Как правильно подключить трансформатор 12 вольт. Схема понижающего трансформатора 220 на 12 вольт
Электронный трансформатор. Ремонт своими руками.
На сегодняшний день, электромеханики достаточно редко занимаются починкой электронных трансформаторов. В большинстве случаев, я и сам не очень заморачиваюсь тем, чтобы потрудиться над реанимацией подобных устройств, просто потому что, обычно покупка нового электронного трансформатора обходится куда дешевле, чем ремонт старого. Однако, в обратной ситуации — почему бы и не потрудиться экономии ради. К тому же не у всех есть возможность добраться до специализированного магазина, чтобы подыскать там замену, или обратиться в мастерскую. По этой причине, любому радиолюбителю нужно уметь и знать, как производится проверка и ремонт импульсных (электронных) трансформаторов в домашних условиях, какие могут возникнуть неоднозначные моменты и как их разрешить.
Ввиду того, что не все имеют обширный объём знаний по теме, постараюсь представить всю имеющуюся информацию максимально доступно.
Немного о трансформаторах
Рис.1: Трансформатор.
Прежде, чем приступить к основной части, сделаю небольшое напоминание о том, что же такое электронный трансформатор и для чего он предназначен. Трансформатор используется для преобразования одной переменной напряжения в другую (например, 220 вольт в 12 вольт). Это свойство электронного трансформатора очень широко используется в радиоэлектронике. Существуют однофазные (ток течёт по двум проводам – фаза и «0») и трёхфазные (ток течёт по четырём проводам – три фазы и «0») трансформаторы. Основным значимым моментом при использовании электронного трансформатора является то, что при понижении напряжения сила тока в трансформаторе увеличивается.
У трансформатора имеется как минимум одна первичная и одна вторичная обмотка. Питающее напряжение подключается на первичную обмотку, ко вторичной обмотке подключается нагрузка, либо снимается выходное напряжение. В понижающих трансформаторах провод первичной обмотки всегда имеет меньшее сечение, чем провод вторичной. Это позволяет увеличить количество витков первичной обмотки и как следствие её сопротивление. То есть при проверке мультиметром первичная обмотка показывает сопротивление в разы большее, чем вторичная. Если же по какой-то причине диаметр провода вторичной обмотки будет небольшим, то по закону Джоуля-Лэнса вторичная обмотка перегреется и спалит весь трансформатор. Неисправность трансформатора может заключаться в обрыве и или КЗ (коротком замыкании) обмоток. При обрыве мультиметр показывает единицу на сопротивлении.
Как проверять электронные трансформаторы?
На самом деле, чтобы разобраться с причиной поломки не нужно обладать огромным багажом знаний, достаточно иметь под рукой мультиметр (стандартный китайский, как на рисунке №2) и знать, какие цифры должен выдавать на выходе каждый из компонентов (конденсатор, диод и т.д.).
Рис 2: Мультиметр.
Мультиметр может измерить постоянное, переменное напряжение, сопротивление. Также он может работать в режиме прозвонки. Желательно, чтобы щуп мультиметра был обмотан скотчем, (как на рисунке №2), это убережёт его от обрывов.
Чтобы правильно производить прозвонку различных элементов трансформера рекомендую всё-таки выпаивать их (многие пытаются обойтись без этого) и исследовать отдельно, поскольку в противном случае показания могут быть неточными.
Диоды
Нельзя забывать, что диоды прозваниваются только в одну сторону. Для этого мультиметр устанавливается в режим прозвонки, красный щуп прикладывается к плюсу, чёрный к минусу. Если всё в норме, то прибор издаёт характерный звук. При наложении щупов на противоположные полюса не должно происходит вообще ничего, а если это не так, то можно диагностировать пробой диода.
Транзисторы
При проверке транзисторов, их также нужно выпаивать и прозванивать переходы база-эмиттер, база-коллектор, выявляя их проходимость в одну, и в другую сторону. Обычно, роль коллектора в транзисторе выполняет задняя железная часть.
Обмотка
Нельзя забывать проверять обмотку, как первичную, так и вторичную. Если возникают проблемы с определением того, где первичная обмотка, а где вторичная, то помните, что первичная обмотка даёт большее сопротивление.
Конденсаторы (радиаторы)
Ёмкость конденсатора измеряется в фарадах (пикофарадах, микрофарадах). Для его исследования тоже используется мультиметр, на котором выставляется сопротивление в 2000 кОм. Положительный щуп прикладывается к минусу конденсатора, отрицательный к плюсу. На экране должны появляться всё возрастающие цифры вплоть до почти двух тысяч, которые сменяются единицей, что расшифровывается как бесконечное сопротивление. Это может свидетельствовать об исправности конденсатора, но лишь в отношении его способности накапливать заряд.
Ещё один момент: если в процессе прозвонки возникла путаница с тем, где расположен «вход», а где «выход» трансформатора, то нужно просто перевернуть плату и на обратной стороне на одном конце платы вы увидите небольшую маркировку «SEC» (второй), которой обозначается выход, а на другом «PRI» (первый) — вход.
А также, не забывайте, что электронные трансформаторы нельзя запускать без загрузки! Это очень важно.
Ремонт электронного трансформатора
Пример 1
Возможность попрактиковаться в починке трансформатора представилась не так давно, когда мне принесли электронный трансформатор от потолочной люстры (напряжение — 12 вольт). Люстра рассчитана на 9 лампочек, каждая по 20 ватт (в сумме – 180 ватт). На упаковке от трансформатора значилось также: 180 ватт.А вот пометка на плате гласила: 160 ватт. Страна производитель – конечно же,Китай. Аналогичный электронный трансформатор стоит не более 3$, и это на самом деле совсем немного, если сравнивать со стоимостью остальных компонентов устройства, в котором он был задействован.
В полученном мной электронном трансформаторе сгорела пара ключей на биполярных транзисторах (модель: 13009).
Рис.3: Биполярный транзистор MOROCCO-13009.
Рабочая схема стандартная двухтактная, на месте выходного транзистора поставлен инвертор ТОР(Thor), у которого вторичная обмотка состоит из 6-ти витков, а переменный ток сразу же перенаправляется на выход, то есть к лампам.
Такие блоки питания обладают весьма значимым недостатком: отсутствует защита против короткого замыкания на выходе. Даже при секундном замыкании выходной обмотки, можно ожидать весьма впечатляющего взрыва схемы. Поэтому рисковать подобным образом и замыкать вторичную обмотку крайне не рекомендуется. В целом, именно по этой причине радиолюбители не очень любят связываться с электронными трансформаторами подобного типа. Впрочем, некоторые наоборот пытаются их самостоятельно доработать, что, на мой взгляд, весьма неплохо.
Но вернёмся к делу: поскольку наблюдалось потемнение платы прямо под ключами, то не приходилось сомневаться, что они вышли из строя именно из-за перегрева. Тем более, что радиаторы не слишком активно охлаждают заполненную множеством деталей коробочку корпуса, да ещё и прикрываются картонкой. Хотя, если судить по исходным данным, также имела место перегрузка в 20 ватт.
Из-за того, что нагрузка превышает возможности блока питания, достижение номинальной мощности практически равнозначно выходу из строя. Те более, что в идеале, с расчётом на долговременное функционирование, мощность БП должна быть не меньше, а вдвое больше необходимого. Вот такая она китайская электроника. Снизить уровень нагрузки, сняв несколько лампочек, не представлялось возможным. Поэтому единственный подходящий, на мой взгляд, вариант исправления ситуации заключался в наращивании теплоотводов.
Чтобы подтвердить (или опровергнуть) свою версию, я запустил плату прямо на столе и дал нагрузку с помощью двух галогеновых парных ламп. Когда всё было подключено – капнул немного парафина на радиаторы. Расчёт был такой: если парафин будет таять и испаряться, то можно гарантировать, что электронный трансформатор (благо, если только он сам) будет сгорать меньше чем за полчаса работы по причине перегрева.После 5 минут работы воск так и не расплавился, получалось, что основная проблема связана именно с плохой вентиляцией, а не с неисправностью радиатора. Наиболее изящный вариант решения проблемы – просто подогнать другой более просторный корпус под электронный трансформатор, который обеспечит достаточную вентиляцию. Но я предпочёл подсоединить теплоотвод в виде алюминиевой полоски. Собственно, этого оказалось вполне достаточно для исправления ситуации.
Пример 2
В качестве ещё одного примера починки электронного трансформатора я хотел бы рассказать о ремонте устройства, обеспечивающего понижение напряжения с 220 на 12 Вольт. Оно использовалось для галогенных ламп на 12 Вольт (мощность – 50 Ватт).
Рис. 4: Импульсный трансформатор от LUXMAN.
Рассматриваемый экземпляр перестал работать без всяких спецэффектов. До того, как он оказался у меня в руках, от работы с ним отказалось несколько мастеров: некоторые не смогли найти решение проблемы, другие, как уже и говорилось выше, решили, что это экономически нецелесообразно.
Для очистки совести я проверил все элементы, дорожки на плате, нигде не обнаружил обрывов.
Тогда я решил проверить конденсаторы. Диагностика мультиметром вроде бы прошла успешно, однако, с учётом того, что накопление заряда происходило на протяжении целых 10 секунд (это многовато для конденсаторов подобного типа), возникло подозрение, что неполадка именно в нём. Я произвёл замену конденсатора на новый.
Тут нужно небольшое отступление: на корпусе рассматриваемого электронного трансформатора имелось обозначение: 35-105 VA. Эти показания говорят о том, при какой нагрузке можно включать устройство. Включать его вообще без нагрузки (или, если по-человечески, без лампы), как уже говорилось ранее, нельзя. Поэтому я подсоединил к электронному трансформатору лампу на 50 Ватт (то есть значение, которое вписывается между нижней и верхней границей допустимой нагрузки).
Рис. 4: Галогеновая лампа на 50Ватт (упаковка).
После подключения никаких изменений в работоспособности трансформатора не произошло. Тогда я ещё раз полностью осмотрел конструкцию и понял, что при первой проверке не обратил внимания на термопредохранитель (в данном случае модель L33, ограничение до 130C). Если в режиме прозвонки этот элемент даёт единицу, то можно говорить о его неисправности и обрыве цепи. Изначально термопредохранитель не был проверен по той причине, что при помощи термоусадки он вплотную крепится к транзистору. То есть для полноценной проверки элемента придётся избавляться от термоусадки, а это весьма трудоёмко.
Рис.5: Термопредохранитель, прикреплённый термоусадкой к транзистору (элемент белого цвета, на который указывает ручка).
Впрочем, для анализа работы схемы без данного элемента, достаточно закоротить его «ножки» на обратной стороне. Что я и сделал. Электронный трансформатор тут же заработал, да и произведённая ранее замена конденсатора оказалась не лишней, поскольку ёмкость установленного до этого элемента не отвечала заявленной. Причина, вероятно, была в том, что он просто износился.
В итоге, я заменил термопредохранитель, и на этом ремонт электронного трансформатора можно было считать завершённым.
elektronchic.ru
Как правильно подключить трансформатор 12 вольт
Как Вы уже знаете, в зависимости от условий применения светодиодные светильники должны работать от безопасного либо стандартного напряжения в сети. Безопасное напряжение составляет 12 Вольт, обычно его используют для подсветки смотровой ямы в гараже, а также при монтаже освещения в ванной комнате и бане. При стандартных 220 Вольтах работают практически все люстры и бра в жилых помещениях. Сейчас мы рассмотрим схемы подключения точечных светильников на 220В и 12В.
Если Вы решили подключить свет в гостиной, спальне либо на кухне, то применять 12-Вольтные лампочки нет смысла, т.к. для этого потребуется покупать специальные понижающий трансформатор (220В он преобразовывает в 12В).
Если будут применяться несколько групп светодиодных светильников (к примеру, для подсветки многоуровневого гкл потолка), то каждой рекомендуется управлять отдельно, с помощью двойного выключателя.
Что касается использования 12-Вольтных точечных светильников, то в этом случае необходимо обязательно преобразовывать переменные 220В в постоянные 12В. Для этого необходимо приобрести блок питания, который устанавливается непосредственно перед самими лампами.
Обращаем Ваше внимание на то, что трансформатор должен быть установлен после выключателя света, а не перед ним. Также очень важный нюанс заключается в том, что мощность данного изделия должна быть выше, чем суммарная мощность потолочных диодов. К примеру, если суммарная мощность ламп составляет 50 Вт, блок питания должен быть 70-Ваттным.
Тут же следует отметить еще один нюанс. Чем больше мощность трансформатора, тем соответственно и больше его габариты. Как правило, данное устройство размещается рядом со светодиодами (в карнизе подвесного либо натяжного потолка). Понятное дело, что при обслуживании группы ламп с суммарной мощностью около 300 Вт придется купить довольно крупное устройство, с размещением которого могут возникнуть трудности. В этом случае рекомендуется «разбить» источники света на несколько групп и для каждой установить свой блок питания.
Как Вы видите, ничего сложного в схеме подключения нет. Главное правильно скрепить провода между собой. Подробную фото и видео инструкцию по монтажу мы предоставили в виде 9 советов по установке точечных светильников своими руками.
2 способа подключения пятирожковой люстры - какой лучше?
Установка точечных светильников - 9 полезных советов
Сам ЭлектрикЭнциклопедия домашнего мастера
© samelectrik.ru Все права защищены
© Все материалы сайта samelectrik.ru написаны специально для данного веб-ресурса и являются интеллектуальной собственностью администратора сайта. Публикация материалов сайта, на Вашем сайте, возможна только при указании полной активной ссылки на источник. Используя настоящий сайт, Вы принимаете условия Соглашения об использовании сайта.
Как подключить трансформатор?
Допустим, у вас в руках оказался трансформатор, о параметрах которого вы ничего не знаете. Эта статья как раз и расскажет, как правильно подключить трансформатор и какие операции необходимо перед этим проделать.
Для начала опишем, что из себя представляет трансформатор. Трансформатор – это устройство, которое преобразует величину напряжения за счет электромагнитной индукции. Он обычно имеет две или более проволочных обмоток, которые охватывает ферромагнитный сердечник. Обмотки называются первичной и вторичной. По назначению бывают понижающими и повышающими. В зависимости от сети, существуют трехфазные или однофазные.
Есть еще такой вид трансформаторов – автотрансформаторы. Их особенность заключается в том, что их первичная и вторичная обмотки соединены между собой, и они имеют несколько выводов с разным номиналом напряжения.
Также существуют трансформаторы тока. Их особенность заключается в том, что они преобразуют величину тока, а не напряжения. Обычно применяются для подключения контрольно-измерительных приборов к сетям, в которых протекают большие величины тока.
Определяем трансформатор
Вот у вас в руках находится трансформатор. На что же в первую очередь стоит обратить внимание? Посмотрите сначала на количество выводов обмоток. Трехфазные трансформаторы имеют 4 вывода (три фазы и ноль) на каждой обмотке, однофазные два (фаза и ноль). Если вы собираетесь использовать трансформатор в обычной городской квартире, то для этого подойдет только однофазный трансформатор.
Далее вам стоит определить тип трансформатора. Особенностью трансформатора тока является наличие мощного проводника (обычно выглядит в виде пластины) вокруг которого располагается обмотка. Особенностью автотрансформаторов является большие габариты и, зачастую, наличие регулятора. В быту такие трансформаторы не встречаются.
Если ни одно из описаний выше не подходит, то перед вами, наверняка, классический трансформатор.
Определяем обмотку
Для определения обмотки вам понадобится омметр или мультиметр. Если трансформатор понижающий, то сопротивление первичной обмотки будет гораздо больше, чем вторичной. Также это можно определить визуально. Размер сечения первичной обмотки меньше, чем размер вторичной. Но обычно это тяжело увидеть в силу технического исполнения трансформатора.
Если у трансформатора имеется несколько вторичных обмоток, то необходимо измерить напряжение каждой.
Подключение трансформатора напряжения
Опишем, как подключить понижающий трансформатор. В первую очередь надо выяснить, какие параметры тока нужны потребителю. Чаще бытовые приборы питаются постоянным током. Так как в бытовой сети течет переменный ток, а преимущественно все устройства питаются постоянным, приходится применять выпрямитель. В зависимости от прибора подключаете вторичную обмотку к прибору через схему выпрямления либо напрямую. Первичная обмотка подключается напрямую в сеть.
Подключение трансформатора тока
Как было сказано выше, трансформаторы тока применяются с контрольно-измерительными приборами. Первичная обмотка трансформатора подключается непосредственно в цепь, а вторичная - к контрольно-измерительному прибору. Обратите внимание, что вторичная обмотка всегда должна иметь низкоомную нагрузку или замыкаться накоротко.
Также вы можете прочитать материалы по теме в статье Как рассчитать трансформатор .
Галогенная лампа схема подключения через трансформатор
Обычные лампы накаливания существенно уступают галогенным лампам в плане разнообразия ассортимента. Галогенные лампы находят свое применение в самых разных областях деятельности человека.
Они одинаково широко используются как для обеспечения освещения в общественных зданиях, так и для работы в домашних условиях. Продукция отдельных компаний даже подразделяется на категории в зависимости от того или иного ее назначения.
К примеру, стоимость профессиональной аппаратуры оказывается существенно дороже бытовой. Кроме того, наличие конструктивных особенностей различных галогенных ламп определяет их принадлежность к тому или иному виду:
- - линейным;
- - капсульным;
- - лампы с рефлектором;
- - лампы с бытовым патроном.
В целях экономии и повышения безопасности эксплуатации электроэнергии нередко обращаются к задействованию схем освещения, использующих намного меньшие показатели напряжения в сравнении с традиционными 220В.
Схема подключения галогенных ламп
Подключение галогенных ламп малого напряжения осуществляется через специальные источники питания на 6, 12 и 24В.
Примечательно, что низковольтные галогенные лампы на практике оказываются столь же яркими, как и обычные, в то время как потребление энергии сокращается на порядок. Кроме того, невысокое напряжение выступает дополнительной гарантией безопасности человека.
Часто такие лампы из соображений безопасности устанавливаются в ванных комнатах. Впрочем, низковольтные галогенные лампы также используются и во встроенных светильниках подвесных потолков, ввиду того, что небольшие размеры современных электронных трансформаторов позволяют осуществлять их монтаж прямо на каркас таких потолков.
Единственным ограничением для работы таких ламп является необходимость установки специального понижающего трансформатора.
Рис 1. Подключение галогенных светильников через трансформатора
Таким образом, когда для освещения используется низковольтная галогенная лампа. схема подключения к сети подразумевает наличие понижающего трансформатора на 12В.
Как подключаются галогенные лампы на схеме
Само подключение светильников оказывается чрезвычайно простым: для этого достаточно подключить галогенные лампы параллельно между собой и подсоединить их к трансформатору.
Рассмотрим более детально как подключаются между собой все элементы (трансформатор, галогенная лампа схема подключения и управления).
На рисунке ниже представлена блок схема, состоящая из двух понижающих трансформаторов и шести галогенных светильников. Синим цветом обозначен нулевой провод, коричневым – фазный.
Подключение на стороне 220 В. Подключение проводов в распределительной коробке осуществляется таким образом, что фаза питающего провода (тот который приходит в коробку) идет на выключатель.
Управление освещением (включение / отключение) осуществляется обычным выключателем. Его подключают до трансформаторов на стороне 220 В.
Нулевую жилу можно сразу соединять с нулевыми жилами проводов, которые идут к трансформаторам. После фазный провод который «пришел» с выключателя подключается к фазным проводам трансформаторов.
Для подключения проводов в трансформаторе предусмотрены специальные клеммы L и N.
Рис 2. Блок схема подключения галогенных светильников
Не имеет значения сколько будет подключатся трансформаторов в схеме. Важно чтобы каждый трансформатор подключался отдельным проводом и все они соединялись только в распределительной коробке. Если соединять провода не в коробке, а где-нибудь под потолком, то при потере контакта к месту соединения невозможно будет добраться.
Подключение на стороне 12 В. Основная часть работы выполнена, осталось самая малость, подключить галогенную лампу в схему питания. Единственное что нужно учитывать что галогенные лампы в схеме подключаются параллельно между собой.
Для одновременного подключения большого количества ламп стоит использовать специальные клеммные соединители. (На рисунке используются клеммные колодки на шесть дорожек.)
Источники: http://samelectrik.ru/sxema-podklyucheniya-tochechnyx-svetilnikov.html, http://elhow.ru/bytovye-sovety/remont/kak-podkljuchit-transformator, http://electricvdome.ru/osvechenie/galogennaya-lampa-shema.html
Комментариев пока нет!
www.kakdelat-pravilno.ru
пример расчета трансформатора | Электрознайка. Домашний Электромастер.
В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электичческим током.В этих случаях следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт. Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт. Рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.Если вы найдете лампочку на другую мощнось, например на 40 ватт, нет ничего страшного — подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.
Сделаем упрощенный расчет трансформатора 220/36 вольт.
Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт
Где:Р_2 – мощность на выходе трансформатора, нами задана 60 ватт;U_2 — напряжение на выходе трансформатора, нами задано 36 вольт;I_2 — ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт.
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р_1, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S.
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
S = 1,2 · √P_1.
Где: S — площадь в квадратных сантиметрах,P_1 — мощность первичной сети в ваттах.
S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².
По значению S определяется число витков w на один вольт по формуле:
w = 50/S
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.
w = 50/10,4 = 4,8 витка на 1 вольт.
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
W1 = U_1 · w = 220 · 4.8 = 1056 витка.
Число витков во вторичной обмотке на 36 вольт:
W2 = U_2 · w = 36 · 4,8 = 172.8 витков,
округляем до 173 витка.
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.
Величина тока в первичной обмотке трансформатора:
I_1 = P_1/U_1 = 75/220 = 0,34 ампера.
Ток во вторичной обмотке трансформатора:
I_2 = P_2/U_2 = 60/36 = 1,67 ампера.
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .
Для первичной обмотки диаметр провода будет:
d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм.
Диаметр провода для вторичной обмотки:
d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
s = 0,8 · d².
где: d — диаметр провода.
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.
Площадь поперечного сечения провода диаметром 1,1 мм. равна:
s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм².
Округлим до 1,0 мм².
Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².
Например, это два провода диаметром по 0,8 мм. и площадью по 0,5 мм².
Или два провода: - первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.
Смотрите статьи:— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».domasniyelektromaster.ru