Самостоятельный расчёт системы электроснабжения на солнечных панелях. Системы электроснабжения солнечные


Автономное солнечное электроснабжение дома

Автономное солнечное электроснабжение дома

В этой статье мы подробно рассмотрим вопрос автономного электроснабжения дома, дачи или даже офиса. Вся проблема такого электроснабжения жилища или другого любого здания, заключается в наличии источника альтернативного типа, он очевиден- это Солнце. Поскольку солнце является неиссякаемым источником энергии, солнечное электроснабжение строится именно на использовании его излучения.

Для того чтоб ваш частный дом стал автономным, нужна солнечная электростанция. Солнечный комплект для дома, можно приобрести различной мощности, все зависит от ваших потребностей - кстати от этого, будет зависеть и цена комплекта.

В принципе, если подойти к вопросу, как сделать автономное электроснабжение у себя дома в короткие сроки, то при наличии свободных средств, можно обратится в любую компанию которая занимается продажей и установкой солнечных батарей. Вам все рассчитают, сделают в кратчайшие сроки- буквально за день-два.

С помощью солнечных батарей, можно обеспечить электроэнергией весь дом со всеми коммуникациями, и отказаться от централизованого электроснабжения полностью, если применять солнечную автономную электростанцию мощностью 5 Квт.

Система солнечного электроснабжения

Автономное солнечное электроснабжение для дома, должно состоять из необходимых для этого блоков:

  • Системы солнечных панелей
  • Системы контроля энергии
  • Блока аккумуляторных батарей
  • Инвертора подходящей мощности
Теперь более подробно обо всем этом:

система солнечного электроснабжения

Электроснабжение на солнечных батареях - это автономные устройства, которые служат на протяжении многих лет, имеют отличный потенциал, и являются экономически более эффективными.

Система солнечных панелей - энергия, создаваемая солнечными батареями размещенными на крыше дома, является постоянным током, который не подходит для питания бытовых приборов, а потому она должна быть преобразована в переменный ток, такой как в обычной розетке.

Система контроля энергии - позволяет узнавать количество вырабатываемой энергии солнечными панелями, контролировать полноценный заряд аккумуляторного блока. Основными критериями покупки того или иного контроллера, является его мощность: величина входного напряжения, и сила тока которую он способен выдержать.

Автономные системы

Система аккумуляторов - дает возможность запастись, сохранить, определенное количество постоянного тока в зависимости от совокупной емкости.

Если вы желаете подключать прожорливые бытовые приборы к альтернативным источникам электроснабжения, тогда нужно позаботится о большом количестве аккумуляторов.

На фото выше, представлен очень мощный для дома аккумуляторный блок из гелевых батарей- 12 шт. по 200 Амп*Ч. Грубо говоря запас энергии составит 24 Квт.

Автономные системы инвертор

Инвертор - по сути является преобразователем постоянного тока (12-24 В) в переменный (220 В). Номинальная (рабочая) мощность инвертора, позволяет одновременно включать несколько приборов с большой потребляемостью, что создает дополнительный комфорт.

Для автономности дома, отлично подойдет инвертор с номиналом 5 Квт. (такой как на фото) при выборе инвертора важно чтоб на выходе была (чистая синусоида)это позволит расширить спектр подключаемой чувствительной электроники.

Как вы уже поняли, автономная система электроснабжения должна проэктироваться на тщательном расчете, поскольку каждая из выше описанных систем, зависима друг от друга. Вы должны учитывать много мелочей, к примеру: соотношение солнечных панелей на крыше с аккумуляторным блоком.

Солнечные панели должны выдавать достаточно эенергии, чтоб успевать зарядить аккумуляторы на протяжении дня. В тоже время накопленной энергии для автономии, должно хватать чтоб дотянуть до утра. В прочем рассчет системы электроснабжения лучше доверить специалистам, ведь потребность у каждого дома существенно различается.

Автономные электростанции для дома очень выгодное вложение, учитывая постоянный рост цен на энергоносители , окупаемость систем примерно колеблется от 5 до 10 лет- в зависимости от мощности и поставленной цели.

Система автономного электроснабжения квартиры

система солнечного электроснабжения квартиры

Для решения задачи автономного электроснабжения квартиры, можно использовать небольшие солнечные электростанции, которые можно разместить даже на балконе, или большие, как показано на фото.

В качестве резервного энергоснабжения, достаточно минимального комплекта оборудования, куда будет входить инвертор и несколько аккумуляторов.

Автономные Ветро-солнечные системы

Автономные Ветро-солнечные системы

Автономное электроснабжение от энергии Ветра и Солнца одновременно- называются гибридные! Такая система призвана макимально использовать альтернативную энергию на обьекте который должен стать полностью автономным.

В состав системы входят набор солнечных панелей и ветрогенератор, это дает возможность получать энергию даже в совсем плохую ветренную погоду, когда эффективность солнечных батарей минимальна.

Автономные источники энергии призваны не только экономить на счетах, но обеспечить независимость от форсмажорных обстоятельств. Кроме того они дают большую универсальность подключения разной техники в доме. Эксплуатация энергосистем не требует особых профессиональных навыков.

Здесь можно посмотреть видео автономных систем.

Если у Вас возникли вопросы по полному или частичному электроснабжению своего частного дома, автономному отоплению частного дама, пишите в форме коментариев ниже- с радостью отвечу как пользователь с 5 летним стажем.

solar-batarei.ru

Самостоятельный расчёт системы электроснабжения на солнечных панелях.

 

Прежде чем рассчитывать систему электроснабжения на солнечных панелях необходимо провести энергоаудит.

Для начала необходимо составить список приборов, которые вы будете использовать. При этом желательно заменить все приборы на энергосберегающие. Использовать LED мониторы, освещение рекомендуется ставить светодиодное,  холодильник класса А, и максимально снизить количество электронагревательных приборов, по возможности заменить их на более экономичные, а лучше на альтернативные (газовая плита, твердотопливный котёл, солнечный водонагреватель), т.к. электронагревательные приборы требуют больше всего мощности, что значительно удорожит вашу систему электроснабжения.

После того, как вы составили список приборов, которые требуют электроснабжения, необходимо рассчитать их потребляемую мощность, сколько кВт они потребляют в сутки. Для этого необходимо номинальную мощность прибора умножить на количество часов их непрерывной работы в день. Номинальную мощность можно узнать из паспорта прибора, в интернете или в таблице 1, в ней написана примерная мощность распространенных приборов.

Давайте разберем наиболее распространенный пример, вот список приборов, которые чаще всего используются на дачных участках:

Прибор Мощность, Вт Время работы, ч Суммарная мощность, Вт/сутки
светодиодное освещение 100 5 500
LED телевизор 150 5 750
ноутбук 100 5 500
Пылесос 1000 0,5 500
Чайник 1500 0,3 450
Холодильник класса А 150 24 3600
Электронасос 150 1 150
Электроинструменты 1000 0,5 500
Стиральная машинка 800 1 800
 4950 Вт 7750 Вт

 

Исходя из этого, вы можете видеть ваше среднесуточное потребление электроэнергии. В нашем примере получилось 7750 Вт/сутки.

Весь дальнейший расчет системы электроснабжения будет строится на основе этого проведенного энергоаудита.

 

2.     Подбор инвертора.

Большинство электроприборов работают от переменного тока с напряжением 220В и частотой 50 Гц.  Для того, чтобы обеспечить наши приборы переменным током, необходим инвертор – прибор который преобразует постоянный ток от солнечных панелей и аккумуляторов в переменный ток.

Для того чтобы выбрать инвертор, нужно понимать две вещи: во-первых, есть ли среди используемых приборов приборы чувствительные к частоте? В основном это приборы с электродвигателями (холодильник, стиральная машинка, пылесос, электроинструменты, насос).

Исходя из этого, выбирается тип выходного сигнала инвертора и тут есть два варианта:  инвертор с чистым синусом и инвертор с модифицированным синусом.

Для приборов, чувствительных к частоте подойдет только инвертор с чистым синусом, он намного дороже инвертора с модифицированным синусом, но при этом данные приборы не будут выходить из строя из-за перегрева электродвигателя и смогут работать на максимальной мощности. Остальные приборы тоже будут отлично работать от инвертора с чистым синусом, хотя для них вполне подойдет и инвертор с модифицированным синусом.

Во-вторых, при выборе инвертора, важна мощность одновременно работающих приборов. Именно исходя из этого параметра подбирается мощность инвертора. При этом, чем мощнее инвертор, тем он дороже.

Если включить одновременно все приборы, которые указаны в таблице энергоаудита, то их суммарная мощность получится 4950 Вт, исходя из этого потребуется инвертор на 5 кВт.

Если же среди всех этих приборов выбрать самые основные приборы, которые работают дольше всего в сутках, то это будет: холодильник, освещение, телевизор и ноутбук, суммарная мощность этих приборов при их одновременной работе будет всего 500Вт. Остальные же приборы в этой таблице включаются изредка по необходимости и фактически все вмести, одновременно практически никогда не работают. При этом, например, самый мощный из приборов — чайник (1500 Вт), вообще кипит 5 минут и на время кипения чайника можно отключить электроинструменты или пылесос, а если работает стиральная машинка, то можно подождать немного и включить чайник позже, после того, как стиральная машинка закончит свою работу.

Выбор номинального напряжение инвертора.

У инверторов есть еще один немаловажный параметр – это номинальное напряжение инвертора. В основном, инверторы бывают с номинальным напряжением 12, 24 или 48 вольт.

Инверторы до 1000 Вт, в основном, идут с номинальным напряжением 12В, инверторы от 1000 до 3000 Вт с номинальным напряжением 24В, а инверторы от 3000 до 6000 ватт бывают с напряжением 48 В. Хотя есть различные модели инверторов и на 600 Вт инверторы могут быть с напряжением 48В, но это скорее особенность.

Чем выше номинальное напряжение инвертора, тем выше КПД инвертора, следовательно, тем меньше на нем потерь при преобразовании постоянного тока в переменный.

При этом надо учитывать тот факт, что к инвертору всегда необходимы аккумуляторные батареи (АКБ), в основном все АКБ идут с номинальным напряжением 12 В, поэтому инвертору с номинальным напряжением 24 В потребуется уже не один аккумулятор, а два, соединенных последовательно, чтобы они дали 24 В, а инвертору с номинальным напряжением необходимо уже 4 аккумулятора. Ёмкость аккумуляторов при этом не изменяется.

Надо отметить, что номинальное напряжение не влияет на цену инвертора, и поэтому инверторы одной модели с одинаковой мощности, но с разным номинальным напряжением стоят одинокого.

Исходя из этого, для нашего конкретного случая подойдет инвертор с чистым синусом, мощностью 2 кВт с номинальным напряжением 24В. Пятьсот ватт мощности инверторы уйдет на приборы, которые работают практически постоянно (холодильник, телевизор, освещение) и 1500Вт на один любой прибор, включаемый по необходимости.

 

3.     Подбор аккумуляторных батарей (АКБ).

Как известно солнечная панель генерирует электроэнергию только при попадании на неё света, поэтому, для того, чтобы приборы продолжали работать в вечернее время необходимы аккумуляторы, которые в течении дня будут заряжаться электроэнергией, а вечером отдавать этот запас электроэнергии работающим приборам. Время работы приборов только лишь от аккумуляторов называется временем автономной работы.

Выбор типа аккумуляторов.

Для системы электроснабжения в принципе подходят аккумуляторы все типов: как обслуживаемые, так  и не обслуживаемые, как стартерные, так и специализированные для источников бесперебойного питания. Конечно же, лучше всего для систем бесперебойного и автономного электроснабжения подходят герметичные свинцово-кислотные AGM аккумуляторы или гелевые аккумуляторы. Гелевые аккумуляторы будут подороже AGM, но при этом они обладают большей устойчивостью к глубоким разрядам (их можно разряжать до 90%, в отличие от AGM, которые рекомендуется разряжать максимум на 70%). Гелевые аккумуляторы не так чувствительны к температуре окружающей среды и могут работать даже при отрицательной температуре (в отличии от AGM аккумуляторов, которые выходят из строя при отрицательной температуре). И, наконец, гелевые аккумуляторы имеют больше циклов заряда/разряда, благодаря чему их срок службы намного выше.

Более подробно про аккумуляторные батареи вы можете прочитать в статье «Аккумуляторные батареи, их эксплуатация и обслуживание»

Расчёт необходимой ёмкости аккумуляторов.

Для того чтобы рассчитать ёмкость аккумуляторов необходимо знать мощность приборов, работающих во время автономной работы и знать необходимое время автономной работы.

Чтобы рассчитать необходимое время автономной работы, нужно понимать в какой сезон будет использоваться ваша система электроснабжения. Если это лето, то времени автономной работы от аккумуляторов необходимо значительно меньше, чем зимой, т.к. световой день длиннее, а ночь короче.

В среднем необходимое время автономной работы от аккумуляторов в период с мая по октябрь — 5 часов, в период с марта по ноябрь – 6-8 часов. А если вы планируете использовать вашу систему электроснабжение круглый год, то рекомендуется потратить деньги не на дополнительные аккумуляторы ради увеличения времени автономной работы, а на приобретение дополнительного источника электропитания, например, на дизельный генератор.

 

Итак, выбираем период использование нашей системы электроснабжения с апреля по октябрь, а время автономной работы приборов от аккумуляторов 6 часов.

 

Теперь выберем приборы, которыми будем пользоваться вечером:

Прибор Мощность, Вт Время работы, ч Суммарная мощность, Вт/за вечер
светодиодное освещение 100 5 часов 500
LED телевизор 150 5 часов 750
ноутбук 100 5 часов 500
Чайник 1500 0,1 (6 минут) 150
Холодильник класса А 150 16 часов (весь вечер и всю ночь) 2400
2000 4300

 

Если в этот список включить стиральную машинку, пылесос, электроинструменты, то это значительно увеличит необходимую ёмкость аккумуляторов, но это сильно удорожит систему, поэтому рекомендуется эти приборы использовать в дневное время, когда солнечные панели генерируют достаточно электроэнергии.

 

Теперь мы можем рассчитать необходимую для автономной работы ёмкость аккумуляторов.

Ёмкость аккумуляторов измеряется в Ампер*часах, для того, чтобы её узнать, необходимо [суммарную потребляемую во время автономной работы мощность приборов] разделить на  [номинальное напряжение инвертора].

Получается: 4300Вт/24В=180Ач. Это означает, что для нашей системы потребуются аккумуляторы ёмкостью 180Ач с напряжением 24В.

 

Как мы выяснили выше, аккумуляторы нельзя разряжать полностью на 100%, иначе они быстро выйдут из строя, поэтому полученную ёмкость для гелевый аккумуляторов, необходимо умножить на коэффициент 1,11 (100%/90%~1,11), а для AGM аккумуляторов – умножить на  1,43 (100%/70%~1,43), и полученный результат округлить в большую сторону.

В нашем случае получается, если мы выбираем AGM аккумулятор, то нам необходим аккумулятор ёмкостью 180Ач*1,43~260Ач, а если мы выбираем гелевый аккумулятор, то нам необходим аккумулятор ёмкостью 180Ач*1,11~200Ач.

Выбираем гелевый аккумулятор на 200 Ач 24В (он хоть и дороже, но зато его характеристики превышают AGM).

В основном все аккумуляторы всегда идут с номинальным напряжением 12В, поэтому, для того, чтобы получить нужный аккумулятор на 200Ач 24В, нам необходимо взять два аккумулятора по 200Ач 12В и соединить их последовательно, т.е. плюс одного аккумулятора соединить с минусом другого, а оставшийся минус от одного и плюс от другого аккумуляторы соединить с инвертором. Так мы получим из двух аккумуляторов 200Ач 12В, один с общей ёмкостью 200Ач и номинальным напряжением 24 В, как мы и хотели.

4.     Выбор солнечных панелей.

Наконец мы подошли к выбору солнечных панелей, основной составляющей нашей системы электроснабжения. Ведь солнечные панели – это практически вечный генератор электрического тока, который прослужит более тридцати лет точно без сильных потерь своих электрофизических свойств.

Выбор типа панелей.

Есть три типа солнечных панелей: аморфные, поликристаллические и монокристаллические. Они отличаются технологией изготовления, своим КПД и ценой. Самые распространённые солнечные панели – это поликристаллические и монокристаллические. Ниже приведена сравнительная таблица этих панелей.

Монокристаллическая солнечная панель Поликристаллическая солнечная панель
КПД% выше (17%) ниже (15%)
Площадь панели меньше больше
Работа при рассеянном солнечном свете хуже лучше
Работа при прямом солнечно свете лучше хуже
Работа при отрицательной температуре лучше хуже
Работа при температуре выше 25 градусов лучше хуже
Снижение характеристик за 25 лет 20% 30%

 

Не смотря на то, что КПД монокристаллической солнечной панели не на много выше КПД поликристаллической панели, площадь поликристаллической панели больше, поэтому две панели разного типа, но с одинаковой мощностью, дают примерно одни и те же показатели по генерации тока, все зависит от условий окружающей среды (см. таблицу выше).

Расчёт необходимой мощности солнечных панелей.

Т.к. мы выбрали период с апреля по октябрь, то средняя продолжительность светового дня в этот период примерно 12 часов. За это время необходимо, чтобы солнечные панели успели зарядить аккумуляторы, для использования их вечером, когда солнечные панели перестанут генерировать электричество, а так же необходимо чтобы их мощности хватило для энергообеспечения электроприборов, работающих днём.

Сразу стоит отметить, что расчет мощности солнечных панелей можно сделать только приблизительный, потому что невозможно предугадать, когда на небе тучка закроет солнечную панель, поэтому лучше рассчитывать мощность с запасом и округления при расчётах делать в большую сторону.

Для того, чтобы рассчитать мощность солнечных панелей, необходимую для зарядки аккумулятора в течении светового дня, нужно [ёмкость аккумулятора] умножить на его [номинальное напряжение]  и разделить на [количество световых часов].

Рассчитываем: (200Ач*24В)/12ч=400Вт

Итак, для того, чтобы зарядить аккумулятор на 200 Ач с номинальным напряжением 24 В, понадобятся панели общей мощностью 400 Вт и номинальным напряжением не меньше номинального напряжение аккумуляторов, то есть в нашем случае не меньше 24 вольт.

Далее рассчитываем мощность панелей, необходимых для обеспечения работы приборов в течении дня. Эту мощность достаточно тяжело рассчитать, т.к. всё сильно зависит от внешних факторов, погодных условий и от того, как используются электроприборы. Из практики можно вывести следующую формулу: 1,3*[мощность панелей, необходимых для заряда аккумуляторов] + [мощность панелей, необходимых для заряда аккумуляторов]. Для нашего случая это будет: 1,3*400+400=920Вт.

То есть минимальная мощность солнечных панелей в нашей системе электроснабжения должна быть 920 Вт 24 В. Это четыре солнечных панели мощностью 230 Вт каждая и номинальным напряжением 24 В.

5.     Выбор контроллера заряда.

Для того чтобы нормально зарядить аккумулятор до 100% от солнечной панели, при этом не испортить его, а наоборот продлить срок службы необходим контроллер заряда. Бывает, что контроллер заряда встроен в инвертор, специально предназначенный для использования совместно с солнечными панелями, но чаще всего контроллер заряда идет отдельно.

Сейчас существует два типа технологии контроллеров заряда аккумуляторов от солнечных панелей: это PWM-контроллер или по другому ШИМ-контроллер (pulse-width modulation — широтно-импульсная модуляция), и MPPT-контроллер (maximum power point tracking – слежение за точкой максимальной мощности). Более подробно о контроллерах заряда вы можете прочитать в статье «Контроллеры заряда аккумуляторов от солнечных панелей». Отмечу только то, что MPPT-контроллер за счёт более продвинутой технологии заряжает аккумулятор на 30% эффективнее, чем ШИМ-контроллер, но он, естественно, и дороже.

А так же MPPT-контроллер может преобразовывать более высокое напряжение от солнечных панелей в номинальное напряжение всей системы с пропорциональным увеличением тока. Это означает, что, MPPT-контроллер с подключенными четырьмя последовательно соединенными солнечными панелями мощностью 230Вт и напряжением 96 вольт, на выходе может дать ток равный четырем солнечным панелям 230Вт 24 В, соединенных последовательно. Закономерный вопрос: зачем это нужно? Ответ прост: чем выше напряжение солнечных панелей, тем меньше потерь в кабеле, идущем от солнечных панелей к контроллеру, соответственно, тем эффективнее работа солнечных панелей.

Немаловажный показатель, по которому выбирается контроллер – это пропускная способность по току. Чем выше эта пропускная способность контроллера, тем он дороже.

Необходимая пропускная способность по току рассчитывается очень просто: необходимо [суммарную мощность солнечных панелей] разделить на [номинальное напряжение системы].

В нашем случае пропускная способность контроллер должна быть не ниже чем: 38,3 ампер (920Вт/24В=38,3А).

Стоит отметить, что часто солнечные панели имеют положительный толеранс, то есть их мощность может быть выше заявленной на 1-6%, поэтому, при выборе контроллера следует учитывать эту тонкость.

Из всего вышеописанного относительно контроллеров, мы можем сделать выбор. И выбираем мы контроллер с технологией MPPT (чтобы соединить наши солнечные панели последовательно и получить на них напряжение 96В),  и пропускной способностью по току 40А.

6.     Выбор кабеля и коннекторов.

Для систем электроснабжения, где источник электроэнергии находятся на улице, необходим кабель со специальной изоляцией, для того, чтобы такие силы окружающей среды, как ультрафиолет,  влага и грызуны, по-минимому воздействовали на него.

Сечение кабеля рассчитывается таким образом, чтобы потери напряжение на кабеле не превышали 2%. И оно высчитывается по таблице, исходя из необходимого удельного сопротивления кабеля. Удельное сопротивление кабеля рассчитывается по формуле: [максимально возможное падение напряжения] разделить на ([проходящий по кабелю ток] умноженный на [общую длину кабеля]).

Для того, чтобы выбрать сечение кабеля, соединяющего солнечные панели с контроллером, необходимо знать три характеристики: напряжение солнечных панелей, суммарная мощность солнечных панелей и длину кабеля.

Первое что необходимо рассчитать – это ток, которые будет протекать по этому кабелю, для этого [мощность солнечных панелей] делим на их напряжение.

В нашем случае этот ток равен 920Вт/96В=9,58 А.

Максимальное возможное падение напряжение не должно превышать 96В*0,02=1,92В

Допустим, что от солнечных панелей до контроллер заряда необходимо проложить 30 м кабеля.

Исходя из этого удельное сопротивление кабеля должно быть не более, чем 1.92В/(9,58А*30м)=0,00668 Ом/м или 6,68 мОм/м

Теперь посмотрим в таблицу удельного сопротивления кабелей и подберем кабель необходимого сечения:

Сечение, мм медный
1,5 12,5
2,5 7,4
4 4,63
6 3,09
10 1,84

Для нашего случая вполне подойдет кабель с сечением 4 мм.

Для соединения солнечных панелей друг с другом используются специальные коннекторы, стандарта MC4 «мама» и «папа» для плюса и минуса солнечной панели соответственно. Также существуют специальные Y-коннекторы для параллельного соединения солнечных панелей.

В нашем случае потребуется четыре обыкновенных коннектора, чтобы последовательно соединить солнечные панели.

7.     ИТОГ.

В данной статье мы рассмотрели то, как рассчитываются системы автономного электроснабжение на солнечных панелях, и, как пример, рассчитали такую систему для периода с апреля по октябрь обеспечивающую электроэнергией основные бытовые приборы:

  • светодиодное освещение
  • LED телевизор
  • ноутбук
  • Пылесос
  • Чайник
  • Холодильник
  • Электронасос
  • Электроинструменты

 

Наша система получилась со следующими характеристиками:

  • Номинальное напряжение: 24 В
  • Суммарная мощность солнечных панелей: 920 Вт
  • Напряжение на солнечных панелях 96 В
  • Ёмкость аккумуляторов: 200 Ач
  • Напряжение на аккумуляторах: 24В
  • Суммарная мощность одновременно работающих приборов: 2 кВт
  • Время автономной работы при максимальной мощности: 1 час 45 минут
  • Время автономной работы при мощности 500 Вт: 8 часов 45 минут

 

А комплектация систем получилась такая:

  • Солнечные панели, мощностью 230 Вт: 4 штуки
  • Контроллер заряда с технологией MPPT с пропускной способностью по току 40А
  • Гелевые аккумуляторы, ёмкостью 200Ач: 2 штукм
  • Инвертор с чистым синусом, мощностью 2000 Вт
  • Набор коннекторов MC4: 4 шт.
  • Медный кабель с сечением 4 мм: 30 м

 

Если вы посмотрите готовые решения, представленные в нашем Интернет-магазине, то увидите именно этот комплект под названием «Солнечная у-дача». Кроме этого комплекта представлены и другие системы электроснабжения на солнечных панелях с наиболее оптимально подобранными комплектующими.

Если вы приобретаете комплект целиком, то, во-первых, он обойдется где-то на 10-15% дешевле, чем если бы вы приобретали бы комплектующие по-отдельности, во-вторых, вы получаете скидку 10% на установку и подключение комплекта, в-третьих, вы получаете гарантию на комплект 5 лет, в-четвертых, если вы в будущем будете делать покупки в нашем Интернет-магазине ещё, то вы получите скидку 10% на любой товар, в-пятых, при приобретении комплекта, вы получаете светодиодную лампочку отличного качества в подарок!

autonomy-energy.ru

Солнечные электростанции. Комплектация и монтаж. Цена солнечные батареи

Полноценное автономное ( или резервное ) энергоснабжение дома. Мощные системы на основе многофункциональных гибридных инверторов OutBack и XANTREX XW. Когда в системе установлен альтернативный источник энергии - солнечные панели и контроллер заряда, то генерируемая энергия может быть использована для заряда АКБ и/или прямого преобразования в переменный ток. В последнем случае в дневное время дом может обходиться без внешней сети, обеспечивая внутреннее потребление только за счет альтернативного источника. В местах без электросети или со слабой/недостаточной электросетью, использование гибридной инверторной системы с солнечными панелями значительно повышает качество электропитания в доме, а следовательно, и качество жизни. Предусмотрена функция автозапуска генератора

Электроснабжение дома солнечными батареями состоит из следующих специальных фотоэлектрических элементов:

Солнечные батареи, преобразующие энергию солнца в электроэнергию, различной мощности и номинального ( или фактического напряжения) от 100 до 300 Ватт

Контроллер напряжения и заряда АКБ для защиты от глубокого разряда батареи аккумуляторов и от перезаряда системы солнечных модулей на ток от 6 до 60 А

Накопитель энергии – банк аккумуляторных батарей , соединенных последовательно и ( или ) параллельно, глубокого разряда при циклическом режиме работы.

Инвертор DC-AC, который позволяет пользоваться обычными электроприборами. Инверторы, представленные на нашем сайте имеют все необходимые рабочие характеристики для комплектации систем энергоснабжения исходя из:

  • Формы выходного сигнала: чистый синус

  • Рабочего напряжение системы: 12, 24 и 48 Вольт

  • Выходной мощности инвертора от 0,3 до 18 кВт

А также

  • Необходимые предохранительные устройства по постоянному и переменному току

  • Коммутационные и аккумуляторные провода

  • Элементы крепления и монтажа панелей

Все эти элементы, содиненные определенным образом образуют автономную солнечную систему энергоснабжения, имеющую следующие основные характеристики:

  • Генерацию энергии от солнечных модулей, кВт – зависит от количества и мощности солнечных батарей

  • Время автономной работы без генерации, зависит от общей емкости банка аккумуляторов

  • Мощности подключаемой нагрузки. Зависит от предыдущих двух пунктов и от выходной мощности инвертора

  • Время автономной работы при генерации энергии солнечными батареями. Зависит от предыдущих трех пунктов плюс инсоляции

Таким образом, говоря о мощности системы, имеются ввиду три ее параметра

P ген.

Генерация мощности при прямом солнечном освещении

Р ном

Номинальная мощность системы

Р авт ( t)

Автономия при подключаемой нагрузке или среднесуточное потребление кВт*ч

ra-energo.ru

Энергосберегающие системы, тепловые насосы, солнечные коллекторы, инженерная сантехника, отопление, водоснабжение - Дзержинск, Нижний Новгород, Москва, Россия

 

Наша компания предлагает  3 основные конфигурации солнечных фотоэлектрических систем электроснабжения, которые описаны ниже.

Разновидности фотоэлектрических энергосистем

1. Автономная фотоэлектрическая система полностью независима от сетей централизованного электроснабжения. За исключением некоторых специальных применений, в которых энергия от солнечных батарей напрямую используется потребителями (например, водоподъемные установки, солнечная вентиляция и т.п.), все автономные системы должны иметь в своем составе аккумуляторные батареи. Энергия от аккумуляторов используется во время недостаточного прихода солнечной радиации или когда нагрузка превышает генерацию солнечных батарей.

2. Батарейная соединенная с сетью фотоэлектрическая система похожа на автономную систему. В ней также используются аккумуляторные батареи, но такая система одновременно подключена к сетям централизованного электроснабжения. Поэтому излишки, генерируемые солнечными батареями могут направляться в нагрузку или сеть (для этого необходимы специальные инверторы, которые могут работать параллельно с сетью, их часто называют "гибридными"). Если потребление превышает генерацию электричества солнечными батареями, то недостающая энергия берется от сети. Некоторые модели таких инверторов с зарядными устройствам могут давать приоритет для заряда аккумуляторов от источника постоянного тока (например, солнечного контроллера), тем самым снижая потребление энергии от сети для заряда аккумуляторов.Существует разновидность батарейной соединенной с сетью системы, в которой вместо контроллеров заряда солнечных батарей применяются сетевые фотоэлектрические инверторы, соединенных к выходу ББП. Такую возможность имеют всего несколько моделей ББП, но общая эффективность системы за счет применения сетевых фотоэлектрических инверторов может быть намного выше, чем при применении контроллеров заряда АБ.

3. Безаккумуляторная соединенная с сетью фотоэлектрическая система является самой простой из всех систем. Она состоит из солнечных батарей (или ветроустановки, или микроГЭС) и специального инвертора, подключенного к сети. В такой системе нет аккумуляторов, поэтому они не могут использоваться в качестве резервных систем. Когда сеть пропадает, то и выработка электроэнергии солнечными батареями также прекращается. Это может быть ограничением такой системы, но основное ее преимущество - высокая эффективность, низкая цена (за счет отсутствия аккумуляторов и менее дорогого сетевого инвертора) и высокая надежность.

 

Наши выполненные работы по солнечным электростанциям

Компания «Энергосберегающие системы» предлагает услуги проектирования,поставки, монтажа, сервисного обслуживания солнечных электростанций

Услуги включают в себя:

1. Проработку и согласование с клиентом инженерного решения.2. Проработку несколько вариантов проектов (инженерных решений).3. Технико-экономическое обоснование выбранного инженерного решения.4. Подробные чертежи, планы, схемы, разрезы.5. Необходимые узлы, деталировки.6. Схема автоматизации инженерного оборудования с подробным описанием алгоритма работы и с возможностью интеграции в общую систему управления зданием (центральная диспетчеризация, умный дом).7. Подробные спецификации на оборудование и материалы (отдельно по каждому виду инженерных систем).8. Смету на материалы, работу.9. Сетевой график производства работ.10. Поставка оборудования.11. Монтаж.12. Сервисное и гарантийное обслуживания.

В рамках одной организации Вы получаете разработку проекта, все необходимое оборудование, профессиональный монтаж и сервисное обслуживание.

 

ПОДРОБНЕЕ ПРО СОЛНЕЧНЫЕ СИСТЕМЫ

Основной причиной, по которой люди хотят иметь автономную систему и отключиться от существующих сетей централизованного электроснабжения, является желание получить энергетическую независимость и не зависеть от аварий на электросетях, повышения тарифов на электроэнергию и т.п.

Пока еще немного людей готовы жить без подключения к сетям. Если вы только собираетесь покупать землю и дом или строить новый дом, то нужно учитывать, что цена на такие участки и дома, не присоединенные к сетям централизованного электроснабжения, гораздо ниже.

Если вы уже имеете подключение к электрическим сетям, то не имеет смысла от них отключаться. Если у вас есть перерывы в электроснабжении, можно выделить в отдельную группу ответственных потребителей - например, насосы и электроника системы отопления, холодильник, дежурное освещение, радио, телевизор и т.п. - и обеспечить их бесперебойное электропитание за счет аккумуляторных батарей. Если перерывы в электроснабжении не превышают нескольких часов, то обычно этого достаточно, чтобы решить эту проблему. Солнечные батареи будут использоваться для уменьшения потребления от сетей, а сети будут являться вашим бесплатным аккумулятором бесконечной емкости.

В случае частых аварий и отключений в сетях, а также если отключения длительные (более суток), вам нужно поставить батарейную фотоэлектрическую систему электроснабжения. Большинство загородных домов нуждается именно в батарейной фотоэлектрической системе, так как вероятность перерывов в электроснабжении велика - по разным причинам, начиная от перегрузки и изношенности оборудования электросетей, до падения деревьев на ЛЭП, ледяных дождей, ураганов и т.п.

Введение в систему аккумуляторов дает возможным работу системы при различных нагрузках и при отсутствии сети. Есть специально разработанные батарейные инверторы, которые могут регулировать потребление энергии от сети в зависимости от состояния и степени заряженности аккумуляторов. Такие инверторы также не перенаправляют энергию в сеть, если пропало напряжение в сети, тем самым обеспечивая безопасность при проведении ремонтных работ на линии электропередачи.

Для того, чтобы не тратить лишние деньги на неоправданно мощную систему, вам необходимо тщательно посчитать, какая именно нагрузка и в течение какого времени должна будет работать в случае аварии на ЛЭП. Очень часто нужно бывает обеспечить примерно 1/10 часть от общей мощности потребителей во время перерывов в электроснабжении. Остальная нагрузка может быть выключена или ее работа сведена к минимуму до восстановления работы сетей. Это позволит существенно снизить стоимость вашей резервной системы электроснабжения. Также, как уже упоминалось на других страницах нашего сайта, все меры по улучшению энергоэффективности и уменьшению потребления должны быть сделаны до того, как мы с вами начнем рассчитывать систему резервного электроснабжения. Обычно это делается в несколько этапов - мы предлагаем вам систему, вы оцениваете ее бюджет, уменьшаете в случае необходимости ваши запросы, и мы корректируем состав (и стоимость) системы.

 

Безаккумуляторные фотоэлектрические системы

Большинство соединенных c сетью фотоэлектрических систем являются безаккумуляторными и требуют наличия напряжения в сети для своей работы. Сеть дает опорное напряжение для сетевых инверторов, которые синхронизируются с ним и выдают идентичное сетевому напряжение. Если такого сигнала нет, или он начинает сильно отличаться от нормального (по величине напряжения, частоте и т.п.), сетевой инвертор перестает работать.

Преимуществом такой системы является максимально эффективное использование солнечных батарей, которые всегда работают в точке максимальной мощности. Сетевые инверторы начинают выдавать энергию от солнечных батарей в сеть начиная с минимального значения

Прекращение генерации сетевых инверторов при пропадании напряжения в сети также связано с обеспечением безопасности при ремонтных работах в сетях. Необходимо обеспечить отсутствие напряжения на линии, если подача напряжения отключена электриком на подстанции.

При работе параллельно с сетью солнечная батарея использует сеть как аккумулятор и источник энергии, который обеспечивает недостатки энергии. Например, если ваш холодильник потребляет 5 ампер, и солнечная батарея вырабатывает 5 ампер, то практически это значит, что ваш холодильник питается от солнечных батарей. Однако не все так просто. Если при старте компрессора мотор потребляет 10 ампер, то только от солнечной батареи он не запустится. Также, он может не работать при облачной или пасмурной погоде. В этом случае все, что не хватает для нормальной работы холодильника, будет браться из сети. Также, в сеть будут направляться все излишки генерируемой солнечными батареями энергии.

Аккумуляторные фотоэлектрические системы резервного электроснабжения

Проектирование системы с аккумуляторами является более сложным и более ответственным, чем проектирование безбатарейной системы. Если вы ошибетесь при выборе мощности соединенной с сетью безбатарейной системы, недостающая энергию будет взята из сети. Однако, если вы рассчитаете неправильно систему с аккумуляторами, то во время перерывов в электроснабжении вы можете оказаться без электроэнергии, несмотря на то, что вы имеете комплект "бесперебойного электроснабжения".

Мощность инвертора определяется по суммарной мощности нагрузки, которую нужно питать во время аварий на сети. Длительность отсутствия подачи энергии от ЛЭП определяет емкость АБ, мощность солнечной батареи, ветроустановки, резервного генератора и т.д. В конечном итоге, ошибки в проектировании системы приводят либо к излишней стоимости системы, либо к неспособности системы обеспечить вас бесперебойным электроснабжением. В любом случае, модификации системы - это дополнительные затраты.

Для максимально эффективной работы аккумуляторная фотоэлектрическая система, соединенная с сетью, требует использования специализированного инвертора. Возможны 3 варианта работы системы:

  1. Солнечные батареи заряжают АБ через контроллер заряда, а затем энергию через инвертор передается в нагрузку или сеть
  2. Солнечные батареи работают на сетевой фотоэлектрический инвертор, от него питается нагрузка, излишки энергии идут на заряд аккумуляторов, а если АБ заряжены, то направляются в сеть.
  3. Гибридная система, включающая элементы обоих вышеперечисленных типов.

1. Сетевая фотоэлектрическая система электроснабжения с контроллером заряда постоянного тока. Самым простым и распространенным вариантом является заряд аккумуляторов от солнечных батарей через контроллер заряда постоянного тока. Если использовать обычный ББП, то при наличии сети заряд происходит от сети, и солнечные батареи практически не используются. Для того, чтобы максимально использовать энергию, вырабатываемую солнечными батареями, нужно применять контроллер MPPT и специальный ББП с функцией передачи электроэнергии в нагрузку или сеть при напряжения на АБ выше заданного. В этом случае, даже если АБ заряжены полностью от сети, энергию от СБ направляется в нагрузку, тем самым уменьшая потребление от сети. Если нагрузка потребляет меньше энергии, чем вырабатывают солнечные батареи, такой ББП может или направлять излишки в сеть, или уменьшать выработку солнечных батарей за счет повышения напряжения на аккумуляторах.

При авариях на сетях централизованного электроснабжения инвертор начинает генерировать энергию от аккумуляторов. Если солнечные батареи подключены через контроллер заряда к аккумуляторам, то инвертор использует солнечное электричество, и, если его не хватает, то и энергию из аккумуляторов. Если солнечной энергии больше, чем нужно для потребителей, она идет на заряд аккумуляторов.

Достоинства

  1. Возможность использования энергии солнца как при наличии сети, так и во время отключений
  2. При длительных перерывах в электроснабжении - возможность восстановления работы при глубоком разряде аккумуляторов путем заряда АБ от СБ

Недостатки

Потери на двойное преобразование солнечного электричества - потери в контроллере, в инверторе, частично в аккумуляторах

  1. Циклирование аккумуляторов приводит к их износу, однако такой режим имеет место только при перерывах в централизованном электроснабжении, в обычном режиме аккумуляторы работают в буферном режиме со сроком службы близком к сервисному.

2.Фотоэлектрическая система электроснабжения с сетевым инвертором на входе ББП. В этой схеме применен высокоэффективный сетевой инвертор. Если основное потребление солнечного электричества имеет место днем, и отключения централизованного электроснабжения редкие и недолгие, то такая схема является наиболее дешевой и эффективной. В такой схеме может использоваться любой бесперебойник, даже самый простой. Когда светит солнце, сетевой инвертор снабжает энергией нагрузку во всем доме, в том числе и резервируемую. Излишки энергии направляются в общую сеть только если потребление в доме меньше, чем генерируют солнечные батареи. Энергия солнца используется и на заряд аккумуляторов. Эффективность сетевого инвертора более 90%. Единственным недостатком является прекращение использования энергии солнца при авариях в сетях.

Достоинства

  1. В такой схеме могут работать любой ББП и любой сетевой фотоэлектрический инвертор
  2. Мощность ББП выбирается по мощности резервируемой нагрузки и не зависит от мощности солнечных батарей. Мощность сетевого инвертора может быть как больше мощности ББП, так и меньше.
  3. Возможность восстановления при глубоком разряде аккумуляторов при использовании небольшой СБ, подключенной к АБ через контроллер заряда (показаны пунктиром). Это необязательный элемент, если отключения кратковременные.
  4. Аккумуляторы все время находятся в заряженном состоянии и практически работают в буферном режиме и используются только при отключениях сетевого электричества

Недостатки

  1. Прекращение использования энергии солнца при авариях в сетях

2.Фотоэлектрическая система электроснабжения с сетевым инвертором на выходе ББП. В этой схеме также применен высокоэффективный сетевой инвертор. Отличие от предыдущей схемы состоит в том, что при пропадании напряжения при отключения сети, солнечные батареи продолжают питать резервируемую нагрузку и заряжать аккумуляторы. В нормальном режиме, при наличии напряжения в сети, сетевой инвертор снабжает энергией резервируемую нагрузку, при этом КПД преобразования инвертора очень высокий - более 90-95%. Если нагрузка потребляет меньше, чем вырабатывают солнечные батареи, излишки энергии идут на заряд аккумуляторов. Если нагрузка потребляет больше - то недостающая энергия берется из сети. После полного заряда аккумуляторов излишки энергии направляются в общую сеть и питают остальную нагрузку в доме (до ББП).

При аварии в сети ББП переключается на работу от аккумуляторов, и обеспечивает одновременно опорное напряжение для сетевого инвертора. Поэтому энергия солнца продолжает использоваться и при авариях в сетях. Как и при наличии сети, излишки солнечного электричества сначала направляются на заряд аккумуляторов. После того, как аккумуляторы полностью зарядятся, возможны 2 варианта: 1) ББП дает сигнал для выключения сетевого инвертора, и он остается выключенным до тех пор, пока напряжение на АКБ не снизится до заданного уровня. 2) При использовании сетевых инверторов SMA Sunny Boy совместно с ББП Xtender или SMA возможно постепенное снижение мощности сетевого инвертора в зависимости от напряжения на АКБ.

При авариях в сети батарейный инвертор обеспечивает для сетевого инвертора опорное напряжение, что позволяет продолжать питать нагрузку переменного тока напрямую от солнечного сетевого инвертора. Естественно, вся нагрузка, подключенная до батарейного инвертора, не получает энергию - ни от аккумуляторов, ни от солнечных батарей.

Если напряжение в сети не пропало, но вышло за пределы допустимого, то инвертор отключается от такой сети и продолжает питать ответственную нагрузку качественным током - от СБ и от АБ. Нагрузка, подключенная до инвертора, питается тем напряжением, которое есть в сети.

Достоинства

  1. Продолжение использования солнечной энергии при авариях на централизованной сети электроснабжения. т.е. возможность использования энергии солнца как при наличии сети, так и во время отключений.
  2. Высокий КПД использования энергии от солнечных батарей за счет применения высокоэффективных сетевых инверторов и снижения потерь на стороне постоянного тока за счет повышенного напряжения СБ
  3. Возможность восстановления при глубоком разряде аккумуляторов при использовании небольшой СБ, подключенной к АБ через контроллер заряда (показаны пунктиром). Это необязательный элемент, если отключения кратковременные.
  4. Аккумуляторы все время находятся в заряженном состоянии и практически работают в буферном режиме и используются только при отключениях сетевого электричества и отсутствии солнечной энергии

Недостатки

  1. Необходимость применения специальных ББП, которые могут заряжать АБ с выхода, а также направлять излишки солнечной энергии в сеть. Также, такой ББП должен или давать сигнал на отключение сетевого инвертора, или повышать частоту на выходе для управления сетевым инвертором (большинство сетевых инверторов прекращают работу при выходе параметров частоты за заданные пределы)
  2. Суммарная мощность сетевых инверторов, подключенных к такому ББП, должна быть меньше или равна мощности зарядного устройства ББП. Это необходимо для того, чтобы утилизировать энергию от СБ при отключениях сети и разряженных аккумуляторах.
  3. При длительных перерывах в электроснабжении и отсутствии солнечной энергии ББП может выключиться по низкому уровню заряда АБ. Восстановить их возможно только когда появится напряжение в сети, или путем установки дополнительного небольшого фотоэлектрического модуля с контроллером заряда. Такой случай возможен, но вероятность его очень небольшая.

В вариантах 1 и 3 в обычном режиме работы инвертор использует солнечную энергию для заряда аккумуляторов и для питания нагрузки в доме. Если есть излишки энергии, он направляет их в общую сеть (если разрешить ему это делать), или снижает выработку энергии солнечными батареями. При этом совсем необязательно направленная на вход инвертора энергия теряется - она может быть использована другими потребителями в доме, которые не резервируются этим инвертором. Т.е. например, вы зарезервировали холодильник, резервное освещение, систему отопления, телевизор и т.п. инвертором. Но в доме у вас есть еще другая нагрузка, которая может и не работать, когда пропадает сеть - например, стиральная машина, электроинструмент, электрочайник и еще много чего.

Когда есть сеть, солнечная энергия используется как для питания этой нагрузки, так и (если она полностью не потребляется резервируемой нагрузкой) для питания другой нагрузки в доме. Таким образом вы максимально используете свои солнечные батареи и полностью потребляете все, что они вырабатывают. В автономной системе такого нет - если АБ заряжены и нагрузки нет, то генерация солнечными батареями уменьшается или прекращается вовсе.

Применение сетевых инверторов и схем включения рис. 2 и 3 в большинстве случаев повышает эффективность системы. 

Далеко не каждый инвертор может обеспечить работу системы в таких режимах. Такой специализированный инвертор выполняет 3 функции

  1. обеспечение резервного электроснабжения во время аварий в сети,
  2. заряд аккумуляторов от сети, а в некоторых случаях и от сетевого инвертора
  3. и передачу излишков энергии в сеть

Несмотря на сложность батарейной фотоэлектрической системы, преимущества, которые она дает - неоспоримы. Ни один из наших клиентов, установивших такую систему, не пожалел об этом.

Выводы

1. Фотоэлектрические системы очень надежны, и безаккумуляторные системы практически не требуют обслуживания. Также, такие системы обладают максимальной эффективностью использования энергии от солнечных батарей - от 90 до 98%. При этом сеть может использоваться как бесплатный аккумулятор практически бесконечной емкости. Обычные аккумуляторные батареи требуют регулярной замены и специальной утилизации, иначе будет нанесен вред окружающей среде. Потребитель несет ответственность за правильную утилизацию АБ. К счастью, сейчас очень много фирм, которые принимают отработанные аккумуляторы, и даже платят за них (небольшие) деньги.

2. Если отключения сети частые, то необходимо добавить в систему аккумуляторы и блок бесперебойного питания. Добавление в систему аккумуляторов, с одной стороны, повышает надежность электроснабжения, но, с другой стороны, требует обслуживания аккумуляторов. Также, за счет использования аккумуляторов и батарейного инвертора снижается КПД системы. КПД батарейных инверторов примерно 85-92%, а КПД заряд-разряда свинцово-кислотных АБ - около 80% (20% теряется на нагрев АБ во время химических реакций). Можно немного повысить КПД заряда-разряда, если использовать АБ в режиме малых токов. Но как только АБ заряжены, вся энергия от солнечных батарей направляется в сеть или на питание нагрузок до батарейного инвертора - именно за счет этого повышается эффективность работы соединенной с сетью системы.

3. Применение сетевых инверторов повышает эффективность работы системы в целом, особенно если большая часть солнечной энергии потребляется в дневное время. Применение специальных ББП с возможностью заряда АБ с выхода позволяет использовать сетевые фотоэлектрические инверторы даже во время перерывов в электроснабжении от централизованной сети.

www.santexnn.ru

Принцип работы солнечной батареи

Принцип работы солнечной батареи 1

Солнечные батареи, как источник альтернативной энергии, сегодня уже не относят к инновационным технологиям науки. Впервые, использованные уже более сорока лет назад для электропитания станций в открытом космосе, они с успехом применяются, в качестве независимого источника экологически чистой электроэнергии.

Элементы солнечных батарей изготавливают из материалов, преобразующих солнечный свет в электричество. Фотоэлектрическая батарея конструктивно состоит из нескольких модулей, электрически и механически соединенных между собой. Каждый солнечный модуль – это устройство, объединяющее несколько фотоэлектрических элементов и выходные клеммы для подключения электроприемников. Фотоэлектрический элемент состоит из 2-х пластин полупроводникового материала. Основную часть, выпускающихся промышленностью элементов батарей, изготавливают из чистого кремния. На одну пластину, с целью придания ей свойств проводника отрицательных зарядов (n-область), наносят бор. Вторую же, с целью создания проводника положительных зарядов, покрывают фосфором (р – область).

Под воздействием солнечных лучей в зоне соприкосновения двух пластин возникает электродвижущая сила, которая способна создавать электрический ток во внешнем контуре, электрически соединенном с р- и n-областями. Для того, чтобы снять ток с батарей их пропаивают тонкими полосами меди. Спаянные друг с другом пластины спаивают, ламинируют, а затем закрепляют на стекле. Для придания конструкции прочностных свойств соединенные пластины размещают в алюминиевую раму.

Принцип работы солнечной батареи 2

Явление, в основе которого лежит принцип работы солнечных батарей, имеет название «внешний фотоэффект». Мощность, вырабатываемая батареей, напрямую зависит от площади ее поверхности. На эффективность работы солнечных батарей оказывает влияние также положение относительно Солнца модулей и интенсивность излучения. Таким образом, КПД батарей зависит от времени года, места установки, погоды.

Принцип работы солнечной батареи 3

Энергия, генерируемая фотоэлектрической установкой, не предназначена для непосредственного подключения потребителей. Между электрогенерирующей установкой и потребляющей сетью необходимо подключать инвертор, с целью трансформирования напряжения в стандартные величины одно или трехфазного номинала (220 или 380В).

Солнечные фотоэлектрические модули способны вырабатывать электроэнергию в течение 25 и больше лет. Технический износ в большинстве случаев возникает вследствие влияния окружающей среды, поскольку в таких установках отсутствуют подвижные механизмы, а также нет никаких термодинамических процессов. Грамотно смонтированная солнечная батарея станет экологически безопасным, бесшумным и надежным источником электроэнергии на долгие годы.

pue8.ru

Солнечные батареи в загородном доме. Стоит ли использовать?

Солнечные батареи в загородном доме 2 Энергия солнца всегда служила во благо человечества. Многие тысячелетия люди успешно использовали ее для нагрева воды, приготовления пищи. Современные технологии позволяют использовать ее в качестве доступного, малозатратного источника электрической энергии.

Способ получения электроэнергии с помощью солнечных батарей намного сложнее банального нагрева воды солнечными лучами. Однако солнечная энергия в последние годы все активнее используется, как для электроснабжения отдельных загородных домов, так и небольших производств, включая производственные комплексы и целые поселения.

Несмотря на низкий КПД (около 12-15%), солнечные батареи считаются одним из самых эффективных источников альтернативной энергии. Но ввиду их значительной стоимости, незначительной выработкой с единицы площади и зависимости от погодных условий, в основном их позиционируют в качестве дополнительного источника электропитания.

Солнечные батареи в загородном доме 1

По данным компаний – производителей, за один ясный солнечный день с 1 кв. м. площади солнечных батарей можно снять в лучшем случае 1,2кВт. Этой мощности недостаточно даже для обеспечения электропитания одного ПК. Поэтому для генерации ощутимой мощности панели объединяются в станции. К примеру, с батареи площадью 10кв. метром можно получить уже более 1кВт/час энергии, чего достаточно для питания компьютера, телевизора и нескольких лампочек. Как правило, семью из 3-4 человек с месячным потреблением электроэнергии 250-300кВт обеспечат электроэнергии в теплое время года батареи с площадью 20кв.м. Зимой такие батареи неэффективны.

Случаи, когда солнечные батареи оправдывают себя

Все более широкое распространение в последнее время получают системы отопления на основе энергии солнца. Подходят они для регионов, где количество солнечных дней в году большое, например, для южных районов, Крыма, курортов и высокогорных плато, где небо наибольшую часть светового дня свободно от облаков. Создают такие системы на основе солнечных коллекторов. Они осуществляют нагрев рабочего вещества – воздуха или жидкости. Если такая система не может обеспечить достаточную степень обогрева, то устанавливают резервную систему.

Плоские коллекторы являются самыми распространенными, но используют также концентраторы и коллекторы с вакуумными трубками. Жидкостные системы сохраняют тепло в бетонной заливке или специальных резервуарах. Для распространения солнечного тепла по дому используют теплый пол, плинтусы, радиаторы горячей воды либо централизованную приточную систему.

Солнечные системы воздушного отопления использует воздух. Они могут нагревать отдельные помещения или передавать тепло в вентилятор с целью регенерации тепла, либо использовать воздушную обмотку теплового насоса. Такие системы обычно встраиваются в кровли либо стены.

Имеет смысл использования батарей для обеспечения энергией систем, для которых требуется бесперебойное электроснабжение: охранной сигнализации, видеонаблюдения или компьютерных сетей.

pue8.ru

Солнечные энергосберегающие системы | Синтезгаз

Энергию солнца можно использовать для выработки электрической энергии. При использовании солнечных батарей энергия солнца напрямую преобразуется в электрическую. Процесс преобразования солнечной энергии в электрическую называется фотоэлектрическим эффектом.

Для выработки электричества из солнечных лучей используется солнечный модуль, устройство которого состоит из одного или нескольких солнечных фотоэлектрических элементов. Множество фотоэлектрических фотоэлементов составляют солнечную батарею.

Коротко про фотоэлементы
Структура фотоэлектрического элемента
  1. свет (фотоны)
  2. первый токовывод
  3. негативный слой
  4. слой p-n перехода
  5. позитивный слой
  6. второй токовывод

При попадании солнечных лучей на солнечный элемент, материал солнечного элемента поглощает часть солнечного света (фотоны). Каждый фотон имеет небольшое количество энергии. Когда фотон поглощается в солнечном элементе, он инициирует процесс освобождения электрона. Поскольку обе стороны фотоэлектрического элемента имеют токопроводящие выводы, то во время, когда поглощается фотон в цепи возникает ток. Солнечный элемент вырабатывает электричество, которое можно сразу использовать, например для освещения, или можно сохранять в аккумуляторной батарее.

Коротко про типы солнечных элементов

Солнечные элементы изготавливаются из специальных материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из выпускаемых в настоящее время солнечных элементов изготавливается из полупроводника – кремния (химическое обозначение Si). Полупроводниковыми изделиями из кремния мы все давно пользуемся – во всей электронной продукции присутствуют полупроводниковые транзисторы и микросхемы.

Солнечные элементы могут быть монокристаллической, поликристаллической или аморфной структуры. Различие между ними состоит в том, как организованы атомы кремния в кристалле. Различные структуры имеют разный КПД преобразования энергии света. Монокристаллические и поликристаллические элементы имеют практически одинаковый КПД и он выше, чем у элементов изготовленных из кремния аморфной структуры.

Солнечные батареи

Солнечные батареи (модули)Солнечные батареи складываются из множества солнечных элементов. Поскольку один солнечный элемент вырабатывает малое количество электроэнергии, которого не достаточно для нормальной работы большинства устройств, то солнечные элементы собираются в солнечных модулях для того, чтобы производить больше электричества. Таким образом, чем больше модулей мы берем для батареи, тем больше будет мощность солнечной установки.

Солнечные батареи (или панели, которые могут называть фотоэлектрическими или солнечными модулями) производятся многих типов и размеров. Наиболее типичные – это кремниевые фотоэлектрические модули.

Получение электроэнергии из солнечных батарей абсолютно бесшумно и безвредно для окружающей среды. Электрогенерирующая установка на базе солнечных элементов дает комфорт и стабильное энергообеспечение на долгие годы. Может применяться для электроснабжение домов, коттеджей, гостиниц, офисных помещений, систем освещения, рекламные щиты и т.п.Из комплектов солнечных батарей соединенных определенным образом проектируются солнечные энергосберегающие системы, которые в зависимости от подключения могут работать в режиме:

  • Автономная солнечная энергосберегающая система;
  • Резервная сетевая солнечная энергосберегающая система.
Автономная солнечная энергосберегающая система

Схема автономной солнечной энергосберегающей системы Автономные солнечные системы используются в основном в тех районах, где источники общего энергоснабжения недоступны или слишком дороги. Также автономные энергосистемы хорошо подходят для использования в целях, не требующих больших энергетических затрат. Для обеспечения энергией в темное время суток или в периоды без яркого солнечного света необходима аккумуляторная батарея. Солнечные электростанции с аккумуляторами могут проектироваться для снабжения электричеством как постоянного, так и переменного токов. Для получения переменного тока в конструкцию солнечных электростанций добавляется инвертор.

Резервная сетевая солнечная энергосберегающая система

Схема сетевой солнечной энергосберегающей системыРезервные солнечные системы энергосбережения используются там, где есть соединение с сетью централизованного электроснабжения, но сеть ненадежна.

Резервные сетевые солнечные системы могут использоваться для снабжения электроэнергией в периоды времени, когда отсутствует напряжение в центральной сети. Малые сетевые солнечные системы электроснабжения могут обеспечивать электроэнергией только наиболее важные объекты, такие как освещение, компьютер, средства связи, телефон, радио, факс и подобные.

Более крупные системы могут обеспечивать энергией и холодильник во время отключения сети. Чем больше мощность необходимая для питания ответственной нагрузки, и чем дольше периоды отключения сети, тем большая мощность солнечной энергосберегающей системы необходима.

В случае подключения солнечной энергосберегающей системы к сети, после полного заряда аккумуляторных батарей, излишек электроэнергии поступает в центральную сеть электроснабжения и владельцу такой системы начисляется компенсация за отданную в общую сеть электроэнергию.

---

---

Ветровые энергосберегающие системы Гибридные энергосберегающие системы

sintezgaz.org.ua