиленов , это главным образом, диацетилен, винилацетилен и метилацетилен. При этом количество диацетилена оказывается в 1,5—2 раза большим, чем количество винилацетилена и метилацетилена вместе взятых. [c.7]

    Область применения реакции. Олефины. Свободнорадикальное присоединение тиолов к олефинам и ацетиленам — это реакция. [c.197]

    Производство карбида кальция термической реакцией между коксом и окисью кальция имеет широкое распространение. Так, в 1965 г. для этих целей потреблялось более 2 500 ООО т кокса во всем мире, из которых, вероятно, от 800 до 900 тыс. т в странах Западной Европы. Но не следует ожидать развития производства карбида кальция в ближайшие годы. Основной областью его применения является производство ацетилена, себестоимость которого по этому методу оценивается во Франции немногим больше 1000 франков/т. Во многих случаях ацетилен может быть заменен этиленом, который более экономичен. Кроме того, для производства ацетилена с карбидным процессом конкурируют другие процессы, принцип которых — пиролиз таких углеводородов, как метан, этап и легкие бензины. Этот пиролиз может происходить при внешнем обогреве, частичном сгорании или под действием электрического тока в форме дуги или разряда. Эти процессы обычно дают смеси ацетилена и этилена, пригодные для использования. Нельзя сказать, что эти процессы были хорошо отработаны и надежны к 1967 г., но можно надеяться, что многие из них позволят получать ацетилен с ценой менее 0,80 франков/кг в связи с этим будет ограничена замена его на этилен. [c.221]

    Из методов переработки углеводородного сырья на ацетилен наибольшее применение получил окислительный пиролиз. Преимущества окислительного, пиролиза перед термическим иллюстрируются данными табл. 8, где сопоставлены показатели этих двух методов. [c.72]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    При изучении реакции алкилирования ацетиленом и его гомологами ароматических соединений, в частности фенолов , синтезированные дифенолы анализировали с помощью хроматографии в тонком слое окиси алюминия. Матовую стеклянную пластинку покрывали товарной хроматографической окисью алюминия в сухом виде (слой толщиной 0,5 мм, без применения фиксирующих средств). Дифенолы лучше всего разделялись элюэнтом, представляющим собой раствор этанола в бензоле в отношении 1 15. Хроматогргмму проявляли, используя пары иода. Для количественного определения компонентов был опробован метод измерения и сравнения площадей их пятен. Оказалось, что при хорошем разделении компонентов и при резких границах пятен этот метод расчета дает достаточно точные данные. Ошибка определения менее 6%. Этим методом были разделены дифенолы и их орто-пара-замещенные изомеры. Необходимо отметить, что в этой работе количество определяемого компонента было 10% и выше, поэтому о возможности применения метода для анализа микроколичеств судить трудно. [c.188]

    Превращенпе трихлорэтилена в перхлорэтилен целесообразно только в тех случаях, когда трнхлорэтилеп нельзя использовать как таковой. Методы, основанные на ацетилене и других углеводородах как исходных веществах, всегда дают хлористый водород в качестве побочного продукта. Такие процессы проводятся иногда в несколько стадий II при повышенных телшературах. Выход хлористого водорода повышается прп применения в качестве сырья ацетилена, поэтому рентабельность процесса зависит от использования хлористого водорода. Это осуществляют получением из НС1 хлора по методу Dea on . [c.208]

    При применении этих способов необходимо учитывать, что ацетилен и водород растворимы в нефтепродукте, а карбоновые кислоты нефти и прочие кислые соединения могут реагировать с гидридом и карбидом кальция, металлическим натрием и калием и другими Ьеществами, как вода, давая неточные определения ее количественного содержания. [c.18]

    Образующиеся при неполном сгорании jHj твердые частички углерода, сильно накаливаясь, обусловливают яркое свечение пламени, что делает возможным использование ацетилена для освещения. Применением специальных горелок с усиленным притоком воздуха удается добиться одновременно сочетания яркого свечения И отсутствия копоти сильно накаливающиЬся во внутренней зоне пламени частички углерода затем сполна сгорают во внешней зоне. Газы, не образующие при сгорании твердых частиц (например, Hj), в противоположность ацетилену дают почти несветящее пламя. Так как в пламени обычно применяемых горючих веществ (соединений С с Н и отчасти О) твердые частички могут образоваться за счет неполного сгорания только углерода, пламя газов и паров жидкостей бывает при одних и тех же условиях тем более коптящим, чем больше относительное содержание в молекулах горящего вещества углерода и меньше кислорода й водорода. Например, спирт (С2Н5ОН) горит некоптящим пламенем, а скипидар (СюНц) — Сильно коптящим. Яркость пламени зависит и от степени накаливания этих твердых частиц, т. е. от развивающейся при горении температуры. [c.535]

    Ацетилен служит исходным продуктом для синтеза очень многих более сложных органических соединений. Эта область его использования и является самой обширной. Другое важное применение ацетилена основано на протекающей с большим выделением тепла реакции его сгорания  [c.498]

    Применение. Более половины получаемого кислорода расходуется в черной металлургии для интенсификации выплавки,. чугуна и стали. В смеси с ацетиленом С2Н2 кислород используют для сварки и резки металлов, при горении этой смеси пламя имеет [c.442]

    Ацетилен широко применяли для освещения с этой целью использовали специальные горелки, в которых происходит хорошее смешение ацетилена с воздухом и получается яркое бесцветное пламя. Если в пламя горящего ацетилена вдувать кислород, то достигается высокая температура, при которой плавятся металлы. На этом основано применение ацетилена для автогенной сварки. [c.90]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]

    Первым абсорбентом, применявшимся в промышленности для выделения ацетилена, являлась вода. В частности, ацетилен до сих лор извлекается водой из газов электрокрекинга углеводородов на заводе в г. Хюльсе (ФРГ). При этом получается ацетилен 97 %-ной чистоты. Однако ввиду малой растворяющей способности воды по отношению к ацетилену требуется очень большой ее расход. Кроме того, необходима специальная отмывка газа от диоксида углерода и сероводорода, а также промывка маслом или растворителями для удаления тяжелых углеводородов. В связи с этим применение воды в качестве абсорбента не получило широкого распространения. [c.56]

    При необходимости определения микропримеси паров воды в каком-либо газе, по выходе из колонки вещества поступают в реактор с литий-алюминий-гидридом, реагирующим с водой с образованием водорода, и на выходе из реактора проходят детектор (катарометр), в котором пик водорода соответствует содержанию воды. При необходимости применения пламенно-ионизационного детектора реактор заполняется карбидом кальция, реагируя с которым, вода превращается в ацетилен. Последний определяется по хроматограмме ПИД. В этом случае применяется схема 4. Возможно превращение воды в реакторе до колонки по схеме 3. [c.127]

    Заметим, что европий (по линии 459,40 нм) и иттербий (по линии 398,80 нм) могут быть определены методом эмиссионной пламенной спектроскопии для определения же других элементов подгруппы скандия, даже при использовании пламени ацетилен — динитроксид, применение этого метода практически нецелесообразно. Наиболее же эффективны для определения всех элементов подгруппы скандия, кроме европия и иттербия, методы, основанные на использовании индукционного высокочастотного разряда, как это было показано в работе [22J. [c.188]

    Несмотря на настойчивость энтузиастов, карьера ацетилена в качестве газа для освеш ения была сравнительно недолгой. К 1911 г. 965 городов (из них 227 во Франции) применяли ацетилен для освещения общественных мест, однако в дальнейшем это число быстро уменьшилось. Электрическая дуга, которая сделала возможным производство карбида, сама служила осветителем и, таким образом, конкурировала с ацетиленом. Однако более значительным фактором являлось то, что лампа накаливания в первые годы этого столетия прошла путь от угольной нити Эдисона и Свэна до современной вольфрамовой нити. В статье Освещение в Британской энциклопедии 1910 г. ацетилен даже не упоминается, хотя он занимает видное место в статье Маяки (даже до сих пор на некоторых маяках используется ацетилен). Эта частная область применения развилась главным образом благодаря работам Далена из фирмы Svenska А. В. Gasa umulator [c.23]

    Применение плазменной струи позволяет существенно улучшить условия образования ацетилена. Первые опыты [2] показали принципиальную возможность достижения 80%-ного превращения метана в ацетилен. Эти опыты отличались весьма высокими затратами энергии на единицу полученного ацетилена. Однако вскоре Дж. Андерсон и Л. Кейз [3] показали, что можно достичь высоких степеней превращения метана в ацетилен при затратах энергии, лишь немного превышающих затраты, определенные ими как теоретически необходимые. Этими авторами сделана попытка изучить кинетику образования ацетилена при разложении метана. Правда, при этом рассматривается образование ацетилена без учета каких-либо промежуточных продуктов и совершенно не затрагивается вопрос о закалке. [c.72]

    Получение ацетилена и хлористого водорода. Современное промышленное производство ацетилена основано на переработке углеводородного сырья — природного газа, этана, газового бензина и других нефтяных про- дуктов — электрокрекингом, термоокнслнтельным пиролизом и др. Находит применение и старый метод получения ацетилена разложением карбида кальция водой. Ацетилен, используемый для синтеза хлоропрена,"должен отвечать следующим требованиям [65, с. 78]  [c.226]

    Реакции присоединения. Ряд металлооргапических соединений был получен присоединением галогенида металла к олефину или ацетилену. Этим методом были синтезированы производные мышьяка, серы и ртути. Во всех случаях образуются галоидалкильные производные металлов, так как в этой реакции разрывается одна связь металла с галоидом. Металл присоединяется к одному углеродному атому двойной связи, а галоид — к другому. Однако этот синтез не является общим методом получения алкильных и арильных производных металлов. Отравляющее вещество люизит — 3-хлорвинилдихлорарсин — получается этим методом при взаимодействии треххлористого мышьяка и ацетилена в присутствии катализатора треххлористого алюминия, ускоряющего реакцию [15]. Эта реакция находит наибольшее применение для получения ртутьорганических соединений (см. Ртуть , гл, 5). [c.66]

    Стабильность пламен в горелках с предварительным смешением обеспечивает хорошую воспроизводимость результатов и низкие пределы обнаружения элементов. Применение в этих горелках такой смеси окислители с горючим газом, как закись азота— ацетилен, привело к тому, что горелки с системой предваритель- [c.150]

    Главной целью этой монографии является обзор тех областей органической технологии, в которых применение нефти как сырья наиболее экономично. Однак(/ следует упомянуть, что в некоторых случаях наряду с нефтью используют также каменный уголь или растительное сырье. Так, например, в США и Великобритании этиловый спирт производят как нз этилена нефтяного происхождения, так и методом брожения в США, Германии и Италии ацетилен получают как неполным окислением природного газа — мегана, так и из угля, через карбид кальция. [c.11]

    Кислород-третий по использованию в промышленности химикат, уступающий только серной кислоте и негашеной извести СаО. Ежегодный расход этого элемента достигает 14 млрд. кг. Он широко используется в качестве окислителя. Приблизительно половина производимого кислорода расходуется в сталеплавильной промышленности, главным образом для удаления примесей из стали (см. разд. 22.6). Кислород применяется в медицине с целью ускорения процессов окисления, необходимых для поддержания жизни. Он используется совместно с ацетиленом С2Н2 для кислородноацетиленовой сварки. Последнее применение основано на высокой экзотермичности реакции между С Н и Oj, при которой развиваются температуры, превышающие 3000°С. Реакция горения кислородно-ацетиленовой смеси описывается уравнением [c.304]

    Из рассмотренного следует, что при распаде ацетилена может развиваться давление порядка нескольких сотен атмосфер. Поэтому кажущийся на первый взгляд наиболее простым и надежным способ обеспечения безопасной работы с ацетиленом путем применения аппа ратов, рассчитанных на указанные высокие давления, в большинстве случаев практически неприемлем и нецелесообразен. Что же касается трубопроводов, то в отдельных случаях на основании оценки возможной опасности для сооружаемой системы транспортирования ацетилена и определения возникающих в ней давлений, по-видимому, можно для этих целей ИСПОЛЬЗ )-вать трубы, рассчитанные на давление детонационного распада ацетилена. Однако осуществить указанные мероприятия для промышленных трубопроводов большо го диаметра не представляется возможным. [c.66]

    Применение. Метан широко используют в технике химически перерабатывается в ацетилен, фторо- и хлоропроизводные. Химизм этих процессов рассмотрен ранее. [c.325]

    Для отщепления галоидоводорода помимо вышеприведенных иногда употребляются и другие щелочные агенты. Хотя в сип-j тезе ацетиленов эти агенты дают менее удовлетворительные результаты, для получения олефинов они иногда очень удобны. В отдельных случаях был применен едкий натр ввиду его сравнительно небольшой растворимости в спирте обычно используют водные или водиоспиртовые растворы [16 б, г, д, 55—57]. Этнлат натрия впервые был применен в синтезе пропнна [2], затем его иногда употребляли также для синтеза замещенных толана (стр, 45) и других арилацетиленов [58, 59] и, реже, для синтеза, алкннов [60—62]. Очень интересным примером применения эти-лата натрия и едкого натра является синтез диацетилена из [c.16]

    Интересное видоизмзнение KW-процесса в приложении к этану было осуществлено на одной опытной установке в Германии. Углеводород и кислород сжигались в описанных выше условиях, но в отсутствие катализатора и при более высокой температуре (120u ). Применение этого процесса для химического синтеза, повидимому, весьма заманчиво. Приблизительно 25% углерода углеводородных газов превращается в ацетилен, а остальные 75% представляют собою газ синтеза , весьма приблизительно эта реакция может быть представлена уравнением  [c.196]

    Современный интерес к применению ацетплена стимулируется развитием процессов его получения из углеводородов низкого молекулярного веса. Все эти процессы включают некаталитический пиролиз углеводородов при высоких температурах в качество начальной стадии. Ацетилен получается в виде относительно разбавленной газовой смеси и концентрируется и очищается при последующих операциях. [c.57]

    Для создания независимого и равномерного режима работы цехов, вырабатывающих ацетилен, и цехов-по требителей ацетилена между этими цехами устанавли вают газгольдеры. В производстве ацетилена исполь зуют мокрые газгольдеры. Применение их, как прави ло, позволяет транспортировать ацетилен под абсолют ным давлением до 1,03—1,05 ат. [c.114]

    В воздуишо-ацетиленовом пламени алюминий определять практически не-воз.можно из-за недостаточной диссоциации его монооксида. Применение обогащенного (восстановительного) пламени оксида азота(I) с ацетиленом обеспечивает предел обнаружения - 0,02 мкг/мл ( 0,01 % по твердой пробе), Стехиометрия и рабочая высота пламени сильно влияют на соотношение сигнал — шум и различного рода матричные эффекты. В связи с этим лри [c.166]

    Кислород широко применяют для получения с его помощью высоких температур, необходимых, например, для плавления платины, кварца и т.п. Температуры эти достигаются путем сжигания различных горючих газов (водорода, светильного газа и т. д.) в смеси не с воздухом, а с чистым кислородом. Особенно распространено применение кислорода в смеси с ацетиленом (температура пламени выше 3000 °С) для сварки и резки металлов. Большое практическое значение имеет использование кислорода (или обогащенного им воздуха) для интенсификации ряда производственных процессов металлургической и химической промышленности. [c.40]

chem21.info

Использование - ацетилен - Большая Энциклопедия Нефти и Газа, статья, страница 1

Использование - ацетилен

Cтраница 1

Использование ацетилена без растворителя при высоком давлении опасно: возможен взрыв.  [1]

Использование ацетилена при термической резке, газопламенной наплавке, пайке и напылении покрытий позволяет решить серьезные задачи по созданию уникальных инженерных сооружений, надежных металлоконструкций, работающих в широком интервале температур и давлений в различных средах.  [2]

Использование ацетилена ограничено тем, что в образующемся диоксане в положении 2 должна находиться одна метильная группа. Замещение при других атомах углерода зависит от гликоля, примененного для реакции.  [3]

Использование IG ацетилена в синтезе органических промежуточных продуктов описано в нескольких информационных изданиях. Среди полученных продуктов имеются бутадиен, сукци-новая, глутаровая и адипиновая кислоты, малеиновый ангидрид, поливинилпирролидон ( перистон, заменяет плазму крови), винил-хлорид, акрилонитрил, акриловые эфиры и этилен.  [4]

При использовании ацетилена в сварочном пламени имеются также три зоны: ядро А, зона неполного сгорания В, зона полного сгорания С. Температура пламени зависит от состава смеси, подаваемой в горелку, и различна для отдельных зон пламени.  [5]

При использовании ацетилена вместо пропан-бутана исходить из следующего расчета: 0 3 кг пропан-бутана соответствуют 1 кг карбида кальция или 0 235 м3 растворенного ацетилена.  [6]

При использовании ацетилена в качестве горючего ацетиленовый генератор с относящейся к нему аппаратурой необходимо помещать в специальном здании или пристройке, отвечающей особым требованиям, предъявляемым к ацетиленовым установкам. Если закалочная установка работает на керосине, то отдельного помещения не требуется.  [8]

При использовании ацетилена в качестве горючего ацегиленовый генератор с относящейся к нему аппаратурой необходимо помещать в специальном здании или пристройке, отвечающей особым требованиям, предъявляемым к ацетиленовым установкам.  [9]

При использовании ацетилена для некоторых синтезов остаточный хлор поглощают пропусканием через нагретый слой окиси цинка.  [10]

При использовании ацетилена в производстве ацетальдегида, поливинилхлорида и других продуктов допустимые нормы содержания этих примесей ниже, поэтому требуется дополнительная тонкая очистка ацетилена.  [11]

При использовании ацетилена для получения замещенного 1 3-диоксана возможно получение только одного моноалкильного производного, а именно 2-метил - 1 3-диоксана. Для реакции необходимо применять триметиленгли-коль, так как в противном случае образуются полизамещенные 1 3-диоксаны.  [12]

При использовании ацетилена для газопламенной обработки металлов единственным устройством, предохраняющим генераторы и трубопроводы от распространения взрывной волны, является жидкостный предохранительный затвор.  [13]

Производство и использование ацетилена немыслимы без применения электрического оборудования. Однако в связи с тем, что в производственных условиях нельзя полностью исключить возможность образования взрывоопасных смесей ацетилена с воздухом, применяемое электрооборудование должно обладать достаточной степенью безопасности при работе во взрывоопасной среде.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru