Структура атома и молекулы кислорода. Схема кислорода


Кислород в природе (49,4% в Земной коре)

КислородНа Земле находится 49,4% кислорода, который встречается либо в свободном виде в воздухе, либо в связанном (вода, соединения и минералы).

Характеристика кислорода

На нашей планете газ кислород распространен больше всех других химических элементов. И это неудивительно, ведь он входит в состав:

  • горных пород,
  • воды,
  • атмосферы,
  • живых организмов,
  • белков, углеводов и жиров.

Кислород активный газ и поддерживает горение.

Физические свойства

Физические свойства кислорода

В атмосфере кислород содержится в бесцветном газообразном виде. Он не имеет запаха, малорастворим в воде и других растворителях. У кислорода прочные молекулярные связи, из-за которых он химически малоактивен.

Если кислород нагревать, он начинает окислять и реагировать с большинством неметаллов и металлов. Например, железо, этот газ медленно окисляет и вызывает его ржавление.

При снижении температуры (-182,9°С), и нормальном давлении газообразный кислород переходит в другое состояние (жидкое) и приобретает бледно-синий цвет. Если температуру еще снижать (до -218,7°С) газ затвердеет и изменится до состояния синих кристаллов.

В жидком и твердом состояниях кислород приобретает синий цвет и обладает магнитными свойствами.

Древесный уголь является активным поглотителем кислорода.

Химические свойства

Химические свойства кислорода

Почти во время всех реакций кислорода с другими веществами образуется и выделяется энергия, сила которой может зависеть от температуры. Например, при обычных температурах этот газ медленно реагирует с водородом, а при температуре выше 550°С возникает реакция со взрывом.

Кислород – активный газ, который входит в реакцию с большинством металлов, кроме платиновых и золота. Сила и динамика взаимодействия, во время которого образуются оксиды, зависит от присутствия в металле примесей, состояния его поверхности и измельчения. Некоторые металлы, во время связи с кислородом, кроме основных оксидов образуют амфотерные и кислотные оксиды. Оксиды золота и платиновых металлов возникают во время их разложения.

Кислород кроме металлов, так же активно взаимодействует практически со всеми химическими элементами (кроме галогенов).

В молекулярном состоянии кислород более активен и эту особенность используют при отбеливании различных материалов.

Роль и значение кислорода в природе

значение кислорода в природе

Зеленые растения вырабатывают больше всего кислорода на Земле, причем основная масса производится водными растениями. Если кислорода в воде выработалась больше, то избыток уйдет в воздух. А если меньше, то наоборот, недостающее количество будет дополнено из воздуха.

Морская и пресная вода содержит 88,8 % кислорода (по массе), а в атмосфере его 20,95 % по объёму. В земной коре больше 1500 соединений имеют в составе кислород.

Из всех газов, входящих в состав атмосферы, больше всего важен для природы и человека кислород. Он есть в каждой живой клетке и необходим всем живым организмам для дыхания. Недостаток кислорода в воздухе сразу отражается на жизнедеятельности. Без кислорода невозможно дышать, а значит жить. Человек во время дыхания за 1 мин. в среднем его потребляет 0,5 дм3. Если в воздухе его станет меньше до 1/3 его части, то он потеряет сознание, до 1/4 части — он умрет.

Дрожжи и некоторые бактерии могут жить без кислорода, но теплокровные животные, умирают при его недостатке через несколько минут.

Круговорот кислорода в природе

Содержание кислорода в природе

Круговоротом кислорода в природе называется обмен им между атмосферой и океанами, между животными и растениями во время дыхания, а так же в процессе химического горения.

На нашей планете важный источник кислорода - растения, в которых проходит уникальный процесс фотосинтеза. Во время него происходит выделение кислорода.

В верхней части атмосферы тоже образуется кислород, вследствие разделения воды под действием Солнца.

Как происходит круговорот кислорода в природе?

круговорот кислорода в природе

Во время дыхания животных, людей и растений, а так же горения любого топлива тратится кислород и образуется углекислый газ. Потом углекислым газом питаются растения, которые в процессе фотосинтеза снова вырабатывают кислород.

Таким образом, его содержание в воздухе атмосферы поддерживается и не заканчивается.

Области применения кислорода

области применения кислорода

В медицине во время операций и опасных для жизни заболеваний больным дают дышать чистым кислородом, чтобы облегчить их состояние и ускорить выздоровление.

Без баллонов с кислородом альпинисты не поднимаются в горы, а аквалангисты не погружаются на глубину морей и океанов.

Кислород широко применяется в разных видах промышленности и производства:

  • для обрезки и сварки различных металлов
  • для получения очень высоких температур на заводах
  • для получения разнообразных химических соединений • для ускорения плавления металлов.

Так же широко кислород применяется в космической индустрии и авиации.

xn----8sbiecm6bhdx8i.xn--p1ai

Кислород — ТеплоВики - энциклопедия отопления

Материал из ТеплоВики - энциклопедия отоплении

Схема атома кислорода Наглядная схема строения атома кислорода

Кислород - O (oxygenium), химический элемент VIA подгруппы периодической системы элементов: O, S, Se, Te, Po – член семейства халькогенов. Это наиболее распространенный в природе элемент, его содержание составляет в атмосфере Земли 21%, в земной коре в виде соединений около 50% и в гидросфере 88,8%. Кислород необходим для существования жизни на земле: животные и растения потребляют кислород в процессе дыхания, а растения выделяют кислород в процессе фотосинтеза. Живая материя содержит связанный кислород не только в составе жидкостей организма (в клетках крови и др.), но и в составе углеводов (сахар, целлюлоза, крахмал, гликоген), жиров и белков. Глины, горные породы состоят из силикатов и других кислородсодержащих неорганических соединений, таких, как оксиды, гидроксиды, карбонаты, сульфаты и нитраты.

Историческая справка

Первые сведения о кислороде стали известны в Европе из китайских рукописей 8 в. В начале 16 в. Леонардо да Винчи опубликовал данные, связанные с химией кислорода, не зная еще, что кислород – элемент. Реакции присоединения кислорода описаны в научных трудах С.Гейлса (1731) и П.Байена (1774). Заслуживают особого внимания исследования К.Шееле в 1771–1773 взаимодействия металлов и фосфора с кислородом. Дж.Пристли сообщил об открытии кислорода как элемента в 1774, спустя несколько месяцев после сообщения Байена о реакциях с воздухом. Название oxygenium («кислород») дано этому элементу вскоре после его открытия Пристли и происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с ошибочным представлением о том, что кислород присутствует во всех кислотах. Объяснение роли кислорода в процессах дыхания и горения, однако, принадлежит А.Лавуазье (1777).

Строение атома

Любой природный атом кислорода содержит 8 протонов в ядре, но число нейтронов может быть равно 8, 9 или 10. Наиболее распространенный из трех изотопов кислорода (99,76%) – это 168O (8 протонов и 8 нейтронов). Содержание другого изотопа, 188O (8 протонов и 10 нейтронов), составляет всего 0,2%. Этот изотоп используется как метка или для идентификации некоторых молекул, а также для проведения биохимических и медико-химических исследований (метод изучения не радиоактивных следов). Третий не радиоактивный изотоп кислорода 178O (0,04%) содержит 9 нейтронов и имеет массовое число 17. После того как в 1961 масса изотопа углерода 126C была принята Международной комиссией за стандартную атомную массу, средневзвешенная атомная масса кислорода стала равна 15,9994. До 1961 стандартной единицей атомной массы химики считали атомную массу кислорода, принятую для смеси трех природных изотопов кислорода равной 16,000. Физики за стандартную единицу атомной массы принимали массовое число изотопа кислорода 168O, поэтому по физической шкале средняя атомная масса кислорода составляла 16,0044.

В атоме кислорода 8 электронов, при этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поэтому в химических реакциях кислород может принимать от доноров до двух электронов, достраивая свою внешнюю оболочку до 8 электронов и образуя избыточный отрицательный заряд.

 

ru.teplowiki.org

- строение кислорода - Биохимия

Возникновение аэробного метаболизма у древних организмов принесло им не только выгоды в виде более эффективного метаболизма, но и проблемы, связанные с особенностями строения молекулы кислорода. 

Порядковый номер кислорода в таблице Менделеева – 8, заряд ядра – +8, общее число электронов – 8, электронная формула кислорода – 1s22s22p4. На 2р-подуровне атома имеются два неспаренных электрона, обычное для кислорода окислительное число равно -2.

Диаграмма атома кислорода Электроны молекулы кислорода
Диаграмма строениz атома кислорода Строение молекулы кислорода

Молекула кислорода в своем обычном состоянии отличается от других газообразных элементов тем, что имеет два неспаренных электрона, т.е. является бирадикалом. В целом, общие механизмы восстановления кислорода в биохимических реакциях происходят с участием только одного электрона, а кислород является довольно стабильной молекулой, обладающей свойством сильного окислителя.

Упомянутые неспаренные электроны обладают параллельными спинами. Это, в соответствии с принципом Паули, выдвигает условие, что с кислородом могут взаимодействовать только такие двухвалентные восстановители, которые имеют два неспаренных электрона с параллельными спинами, но спины приносимых электронов должны быть противоположны имеющимся в кислороде.

Поскольку каждая молекула кислорода имеет два неспаренных электрона на внешней орбитали, то в клетке она легко вовлекается в реакции, связанные с захватом "недополученных" электронов, и в итоге восстанавливается до воды, конечного продукта биологического окисления. В идеальном мире именно так и происходит. Однако в реальности часто образуются продукты неполного восстановления кислорода, называемые активные формы кислорода (АФК). АФК являются нестабильными молекулами, что и определяет их высокие реакционные свойства. 

Супероксид анион. Пероксид анион. Перекись водорода Активные формы кислорода

Любые свободные радикалы - это высоко реактивные молекулы с неспаренными электронами, находящимися на внешней оболочке атома или молекулы, обладающие очень высокой реакционной способностью. Они стремятся получить дополнительные электроны так, чтобы появилась стабильная пара. Накопление свободных радикалов в клетке, как правило, является результатом превращения кислорода в АФК, которые могут реагировать с другими клеточными молекулами и вызывать их радикализацию.

Кроме активных радикалов кислорода существуют и другие реактивные молекулы.

Оксид азота. Пероксинитрит. Гипохлорит.Активные формы азота и хлора

Активация кислорода

Активация кислорода происходит по двум различным механизмам: под воздействием физических или химических (ферментативных или спонтанных) стимулов.

1. Физическая активация - это поглощение молекулой O2 достаточного количества энергии, чтобы изменить спин одного из неспаренных электронов.

Когда кислород находится в основном, триплетном состоянии, его электроны имеют параллельные спины. Если триплет кислорода поглощает энергию, достаточную для изме-нения спина одного из своих неспаренных электронов, он превращается в синглетную форму, в которой оба электрона имеют противоположные спины.

Синглетный кислород может уже участвовать в реакциях с одновременной передачей двух электронов. Поскольку спаренные электроны распространены в органических молекулах, синглетный кислород гораздо более реакционноспособен, чем его триплетный аналог.

Активация молекулы кислородаДва способа активации кислорода

2. Под воздействием химических стимулов молекула кислорода получает электроны.

В реакциях восстановления молекулы кислорода промежуточными метаболитами являются свободные кислородные радикалы. В конце восстановительного пути кислород превращается в воду. 

Восстановление молекулы кислорода Общая схема процесса восстановление кислорода до воды

Реакции одноэлектронного восстановления кислорода

Принимая первый электрон, молекула кислорода превращается в супероксид анион-радикал О2ꜙ ,  при дальнейшем восстановлении происходит присоединение либо иона H+ с появлением гидропероксид радикала HO2•, либо электрона с образованием пероксид аниона O22–. В следующем шаге восстановления, наоборот, присоединяется либо электрон, либо ион H+ и образуется гидропероксид анион HO2–, который далее восстанавливается до пероксида водорода h3O2.

Восстановление кислорода до активных радикаловНеферментативные реакции восстановления молекулы кислорода

Пероксид водорода является нейтральным соединением и поэтому легко проходит через клеточные мембраны. Ковалентная связь между атомами кислорода может разрываться при воздействии ионизирующего или ультрафиолетового излучения, при спонтанном взаимодействии с ионом железа Fe2+ или с супероксид анион-радикалом.

Реакции Фентона Хабера-ВейсаРеакции образования гидроксил-радикала

Радикал гидроксила чрезвычайно реакционноспособен и отнимает электрон от первой же встреченной молекулы.

Вы можете спросить или оставить свое мнение.

biokhimija.ru

Структура атома и молекулы кислорода

Атом кислорода – восьмой элемент периодической таблицы химических элементов, расположенный в её шестой группе. Структура его ядра показана на рис. 106, а. Симметричность ядра должна передаваться атому. На рис. 106, b и d представлены схемы атома кислорода, следующие из структуры его ядра (рис. 106, а), а на рис. 106, с – схема молекулы кислорода.

Атом кислорода значительно активнее атома азота, так как у него два осевых активных электрона 1 и 2 (рис. 106, b). Это обусловлено тем, что шесть кольцевых электронов, расположенных в плоскости, перпендикулярной осевой линии, своим суммарным электрическим полем удаляют электроны 1 и 2 от ядра на большее расстояние, формируя условия для большей их активности при взаимодействии с электронами соседних атомов.

 

Рис. 106. Схемы ядра, атома и молекулы кислорода

 

Структура молекулы кислорода показана на рис. 106, с. Она образуется путем соединения разноименных магнитных полюсов осевых электронов двух атомов кислорода. Молекула кислорода, в отличии от молекулы азота, имеет значительную химическую активность, которая обеспечивается осевыми электронами 1 и 2 наиболее удаленными от ядер атомов (рис. 106, b и с).

 

7.10. Структуры молекул и

Окись углерода или угарный газ -продукт неполного сгорания углеродосодержащих веществ. Это ядовитый газ без цвета и запаха. Его ядовитые свойства обусловлены несимметричностью молекулы и неравномерностью распределения энергий связи электронов с протонами ядер атомов. Наибольшую активность имеет осевой электрон 2’ атома кислорода (рис. 107).

Рис. 107. Схемы молекул и

 

Углекислый газ или двуокись углерода (рис. 107, b)–бесцветное газообразное вещество в полтора раза тяжелее воздуха. Сжижается при комнатной температуре под давлением 69 атм., а при выпуске из баллона испаряется. не поддерживает ни горения, ни дыхания. Причина этого – предельная симметричность молекулы (рис. 107, b), выравнивающая энергии связи электронов с протонами ядер и снижающая их химическую активность.

Похожие статьи:

poznayka.org

Определение концентрации растворенного кислорода в воде

Большинство химических и биологических процессов влияют на уровень растворенного в воде кислорода. Поэтому в обработке промышленных, муниципальных вод и в области аквакультуры важной задачей является непрерывное и точное измерение концентрации растворенного кислорода.

В данной статье описаны три стандартных метода определения концентрации растворенного кислорода. Приведены принцип работы этих методов, их преимущества и недостатки, а также результаты сравнения точности и надежности измерений в различных условиях среды.

Методы определения растворенного кислорода в воде

Титрование по Винклеру (Winkler). Титриметрический метод

Процедура титрования исторически является первым методом определения концентрации кислорода в воде.

Образец воды обрабатывают сульфатом марганца, гидроксидом калия и йодидом калия с образованием гидроксида марганца, Mn(OH)2. Кислород в воде реагирует с Mn(II), переводя его в Mn(III). Нестабильный Mn(III) затем реагирует с другой молекулой O2, переходя в Mn(IV). Для фиксации реакции в раствор добавляют сильную кислоту (серную или соляную), переводят осадок MnO(OH)2 в сульфат марганца, при этом MnO(OH)2 действует как окисляющий агент на йод, I2. Этот йод — стехиометрический эквивалент к растворенному кислороду в образце, его титруют тиосульфатом натрия или фениларсиноксидом с крахмалом. Крахмал нужен для более точного определения окончания реакции.

2Mn2+ + O2 + 4OH— = 2MnO(OH)2↓

MnO(OH)2 + 2J— + 4H+ = Mn2 + J2 + 3h3O.

J2 + 2S2O32- = 2J—+S4O62-

J2 + крахмал -> синее окрашивание

Метод имеет многочисленные помехи, которые вносят ионы нитрита, двух и трехвалентные ионы железа, взвешенные частицы и органика. Он показывает завышенные значения растворенного кислорода в аноксической среде и заниженные значения в гипероксичной среде, потому что проба воды и сами реагенты испаряются во время работы.

Электрод Кларка. Электрохимический или полярографический метод

Для измерения кислорода в воде обычно используют датчик, состоящий из мембраны, которая покрывает амперометрический сенсор. В ноябре 1959 года изобретатель Кларк (H. A. Clark) получил патент (US Patent 2913386), «Электрохимическое устройство для химического анализа».

Электрод КларкаЭлектрод Кларка

В пластмассовом цилиндрическом корпусе 1 имеются сквозные отверстия для проводников, в которых находятся индикаторный (рабочий) электрод 2 из платины и электрод сравнения 3 из серебряных проволок, концы которых покрыты пастой из хлорида серебра. Нижний конец корпуса обтягивают газопроницаемой полимерной мембраной 4 из полипропилена (тефлона, полиэтилена, фторопласта, целлофана и т.п.), которую механически фиксируют на корпусе с помощью резинового кольца 5. В пространство между электродами и мембраной залит водный раствор хлорида кальция 6. Извне мембрана 4 контактирует с контролируемой средой 7. Это может быть как жидкость, так и газ.

Если в контролируемой среде кислорода нет, то при подаче напряжения между электродом сравнения (анод) и рабочим электродом установившийся стационарный ток очень слаб. При наличии в контролируемой среде кислорода его молекулы диффундируют сквозь мембрану 4 и через раствор 6. Когда они достигают индикаторного электрода 2, то благодаря каталитическим свойствам платины здесь происходит реакция восстановления:

O2 + 4e- + 4H+ = 2h3O, вследствие которой ток через электрохимический элемент значительно возрастает.

Стационарный ток линейно зависит от концентрации кислорода в контролируемой среде.

Специально подбирая материал электродов, состав внутреннего электролита, электродное напряжение, удается построить амперометрические сенсоры подобной конструкции также для определения концентраций таких газов, как хлор, сероводород, серный газ, водород, угарный газ, окислы азота и т.д.

Вследствие потребления кислорода катодом и необходимостью диффузии кислорода через мембрану, для точности измерений следует поддерживать достаточный поток свежей воды. Загрязнение воды маслами и другими полимерами снижает диффузию и искажает результаты. С течением времени, мембрана разрушается, электролит становится грязным, а электроды расходуются до такой степени, что дают ограниченный ответ на присутствие кислорода.

Оптический метод. Люминесцентные оптоды

Тушение люминофоров кислородом описано в далеком 1939 году (Kautsky, 1939), но в области анализа воды технология, основанная на этом феномене, является относительно новой (Klimant et al., 1995; Glud et al., 1999; Wenzhöffer et al., 2001). Много позже, получили развитие оптические устройства, детекторы, устройства обработки информации. Значительного прогресса в 1990-х годах достигли технологии регистрации растворенного кислорода в жидкости с использование люминофоров, оптод (оптические датчики) и портативных компьютеров. Успехи в области создания диодов с синим спектром свечения и маломощной высокоскоростной электроники позволили миниатюризировать чувствительные к кислороду оптоды до размера портативных устройств. Датчики не потребляют кислород и стабильны длительное время. Они имеют быстрое время отклика, обычно τ63% менее 60 секунд, часто менее 30 секунд для изменений концентрации кислорода ниже 8 мг/л. Оптоды имеют температурную зависимость, их значения корректируются с помощью локального температурного датчика.

Приложение технологии тушения люминофоров кислородом для оценки качества воды активно изучается. Обнаружено, что технология чрезвычайно хорошо подходит для анализа качества воды, и для коммерческого внедрения необходимо преодолеть два препятствия:

— защитить люминофор от фотовыгорания, чтобы датчик мог работать длительный срок в полевых условиях;

— обеспечить воспроизводимость процесса печати, чтобы последовательно и недорого интегрировать люминофор в колпачок датчика.

Кислородная оптода обеспечивает более удобный и надежный способ измерения растворенного кислорода, чем титрование и электрохимические датчики . Фундаментальный принцип основан на способности некоторых веществ действовать как динамические гасители флюоресценции. В случае определения концентрации кислорода, если рутениевый комплекс освещают синим светом, он возбуждается и испускает красную люминесценцию с интенсивностью и сроком жизни, которые зависят от концентрации кислорода в образце воды.

Важно отметить три параметра, на которых строятся измерения: интенсивность (насколько возвратное излучение сильное), срок жизни (как быстро возвратная люминесценция прекращается) и смещение фаз.

Измерения, базирующиеся на интенсивности, легче провести, но полученные значения меняются с течением времени. Различные технологии определения сигнала и области их приложения обобщены в работах Wolfbeis (1991), Demas et al. (1999) и Glud et al. (2000).

Схема оптического датчика для определения кислорода

Схема оптического датчика для определения концентрации растворенного кислородаСхема оптического датчика для определения концентрации растворенного кислородаСхема оптического датчика для определения концентрации растворенного кислородаСхема оптического датчика для определения концентрации растворенного кислорода

Сенсорная пленка состоит из чувствительного к кислороду люминесцентного вещества (люминофор), который погружен в полимерный слой, который, в свою очередь, тонким слоем покрывает полиэстеровую подложку.

Чаще всего в качестве люминофора используют рутениевые комплексы, но иногда платиновые комплексы порфиринов [полициклические ароматические углеводорода, Ru(II), Os(II), Rh(II), фосфоресцентные порфирины]. В последнем случае датчик имеет в пять раз больший срок жизни сигнала, поэтому сигнал проще считывать, и показания более стабильные. Кроме того, платиновые комплексы порфиринов менее чувствительны к фотовыгоранию.

Газопроницаемый защитный черный силиконовый слой работает как оптический изолятор, защищает от возможных люминесцентных/флюоресцентных материалов в воде, от солнечного излучения.

Пленку освещают синим/зеленым светодиодом с частотой 5 кГц. Возвратное красное флюоресцентное свечение от пленки принимает фотодиод. Красный оптический фильтр снижает отраженный свет, поступающий в фотодиод непосредственно от синего/зеленого излучателя.

Хотя детектор измеряет интенсивность флюоресцентного свечения, эта интенсивность восприимчива к оптическим связям и фотовыгоранию люминофора. Для измерения уровня тушения люминесценции кислородом гораздо лучше определять время жизни излучения от возбужденных люминофоров в пленке по отношению к возбуждающему сигналу. Время жизни измеряют опосредованно, через фазовое смещение между возбуждающим синим/зеленым сигналом и испускаемым от люминофора красным сигналом. Дополнительный красный светодиод включен в качестве невозбуждаемого сигнала сравнения как средство компенсации потенциального дрейфа в электронных схемах передатчика и приемника.

Использование техники фазовой модуляции означает, что флуктуации интенсивности излучения от синего/зеленого светодиода и излучения от люминофора не вносят помехи в измерения на протяжении всего срока службы оптического датчика. Кроме того, так как между концентрацией растворенного кислорода и фазовым смещением возвратной красной флюоресценции отмечается обратная зависимость, «отношение сигнал шум» имеет особое значение для измерения очень низкой концентрации растворенного кислорода. Наконец, между циклами измерения поочередно включаются синий и красный светодиоды, что обеспечивает внутреннее сравнение для оптического и электронного прохождения сигнала. Этот внутренний контроль обеспечивает стабильность в условиях корректировки температуры.

  1. Оптический датчик проводит измерения, последовательно включая синий и красный светодиоды.
  2. Синий свет возбуждает молекулы красителя люминофора на чувствительной пленке.
  3. Испускаемый светодиодом красный свет обеспечивает нулевое сравнительное значение; он не возбуждает молекулы люминофора.
  4. Возбужденные молекулы люминофора испускают красный свет в обратную сторону.
  5. Фотодиод обнаруживает возвратный красный свет от возбужденных молекул люминофора и красный свет от светодиода.

Калибровка и температурная зависимость оптического датчика

Оптическое тушение люминофора сильно зависит от температуры. Важно с высокой точностью измерять температуру (с множеством повторений), при этом датчик температуры и оптода должны располагаться близко друг к другу. Во время калибровки необходимо равенство температур образца воды, колпачка оптоды и температурного датчика.

Например, когда для калибровки значения 100% насыщения используется водонасыщенный воздух, колпачок оптоды и температурный датчик должны находиться на воздухе в температурном равновесии. Аналогично, когда для калибровки значения 100% насыщения используется насыщенная воздухом вода, колпачок оптоды и температурный датчик должны погружаться в воду и находится в температурном равновесии друг с другом и с водой.

Во время калибровки в полевых условиях рекомендуют защищать колпачок от термического нагревания при помощи солнечного щита.

Сравнение показаний различных методов определения концентраци кислорода

Для создания уравновешенных образцов воды с известными значениями температуры и давления использовали поверочную газовую O2/N2 смесь Национального института стандартов и технологий (NIST, США). Измерения концентрации растворенного кислорода титрованием, электродом Кларка и оптическим датчиком Hach LDO сравнивали с теоретическими значениями растворенного кислорода (Hitchman, 1978).

Измерения концентрации растворенного кислорода титрованием, электродом Кларка и оптическим датчиком Hach LDO сравнивали с теоретическими значениями растворенного кислорода (Hitchman, 1978)Измерения концентрации растворенного кислорода титрованием, электродом Кларка и оптическим датчиком Hach LDO сравнивали с теоретическими значениями растворенного кислорода (Hitchman, 1978)

Используя автоматический титратор по методике Виклера, измерения модели зонда Hydrolab Series 5 от компании Hach LDO показали высокую степень корреляции со значениями титратора. Каждая группа данных включала два образца, и эти данные перекрывались.

Сравнения показаний оптоды с автоматическим титрованием по ВиклеруСравнения показаний оптоды с автоматическим титрованием по ВиклеруИзмерения при высокой солености. Сравнение показаний оптоды Hach LDO и электрода КларкаИзмерения при высокой солености. Сравнение показаний оптоды Hach LDO и электрода Кларка

В контролируемых лабораторных условиях с помощью коммерческой морской соли корректировали соленость воды до желаемого уровня. Емкость продували азотом, снижая концентрацию кислорода, а затем растворяли кислород, продувая емкость кислородом. Сравнения оптоды Hach LDO с электрохимическим мембранным датчиком при средней (6.9 млрд-1) и высокой солености (45.5 млрд-1) показали аналогичные значения, с ошибками ±0.2 мг/л для мембранного датчика и ±0.1 мг/л для Hach LDO датчика (значения ниже 8 мг/л) и ±0.2 мг/л для Hach LDO датчика (значения выше 8 мг/л).

В контролируемых лабораторных условиях корректировали концентрацию растворенного кислорода при помощи продувки азотом и кислородом. Емкость продували азотом, снижая концентрацию кислорода, а затем растворяли кислород, продувая емкость кислородом. Брали несколько сотен значений на кривой концентрации кислорода для датчика Hach LDO. Значения насыщения для датчика Hach LDO и электрохимического датчика аналогичные. Процент насыщения, рассчитанный через измерения в абсолютных значениях (мг/л) одинаков для двух методов регистрации.

Определения процента насыщенияОпределения процента насыщения

Время отклика оптического датчика изменялось поэтапно, менее 30 секунд, достигая τ95%, когда концентрация снижалась с 8 мг/л до 0 мг/л и когда она возрастала от 0 мг/л до 8 мг/л.

Время отклика оптического датчика Hach LDOВремя отклика оптического датчика Hach LDO

Сбор данных в полевых условиях

Сравнения измерений Hach LDO и титрования по Виклеру в условиях низкой концентрации кислорода и температурСравнения измерений Hach LDO и титрования по Виклеру в условиях низкой концентрации кислорода и температур

Сравнения измерений Hach LDO и титрования по Виклеру в условиях низкой концентрации кислорода и температур показали аналогичные результаты. Это говорит о способности оптического датчика достигать нуля и работать при низких температурах.

Сравнение измерений оптического датчика Hydrolab Series 5 с датчиком Hach LDO и электрода Кларка в течение недели проводилось в естественном водоеме города Найвот, Колорадо. Регистрация проводилась каждые 15 минут, и результаты измерений показали четкий суточный ритм в зеленом пруду.

Тестирование в природных водоемахТестирование в природных водоемах

Заключение

ПараметрТитрование по ВиклеруОптический датчикЭлектрохимический электродГальванический электрод
Средняя исходная ошибка, net bias, мг/л0.190.550.22Насколько датчик точен в начале
Частота исходных ошибок 0.2 мг/л или меньше, %504010
Частота исходных ошибок 0.2 мг/л или больше, %01060
Расброс значений в начале измерений, мг/л0.93.19.5
Индивидуальная точность, %0.220.110.110.18Насколько идентичны одинаковые модели датчиков
Обычное отклонение за первую неделю, мг/л0.390.771.01Насколько высокие отклонения измерений
Вариабельность отклонений (завышает или занижает), мг/л0.583.940.74
Ранний срок начала отклонений более 2.0 мг/л, дни1438
Mooney R., Arnerich T., Performance of optical dissolved oxygen sensors in seven site, mix matrix study

Рассмотрены три стандартных метода определения концентрации растворенного кислорода в воде.Титрование по Винклеру подходит для точного измерения кислорода в природных водоемах, но имеет ограничения, касающиеся токсичной природы химических реактивов и трудозатрат на выполнение процедуры. Кроме того, сложно анализировать образцы, далекие от равновесного состояния (слишком аноксические и гипероксические).

В электродах Кларка мембрана покрывает амперометрический сенсор. Полвека назад этот датчик стал шагом вперед в реал-тайм мониторинге уровня растворенного кислорода. Электроду присущи ограничения, так как он потребляет кислород и требует частого обслуживания.

Оптические датчики, работающие на технологии фазового смещения сигнала и принципе гашения люминесценции кислородом, имеют существенные преимущества. Они наиболее точные и имеют самый долгий срок службы среди других датчиков, включая оптоды, использующие оценку интенсивности сигнала. В условии нормальных концентраций веществ, они лишены каких-либо помех, и в этом плане превосходят электрохимический метод измерения и титрование.

Таким образом, метод не имеет таких ограничений, какие имеет химический мембранный метод. Мембрана не взаимодействует с кислородом, поэтому нет необходимости помешивания датчика. Кроме того, прочная конструкция датчика обеспечивает калибровку на долгие годы.

В качестве рабочего варианта приведу характеристики модели In-Situ ®Inc.’s Rugged Dissolved Oxygen (RDO) Titan Probe. Далее следуют выдержки из руководства по эксплуатации.

Прочность конструкции

Датчик устойчив к стиранию и потери флуоресценции в ходе фотовыгорания. Выдерживает высокую соленость раствора, состоит из устойчивых к коррозии материалов. Нечувствителен к помехам, которые обычно возникают у датчиков с мембраной (сероводород, хлор, аммоний и другие).

Простота обслуживания

Датчик не требует частой калибровки. Включает средства диагностики состояния датчика. Работает с очень малыми отклонениями в течение длительного периода времени. Быстро реагирует на изменения концентрации кислорода и температуры. Обеспечивает стабильные, воспроизводимые результаты (<0.05 мг/л).

Характеристики

Тип датчика: Оптический DO датчик с классическим колпачком.

Диапазон измерений: 0 – 50 мг/л.

Точность: ±0.1 мг/л от 0 до 8 мг/л; ±0.2 мг/л от 8 до 20 мг/л; ±10% от 20 до 50 мг/л.

Разрешение: 0.01 мг/л.

Время ответа, колпачок: T90 <45 сек. T95 <60 сек. Температура 25°C.

Диапазон измерений температуры: 0 — 50°C.

Точность измерения температуры: ±0.1°C обычно.

Разрешение измерения температуры: 0.01°C.

Условия среды

Давление: 150 psi от 0 до 50°C; 300 psi до 25°C.

Глубина: 210 метров до 25°C.

Рабочая температура: Для колпачка датчика 1 — 60°C в заводском контейнере; датчика -5 — 60°C.

Помехи от химических веществ: спирты >5%, перекись водорода >3%, раствор гипохлорита (белизна) >3%, газообразный диоксид серы, газообразный хлор.

——www.intuit.ru/studies/courses/590/446/lecture/9934?page=3www.eco.nw.ru/lib/data/09/4/030409.htmmasters.donntu.org/2011/fkita/prokof%27eva/library/article9.htmwww.coastalwiki.org/wiki/Oxygen_sensorsarchimer.ifremer.fr/doc/2006/publication-1413.pdfonlinelibrary.wiley.com/doi/10.4319/lom.2014.12.139/pdfin-situ.comwww.slideserve.com/khoi/optics-for-dissolved-oxygen

aquavitro.org

Установки кислородные технологические схемы - Справочник химика 21

    В настоящее время промышленным способом получения кислорода является извлечение его из воздуха сжижением с последующей ректификацией. Процессы эти осуществляются в воздухоразделительной (кислородной) установке, являющейся комплексом машин и аппаратов, связанных одной технологической схемой. Первые промышленные кислородные установки начали эксплуатировать в начале текущего столетия. [c.3]     Описанная схема извлечения предусматривает работу метановой колонны при низком давлении (около 1,5—2 ата). Такая схема эффективна термодинамически только нри применении встроенных холодильных циклов, когда некоторые компоненты разделяемого газа являются хладагентами. Конструкция оборудования и технологическая схема такой установки во многом аналогичны кислородным установкам. При широко развитом теплообмене потоков с малыми разностями температур обеспечивается высокая термодинамическая эффективность схем. [c.161]
Рис. 38. Технологическая схема кислородной установки К-0,15 Рис. 38. Технологическая схема кислородной установки К-0,15
Рис. 158. Технологическая схема кислородной установки К-1,4 Рис. 158. Технологическая схема кислородной установки К-1,4
    Промышленность выпускает стационарные кислородные установки КГН-30 с кислородным насосом. Технологическая схема установки КГН-30 производительностью 30 м Ы кислорода показана на рис. 51. Воздух проходит через фильтр 1 для очистки от механических примесей, затем сжимается в вертикальном четырехступенчатом компрессоре 2 и охлаждается в промежуточных холодильниках. Производительность компрессора 180 м ч.  [c.167]

    Выше подробно рассмотрен технологический процесс получения газообразного кислорода на примере наиболее простой установки, работающей по циклу высокого давления. В установках с более сложной технологической схемой используются холодильные циклы низкого и высокого давлений, применяются поршневые детандеры, турбодетандеры, регенераторы, кислородные насосы и другое дополнительное оборудование, что вносит ряд особенностей в процессы пуска и обслуживания таких установок. Эти особенности рассматриваются более кратко, так как основные принципы регулирования процесса в воздухоразделительном аппарате остаются такими же, как для установок высокого давления. [c.601]

    Проводились испытания [95] технологической схемы получения раствора гидросульфита натрия из металлургических газов, содержащих 0,7-45% ЗОг, разработана полностью автоматизированная схема процесса, обеспечивающая устойчивую работу установки при нестабильной концентрации газов и полное поглощение диоксида серы. Испытания проводили на очищенном сернистом газе, полученном при кислородной плавке медно-цинковых концентратов. Технологическая схема полупромышленной установки аналогична схеме, изображенной на рис. 16 (но без предварительной промывки газа). [c.83]

    Технологическая схема установки одноступенчатой каталитической конверсии метана паро-кислородной смесью под давлением 20 ат приведена на рис. 1-7. [c.47]

    ТЕХНОЛОГИЧЕСКАЯ СХЕМА КИСЛОРОДНОЙ УСТАНОВКИ ТИПА КГ-300-2Д [c.36]

Рис. 13. Технологическая схема кислородной установки типа КГ-300-2Д Рис. 13. Технологическая схема кислородной установки типа КГ-300-2Д
    Технологическая схема кислородной установки типа КТ-ЮОО 39 [c.39]

    Технологическая схема кислородной установки типа КТ-1000 41 [c.41]

    Технологическая схема кислородной установки типа КТ-3600 43 [c.43]

    ТЕХНОЛОГИЧЕСКАЯ СХЕМА КИСЛОРОДНОЙ УСТАНОВКИ [c.43]

    Блок разделения типа КТ-3600 является самым крупным отечественным кислородным агрегатом, работающим по циклу двух давлений. Он предназначен для получения технологического кислорода чистотой 97—98%. Технологическая схема кислородной установки приведена на рис. 15. [c.43]

    Технологическая схема блока разделения кислородной установки типа БР-1 приведена на рис. 16. [c.48]

    Технологическая схема кислородной установки типа БР-1 51 [c.51]

    Несколько отличаются от описанных технологические схемы на основе отходов производства ацетилена (синтез-газ). Этот газ содержит водород и окись углерода в соотношении, близком к двум,, однако присутствуют до 5,5 объемн. % СН4, 2—3 объемн. % N2, ацетилен и его производные, этилен и соединения азота. Это затрудняет использование газа без предварительной подготовки. Имеется несколько способов переработки синтез-газа в метанол. Обычно его подвергают паро-кислородной, паро-углекислотной или высокотемпературной конверсии. Одновременно с окислением метана конвертируется и большинство присутствующих в газе органических примесей. Существуют схемы, в которых компоненты газовой смеси разделяются на установках глубокого холода или метан выделяется промывкой жидким азотом. После конверсии газ очищает- [c.87]

    Технологическая схема промышленной установки Ректизол показана на рис. IV-100. Конвертированный газ, полученный паро-кислородной конверсией метана и конверсией окиси углерода, при температуре около Зб " С и давлении 22 ат поступает в холодильник 1. Состав газа 71,5% Но 0,8% N3 0,9% СН4 2,4% СО 24,4% СО . [c.202]

    Непрерывные способы получения водяного и полуводяного газов с применением паро-кислородного и обогащенного кислородом наро-воздушного ДУТья. Любая из действующих газогенераторных станций для получения водяного или паро-воздушного газов может быть переведена на паро-кислородное и обогащенное кислородом паровоздушное дутье без внесения больших изменений в технологическую схему агрегата. Переход на кислородное дутье газогенераторов водяного газа, работающих циклическим способом, значительно упрощает их работу процесс газификации становится непрерывным исключается нео(5ходимость автоматического переключения работающих газогенераторов с одной стадии на другую отпадает надобность в установке регенератора при котле-утилизаторе упрощаются и сокращаются коммуникации. В результате агрегат водяного газа приобретает сходство с простым агрегатом для паро-воздушного газа. [c.181]

    На основе нового кислородного варианта процесса можно создавать установки большой единичной мощности 200— 250 тыс. т/год и одновременно упростить технологическую схему. При одинаковых габаритах основного оборудования производительность установки получения ацетальдегида новым методом более чем в 2 раза превышает производительность установок, работающих по двухстадийной схеме [142, с. 26]. [c.220]

    Для осуществления всед перечисленных стадий процесса получения кислорода применяется специальное оборз до-вание, указанное в технологической схеме кислородной установки производительностью 5 м газообразного кислорода в час (рис. 19). [c.69]

    Принципиальная технологическая схема установки приведена на рис. 24, а. Сжатый в турбокомпрессоре воздух поступает в два кислородных 1 и шесть азотных 2 регенераторов с каменной (базальтовой) насыпной насадкой. В регенераторах расположены змеевики из медных труб диаметром 25 мм, по которым проходят чистый азот и технический кислород. Переключение газовых потоков производится автоматическими клапанами 3, установленными на холодных концах, и клапанами принудительного действия, расположенными на тепловых концах регенераторов. Воздух из регенераторов поступает в куб нижней колонны 13, в которой подвергается первичному обогащению кислородом, а затем через фильтры из пористой металлокерамики и си-ликагелевые адсорберы 5 направляется в среднюю часть верхней колонны 9 для дальнейшей ректификации. Азот из нижней колонны отбирается в двух местах жидкий азот из средней тарелки поступает на орошение верхней колонны, предварительно проходя через переохладитель 8, а газообразный азот высокой чистоты отбирается сверху и направляется в межтрубное пространство конденсаторов 10 и 11 (первый поток) в один из турбодетандеров 4 (второй [c.76]

    Стационарные кислородоазотные установки СКАДС-17 предназначены для производства небольших количеств газообразного кислорода и жидкого азота производительность их 17 м ,ч газообразного кислорода или 15 дм /ч жидкого азота. Наполнение баллонов кислородом под высоким давлением производится кислородным насосом. Технологическая схема установки СКАДС-17 приведена на рис. 48. Установка вырабатывает газообразный кислород по циклу высокого давления с дросселированием. На период пуска и получения жидкого азота включается поршневой детандер, и тогда установка работает по циклу высокого давления [c.160]

    Начиная с 1962 г. Свердловский кислородный завод Средне-уральского совнархоза выпускает унифицированную установку УКА-0,11 (АжК-0,02), заменяющую ранее выпускавшиеся установки ЖАК-80, ГЖАК-20, ЖА-20 и СКАДС-17. Азото-кислородная установка УКА-0,11 предназначена для получения газообразного кислорода, газообразного азота или жидкого азота (одновременно можно получить только один из указанных продуктов). Установка работает по циклу высокого давления с поршневым детандером. Технологическая схема установки показана на рис. 50. На режиме получения газообразного кислорода установка работает так же, как и описанная выше установка СКАДС-17. [c.164]

    Технологическая схема кислородной установки КГСН-150 среднего давления с кислородным насосом показана на рис. 4.16. Производительность этой установки 150 м 1ч кислорода. [c.173]

    Собственно процесс извлечения кислорода из воздуха осуществляется в кислородном аппарате (блоке разделения) являющемся основной частью установки. В зависи 1юсти от применяемой технологической схемы и холодильного цикла процесс получения кислорода имеет некоторые о оЗенности. Однако сущ-но. ть и основные приемы технологии производства остаются одинаковыми для кислородных установок всех типов. [c.241]

    Кислородная установка типа КТ-1000, технологическая схема которой представлена на рис. 14, предназначена для получения технологического кислорода чистотой 98—98,5, а также для получения технического кислорода чистотой не ниже 99%. Однако производительность разделительного аппарата в этом случае на 10—15% меньше. Так как эта установка имеет резерв по холодопроизводительности, можно часть кислорода (около 150— 170 кг1час) отбирать в жидком виде. [c.39]

    В последнее время цикл акад. Капицы находит широкое применение в крупных кислородных установках, работающих на воздухе только низкого давления, что упрощает технологическую схему кислородной станции, так как исключает громозД кое оборудование, необходимое для сжатия, очистки, осушки и предварительного охлаждения воздуха высокого давления. На основе метода акад. Капицы коллективом ВНИИКИМАШ соз-даны кислородные установки типа БР-5, БР-1 и БР-2, являющиеся одними из лучших в мире. [c.16]

    Другие технологические схемы получения исходного газа отличаются от описанных наличием водной очистки газа от двуокиси углерода вместо моноэтаноламиноеой. Водную очистку проводят при давлении - -28 ат (после третьей ступени компрессии) и температуре не выше 50 °С в скрубберах с насадкой. Описанные в Л1И-тературе крупные установки, базирующиеся на использовании газового сырья или продуктов нефтепереработки, предусматривают очистку газа от соединений серы. Технологический газ получают при 14—30 ат, что позволяет использовать энергию поступающего на предприятие газа, лучше решить вопросы использования тепла и т. д. Преобладает процесс паро-углекислотной конверсии, хотя имеются варианты комбинирования, например высокотемпературной и паро-кислородной конверсии под давлением. Дополнительное компримирование газа до 350 ат осуществляется турбокомпрессорами, конструкции которых успешно разработаны за рубежом, или поршневыми оппозитными компрессорами. [c.77]

    Как кислороду, так и воздуху, применяемым в стадии сжигания топлива, присущи свои положительные и отрицательные особенности. Результаты испытаний на опытной установке показывают, что при обоих окислителях достигается примерно одинаковая степень превращения сырья в ненасьпценные углеводороды. Основное различие в составе продуктов пиролиза заключается преимущественно в концентрации целевых продуктов. Целесообразность применения воздуха или кислорода в стадии сжигания топлива определяется экономикой В одном варианте необходимо учитывать стоимость кислородной установки, а в другом — стоимость оборудования для компримирования п разделения газовой смеси. В обоих случаях размеры капиталовложений практически совпадают. Поэтому окончательное решение определяется выбором технологической схемы комплексной переработки как ненасыщенных углеводородов, так и других продуктов крекинга. Поскольку пиролиз углеводородов является эндотермической реакцией, естественно, что по мере ее протекания, температура реакционной смеси уменьшается, то есть реакция происходит в нензотермическом потоке. Хотя процессы, протекающие в потоке в иеизотермических условиях, имеют своп закономерности. определяемые законом распределения температуры по [c.39]

    Рассмотренные кислородные установки высокого давления являются громоздкими и в зиачительной степени устарели. В настоящее время установки технического кислорода модернизованы как в части технологической схемы, так и в части конструктивного оформления машин, теплообменников и блока разделения. Вместо осущительных баллонов с каустиком стали широко применять адсорберы, заполненные активным глиноземом. Освоено производство устан0 В0к газообразного кислорода производительностью 30 Ог в час с насосом жидкого кислорода, установок производительностью 100, 300 и 1000 Ог в час и жидкого кислорода для получения до 1 600 кг Ог в час. [c.266]

chem21.info

исходные материалы, технология, технико-экономические показатели. Схема кислородного конвертера.

Кислородно-конвертерный процесс - это выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.

Кислородный конвертер - это сосуд грушевидной формы из стального листа, футерованный основным кирпичом. Вместимость конвертера 130—350 т жидкого чугуна. В процессе работы конвертер может поворачиваться на цапфах вокруг горизонтальной оси на 360°С для завалки скрапа, заливки чугуна, слива стали и шлака.

Шихтовыми материалами кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом (не более 30 %), известь для наведения шлака, железная руда, а также боксит (А12О3), плавиковый шпат (CaF2), которые применяют для разжижения шлака.

Технология плавки. Перед плавкой конвертер наклоняют, через горловину с помощью завалочных машин загружают скрап, заливают чугун при температуре 1250—1400°С. После этого конвертер поворачивают в вертикальное рабочее положение (рис. 2.4, в), внутрь его вводят водоохлаждаемую фурму и через нее подают кислород под давлением 0,9-1,4 МПа. Одновременно с началом продувки в конвертер загружают известь, боксит, железную руду. Струи кислорода проникают в металл, вызывают его циркуляцию в конвертере и перемешивание со шлаком. Благодаря интенсивному окислению примесей чугуна при взаимодействии с кислородом в зоне под фурмой развивается температура до 2400°С.

В зоне контакта кислородной струи с чугуном в первую очередь окисляется железо, так как его концентрация во много раз выше, чем примесей. Образующийся оксид железа растворяется в шлаке и металле, обогащая металл кислородом. Кислород, растворенный в металле, окисляет кремний, марганец, углерод в металле, и содержание их понижается. При этом происходит разогрев ванны металла теплотой, выделяющейся при окислении примесей, поддержание его в жидком состоянии.

В кислородном конвертере благодаря присутствию шлаков с большим содержанием СаО и FeO, перемешиванию металла и шлака создаются условия для удаления из металла фосфора по реакции в начале продувки ванны кислородом, когда ее температура еще невысока. В чугунax перерабатываемых в конвертерах, не должно быть более 0,15 % Р. При повышенном (до 0,3 %) содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.

Удаление серы из металла в шлак протекает в течение всей плавки по реакциям (7) и (8). Однако высокое содержание в шлаке FeO (до 7-20 %) затрудняет удаление серы из металла. Поэтому для передела в сталь в кислородных конвертерах применяют чугун с содержанием до 0,07 % S.

Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер поворачивают и выпускают сталь в ковш (рис. 2.4, г).

При выпуске стали из конвертера ее раскисляют в ковше осаждающим методом ферромарганцем, ферросилицием и алюминием; затем из конвертера сливают шлак (рис. 2.4, д).

В кислородных конвертерах выплавляют конструкционные стали с различным содержанием углерода, кипящие и спокойные.

В кислородных конвертерах трудно выплавлять стали, содержащие легкоокисляющиеся легирующие элементы, поэтому в них выплавляют низколегированные (до 2-3 % легирующих элементов) стали. Легирующие элементы вводят в ковш, расплавив их в электропечи, или твердые ферросплавы вводят в ковш перед выпуском в пего стали. Плавка в конвертерах вместимостью 130-300 т заканчивается через 25-50 мин. Кислородно-конвертерный процесс более производительный, чем плавка стали в мартеновских печах.

studfiles.net