Соединение сваркой. Сварочные соединения


Сварные соединения.

Сварные соединения



Способы сварки деталей конструкций

Сварка - это технологический процесс соединения твёрдых материалов (металлов и некоторых неметаллов) в результате действия межатомных сил, которое происходит при местном сплавлении или совместном пластическом деформировании свариваемых деталей конструкций.

Современные способы сварки металлов можно разделить на две большие группы: сварка плавлением (сварка в жидкой фазе, термическая сварка), и сварка давлением (сварка в твёрдой фазе, механическая, термомеханическая).

При сварке плавлением материал соединяемых деталей самопроизвольно, без приложения внешних сил соединяется в одно целое в результате расплавления, смачивания и взаимного растворения в зоне сварки. К сварке плавлением относятся: дуговая, плазменная, электрошлаковая, газовая, лучевая и др.

При сварке давлением для образования соединения без расплавления требуется значительное давление на контактную поверхность свариваемых деталей. К сварке давлением относятся холодная, ультразвуковая, сварка трением, взрывом и др. Граница между этими группами не всегда достаточно чёткая, например возможна сварка с частичным оплавлением деталей и последующим сдавливанием их (контактная электросварка).

Виды и способы сварки можно классифицировать и по другим признакам, например, по роду энергии: электрическая (дуговая, контактная, электрошлаковая, плазменная, индукционная и т. д.), механическая (трением, холодная, ультразвуковая и т. п.), химическая (газовая, термитная), лучевая (фотонная, электронная, лазерная).

Наиболее распространенными видами сварки являются электродуговая, электронно-лучевая, газовая (термическая сварка плавлением); контактная и термокомпрессионная (термомеханическая сварка); трением, холодная и ультразвуковая (сварка давлением или механическая сварка).

Электродуговая сварка

Электросварка - один из способов сварки, использующий для нагрева и расплавления металла электрическую дугу, образующуюся между электродом и свариваемым металлом.

Температура электрической дуги (до 7000°С) значительно выше температуры плавления всех известных металлов, поэтому процесс дуговой сварки сопровождается быстрым и эффективным расплавлением свариваемых деталей в зоне соединения.

В процессах электродуговой сварки применяются как плавящиеся, так и неплавящиеся электроды (угольные, графитовые, вольфрамовые). В первом случае формирование сварного шва происходит плавящимся электродом, во втором случае - расплавлением присадочного материала (проволоки, прутков и т. п.), которую вводят непосредственно в сварочную ванну.

Электродуговую сварку часто выполняют в среде защитного газа (аргона, гелия, углекислоты или их смесей) для защиты металла сварного шва от окисления. Газы подаются в зону дуги из сварочной головки в процессе электросварки.

Различают электродуговую сварку переменным и постоянным током. Сварка постоянным током меньше разбрызгивает металл, поскольку отсутствует амплитудное колебание напряжения, инициирующие разбрызгивание.

Электродуговую сварку классифицируют по разным технологическим признакам: по степени механизации (ручная, полуавтоматическая, автоматическая, по роду используемого электрического тока (постоянный с плюсом на электроде, постоянный с минусом на электроде, переменный), по типу дуги (зависимая дуга, независимая дуга), по свойствам электрода (плавящийся, неплавящийся), по свойствам материала покрытия электродов и некоторым другим показателям.

Дуговая электрическая сварка - важнейшее российское изобретение. Угольно-дуговая сварка впервые предложена Н. И. Бенардосом в 1882 г. Н. Г. Славянов в 1888 г. предложил сварку металлическим электродом.

Газовая сварка

Газовая сварка сопровождается местным расплавлением металла пламенем горючих газов сварочной горелки. Для повышения температуры пламени применяют смесь горючего газа с технически чистым кислородом. В качестве горючего газа чаще всего используется ацетилен, поскольку ацетилено-кислородное пламя даёт очень высокую температуру горения (3100 - 3200°С). Водородно-кислородная, бензино-кислородная и другие виды газовой сварки применяются реже.

Ацетилен получают разложением карбида кальция в воде с помощью ацетиленовых генераторов или промышленным способом. Кислород и ацетилен по шлангам подводятся к сварочной горелке, смешиваются в ней и сгорают на выходе из мундштука горелки, образуя сварочное пламя, которое одновременно оплавляет кромки соединяемых деталей и пруток присадочного металла, создавая сварной шов.

Газовая сварка применяется для стали, чугуна, меди, алюминия, всевозможных сплавов, при толщине свариваемых деталей от 0,1 до 6 мм, реже до 40 - 50 мм, так как при большой толщине заготовок выгоднее использовать более дешёвые и удобные способы сварки. Широко распространена также наплавка всевозможных деталей с помощью газовой сварки.

Технология газовой сварки плохо поддается автоматизации и механизации, поэтому этот вид сварки обычно выполняется вручную. Газовая сварка даёт удовлетворительное качество шва, однако при этом способе сварки нередки случаи коробления свариваемых деталей вследствие нагрева большой площади металла. Преимущества газовой сварки: портативность и невысокая стоимость аппаратуры. Недостатками этого вида сварки является высокая стоимость и взрывоопасность работ.

Лазерная сварка

Лазерная сварка - технологический процесс получения неразъемного соединения частей изделия путем местного расплавления металлов посредством нагрева по примыкающим поверхностям с помощью лазерного луча. Когда лазерный луч попадает на металл, энергия излучения поглощается, металл нагревается и плавится. В результате такого плавления и последующей кристаллизации возникает прочное сцепление, образующее сварной шов. Сцепление свариваемых поверхностей основано на межатомном взаимодействии в металле. Таким образом, лазерная сварка относится к методам сварки плавлением.

Как и любой технологический процесс, лазерная сварка имеет свои преимущества и недостатки. К основным преимуществам лазерной сварки можно отнести: локальность обработки материала, высокую производительность, технологическую гибкость и удобство.

Электронно-лучевая сварка

Электронно-лучевая сварка имеет сходную с лазерной сваркой принципиальную технологию. При этом способе соединения деталей нагрев осуществляется потоком заряженных частиц, поэтому для эффективности процесса необходим вакуум. Лазерная сварка, в отличие от электронно-лучевой, может осуществляться в атмосфере или любой газовой среде, хотя для уменьшения окислительных процессов в свариваемом металле обычно применяют аргон.

Электронно-лучевой и лазерной сваркой чаще всего сваривают тугоплавкие и сильно окисляющиеся металлы и сплавы.

 Контактная сварка

Контактная сварка осуществляется путем нагрева металла проходящим через него электрическим током в сочетании с пластической деформацией, вызываемой сжимающим усилием между свариваемыми поверхностями. Различают следующие виды контактной сварки: точечную, стыковую, роликовую (шовную) и конденсаторную. Основные параметры режима всех способов контактной сварки - это сила сварочного тока, длительность его импульса и усилие сжатия деталей.

Контактная сварка – самый производительный способ сварки в промышленном производстве, допускающий широкую автоматизацию и механизацию процессов. Осуществляется этот вид сварки на контактных сварочных машинах, которые бывают стационарными, передвижными и подвесными, универсальными и специализированными.

Термокомпрессионная сварка

Термокомпрессионная сварка осуществляется под давлением с местным нагревом участка соединения за счет теплопередачи от нагретого электрода. Термокомпрессия - это процесс соединения двух материалов, находящихся в твердом состоянии, при воздействии на них теплоты и давления. Температура нагрева соединяемых термокомпрессией материалов не должна превышать температуру образования их эвтектики (точки перехода от твердой к жидкой фазе любого из материалов), кроме того, один из материалов обязательно должен быть пластичным.

Получение прочного соединения термокомпрессиоиной сваркой можно объяснись следующим образом. На поверхностях контактной площадки и электродной проволоки имеется множество микровыступов и микровпадин, которые под действием давления и нагрева деформируются. При этом материал электрода и детали взаимно затекают в микровпадины, соединяя детали сплавлением.

В машиностроении и приборостроении термокомпрессионной сваркой чаще всего соединяют следующие пары материалов: золото - германий, золото - кремний, золото - алюминий, золото - золото, алюминий - алюминий, золото - серебро и алюминий - серебро.

Сварка трением

Сварка трением является разновидностью сварки давлением, при которой механическая энергия, подводимая к одной из свариваемых деталей, преобразуется в тепловую; при этом генерирование теплоты происходит непосредственно в месте будущего соединения.

Теплота может выделяться при вращении одной детали относительно другой или вставки между деталями, при возвратно-поступательном движении деталей в плоскости стыка с относительно малыми амплитудами и при звуковой частоте. Детали при этом прижимаются постоянным или возрастающим во времени давлением. Сварка завершается осадкой и быстрым прекращением вращения или относительного перемещения свариваемых деталей.

В зоне стыка при сварке протекают следующие процессы. По мере увеличения частоты вращения свариваемых заготовок при наличии сжимающего давления происходит притирка контактных поверхностей и разрушение жировых пленок, присутствующих на них в исходном состоянии. Граничное трение уступает место сухому. Далее в контакт вступают отдельные микровыступы, происходит их деформация и образование ювенильных участков с ненасыщенными связями поверхностных атомов, между которыми мгновенно формируются металлические связи и немедленно разрушаются вследствие относительного движения поверхностей.

Разновидностью сварки трением является инерционная сварка. При этом способе вращаемую деталь располагают в маховике, который раскручивают до заданной скорости и далее она вместе с маховиком вращается по инерции. Свариваемые детали соединяют и сварка завершается остановкой вращения маховика.

Холодная сварка

Этот вид сварки осуществляется сильным сжатием соединяемых деталей. Холодная сварка - сложный физико-химический процесс, протекающий только в условиях пластической деформации соединяемых деталей. Без пластической деформации в обычных атмосферных условиях практически невозможно получить полноценное монолитное соединение. Роль деформации при холодной сварке заключается в предельном утонении или удалении слоя оксидов, в сближении свариваемых поверхностей до расстояния, соизмеримого с параметром кристаллической решетки, а также в повышении энергетического уровня поверхностных атомов, обеспечивающем возможность образования химических связей. В зависимости от схемы пластической деформации заготовок различают точечную, шовную и стыковую разновидности холодной сварки.

Холодной сваркой можно соединять, например, алюминий, медь, свинец, цинк, никель, серебро, кадмий, железо. Особенно велико преимущество холодной сварки перед другими способами сварки при соединении разнородных металлов, чувствительных к нагреву или образующих интерметаллиды.

Для получения прочных и плотных швов необходимо предварительно очистить поверхности контакта от окислов. Прочность соединения при точечной холодной сварке может быть выше, чем при точечной контактной сварке, но при этом значительно хуже внешний вид соединения из-за вмятин и пластической деформации.

Ультразвуковая сварка

Ультразвуковая сварка - способ сварки деталей конструкций с применением ультразвука для сообщения колебаний инструменту, прижимаемому к поверхностям свариваемых материалов. При этом соединение металлов осуществляется в твердой фазе (без расплавления) - металл разогревается до температуры 200...600°С в результате действия сил трения между инструментом и металлом. Пластическая деформация металла облегчается благодаря снижению предела текучести при пропускании через свариваемые детали ультразвуковых колебаний.

Поскольку колебания инструмента способствуют очистке свариваемой поверхности, шов получается высокого качества. Этим способом соединяют отдельными точками или непрерывным швом главным образом листовые металлы (алюминий, титан, медь), некоторые сплавы, пластмассы.

***

Достоинства сварных соединений

Малая масса. По сравнению с заклепочными соединениями экономия металла составляет 15–20%, т.к. в заклепочных соединениях отверстия под заклепки ослабляют материал и обязательно применение накладок или частичное перекрытие соединяемых деталей. По сравнению с литыми стальными конструкциями экономия по массе составляет до 30%. Сваркой можно получить более совершенную конструкцию (литье не допускает большие перепады размеров) с малыми припусками на механическую обработку.

Малая стоимость. Стоимость сварной конструкции из проката примерно в два раза ниже стоимости литья и поковок.

Экономичность процесса сварки, возможность его автоматизации. Это связано с малой трудоемкостью процесса, сравнительной простотой и дешевизной оборудования: не нужны одновременное плавление большого количества металла, как при литье, и мощные дыропробивальные машины для установки заклепок большого диаметра.

Плотность и герметичность соединения. Герметичность сварных соединений используется в различных трубопроводах, газопроводах, металлических сосудах и т. п.

Соединение крупногабаритных деталей. Сварка дает возможность получения конструкций очень больших размеров, что невозможно, например, при литье. Примеры: сварной мост через реку Днепр, антенны радиотелескопов.

К достоинствам сварки следует отнести, также, возможность соединения различных материалов и деталей разных форм. Такие способы сварки, как лазерная, холодная, электронно-лучевая обладают рядом достоинств, которые позволяют использовать их при изготовлении высокоточных деталей и соединений.

***

Недостатки сварных соединений

Возможность получения скрытых дефектов сварного шва (трещины, непровары, шлаковые включения). Применение автоматической сварки в значительной мере устраняет этот недостаток.

Трудность контроля качества сварного шва. Существующие рентгеноскопические и ультразвуковые методы сложны.

Коробление деталей из–за неравномерности нагрева в процессе сварки.

Невысокая прочность при переменных режимах нагружения. Сварной шов является сильным концентратором напряжений.

***

Область применения сварных соединений

Сварные соединения широко применяют в строительстве. В машиностроении сварку применяют для получения заготовок деталей из проката в мелкосерийном и единичном производстве. Сварными выполняют станины, рамы, корпуса редукторов, шкивы, зубчатые колеса, коленчатые валы, корпуса судов, кузова автомобилей, обшивку железнодорожных вагонов, трубопроводы, мосты, антенны радиотелескопов и др. В массовом производстве применяют штампосварные детали.

Наибольшее распространение получили соединения электродуговой и газовой сваркой. Хорошо свариваются низко– и среднеуглеродистые стали. Высокоуглеродистые стали, чугуны и сплавы цветных металлов свариваются хуже.

***

Типы сварных швов и их расчет на прочность



k-a-t.ru

Соединение сваркой - Главный механик

В промышленности применяются следующие виды сварки:

  • электрическая сварка
  • газовая сварка
  • кузнечная сварка
  • термитная сварка
  • сварка трением сварка

Электрическая сварка делится на:

  1. электродуговую сварку прямого и косвенного действия

  2. контактную сварку, к которой относятся пиковая, точечная и шовная сварка

Электродуговая сварка впервые появилась в XIX столетии. Ее осуществили русские инженеры Н. Н. Бенардос и Н. Г. Славянов. По ГОСТ 9467-75 предусмотрено большое количество марок электродов, которые имеют вполне определенные области применения в зависимости от марок свариваемых сталей. Диаметр электродов выбирается в соответствии с толщиной свариваемых листов и размеров шва. Чем толще лист, тем больше диаметр электрода. Процесс сварки сопровождается выделением от дуги ослепительного света и разбрызгиванием расплавленного металла. Поэтому сварочные работы выполняются рабочими в брезентовой прозодежде, в рукавицах, со щитками, имеющими темные стекла, снижающими яркость дуги. Из разновидностей дуговой сварки за последнее время широкое распространение получила сварка под слоем флюса и сварка в среде углекислого газа. Флюс и углекислый газ являются предохранительной средой от загрязнений, обеспечивающей высокие механические свойства направляемого металла. При этом в состав флюса вводят шлакообразующие составляющие, раскислители и легирующие составляющие. Оба метода сварки сопровождаются применением автоматизации.

Для приварки к листу шпилек (стержней) применяются специальные сварочные устройства — пистолеты. Контроль сварочных швов без разрушения конструкций в особо ответственных случаях осуществляется с помощью ультразвука, рентгеноскопии, гамма-лучей. ПО техническим возможностям оба метода обеспечивают надежность проверки качества сварки и позволяют выявлять местные пустоты (незаполнение), пленистость, пористость и другие дефекты на всей глубине сварочного шва. Для контроля углеродистых сталей с толщиной стенки до 12 мм применяется магнитографический дефектоскоп. Для тех же сталей при толщине стенки свыше 15 мм используется ультразвуковой дефектоскоп. Контроль аустенитных сталей с толщиной стенки от 20 до 50 мм целесообразнее производить гамма-просвечиванием или использовать ультразвуковую дефектоскопию.

Дефекты, выявленные в ответственных сооружениях (трубопроводы высокого давления), подлежат устранению, после чего контроль выполняется повторно.

Основные разновидности типовых сварных соединений:

  • соединение стыковое

Электродуговая сварка требует подготовительных работ в части разделки скосов и снятия фасок. Эту работу обязан выполнять слесарь-монтажник. Разделка скосов и снятие фасок перед сваркой делаются для того, чтобы получить шов, имеющий не менее 80% прочности целой детали. Для тонких листов (до 2 мм) под сварку делается отбортовка и шов накладывается сверху. При сварке листов толщиной 2-5 мм допускается бесскосное соединение. В этом случае расплавленный металл электрода должен заполнить разрыв в l-З мм между листами. Свариваемые листы толщиной 5-15 мм требуют подготовки кромок в виде V-образных скосов, причем с утолщением листа угол развала увеличивается до 90°. Образовавшееся углубление заполняется металлом шва, и этим гарантируется необходимая прочность. Для сварки толстых листов, более 15 мм, применяют X-образные скосы указанных размеров. В условиях монтажных работ обработка кромок и подготовка скосов у листов делается ручным и пневматическим зубилами или с помощью газовой резки. Обработка на металлорежущих станках применяется в тех случаях, когда свариваемые изделия изготовляются в специализированных цехах. При сварке неплоских деталей, кроме подготовки скосов, приходится отдельные детали крепить до прихватки струбцинами и другими средствами. После прихватки и проверки правильности установки свариваемых деталей снимают крепежные средства и приступают к окончательной сварке.

Различают также холодную и горячую сварку.

Горячая электродуговая сварка делается с предварительным подогревом свариваемых деталей до t = 600-700° (в особо ответственных случаях, главным образом у чугунных деталей). Во всех остальных случаях при сварке железных конструкций применяется холодная дуговая сварка. После сварки для снятия остаточных напряжений ответственные металлоконструкции следует подвергать отжигу. Этот метод сварки применяется в ремонтной практике при реставрации изношенных деталей.

Кроме сварки, электродуговой метод применяется при резке металлов. Резка производится угольным (графитовым) электродом с толстой обмазкой. Разрез получается неровный, а процесс обработки — малоэкономичный. Электродуговая резка иногда применяется при разделке металлического лома и при отрезке литников и прибылей у стальных, чугунных и других отливок.

Электроконтактная сварка производится на специальных сварочных машинах. Для нагревания свариваемых изделий используют теплоту, выделяющуюся в точках наибольшего сопротивления электрической цепи. Такими точками являются места соприкосновения деталей, подлежащих сварке.

При стыковой сварке, являющейся разновидностью электроконтактной сварки, ток напряжением 1-З В подводится от специального понижающего трансформатора. При этом свариваемые детали сближаются до соприкосновения. В месте стыка возникает температура плавления металлов, и тогда, выключив ток, детали сдавливают друг с другом дополнительно. Стыковая сварка применяется при сварке инструмента, в котором быстрорежущая сталь сваривается с углеродистой. Недостатки метода — нарушение структуры и большой расход электроэнергии

При точечной электрической сварке соединяемые детали из тонкого листа сдавливаются между двумя электродами, И которым подведен ток 2-10 В. Вследствие большого сопротивления место контакта нагревается до температуры сварки и под действием силы сжатия детали свариваются в данной точке. Оба электрода (подвижный и неподвижный) изготовляются из медного сплава с большим поперечным сечением. Благодаря высокой электро- и теплопроводности они не привариваются к деталям. Точечные аппараты имеют высокую производительность: дают до 2000 точек сварки в час.

Шовная сварка применяется для соединения тонких листов (до 3 мм) из низкоуглеродистой стали, нержавеющей стали, латуни и алюминиевых сплавов. Шовная сварка широко применена при изготовлении тонкостенных электросварных труб на трубопрокатных заводах. Сварочная машина подобна аппаратам точечной сварки с той лишь разницей, что ее электроды представляют собой вращающиеся ролики, между которыми пропускаются свариваемые листы. При сварке образуется непрерывный шов, обеспечивающий высокую прочность и герметичность соединения.

Из разновидностей газовой сварки наибольшее применение нашла кислородно-ацетиленовая сварка. При газовой ацетиленово-кислородной сварке нагревание кромок спариваемых деталей, а в равной степени и плавление присадочного материала, заполняющего впадину и образующего шов сварки, производится в пламени ацетилена, сгорающего в кислороде. Для сжигания указанной горючей смеси используется специальная сварочная горелка, куда поступает из баллонов кислород под давлением 2,5-3,5 атм и ацетилен при давлении 0,l-0,5 атм. Наибольшая температура в зоне сварки достигает 3000°.

Газовая сварка применяется при ответственных сварочных работах из листового материала, малоуглеродистой конструкционной стали, а также при сварке различных цветных металлов и сплавов и при запарке чугунных деталей. Присадочный материал в виде нарезанных прутков по своему химическому составу должен быть близким к материалу свариваемых деталей. Подготовка кромок и скосов под сварку осуществляется так же, как и для электродуговой сварки. Для чугунных изделий после сварки необходимы равномерное охлаждение и последующий отжиг.

Газовая резка основана на сгорании металла в струе кислорода. Для резки металла применяются специальные горелки-резаки. Через центральный канал резака подается кислород под большим давлением, а по кольцевому каналу поступает ацетилено-кислородная смесь, которая нагревает металл свариваемых деталей до температуры воспламенения.При этом в струе кислорода происходит быстрое сгорание металла и продукты окисления в виде шлака выбрасываются струей наружу. Основное назначение газовой резки — вырезка заготовок из листов конструкционной, углеродистой и других марок сталей.

Перед началом вырезки очищают лист и размечают на поверхности требуемые заготовки. Зачистку поверхности листа от окалины производят механизированно-ручным способом металлическими щетками и предварительным нагревом листа пламенем горелки. Отрегулировав газорежущее пламя горелки, приступают к вырезке заготовок. Резку всегда начинают от внешней кромки и ведут резак, перекатывающийся на роликах, по намеченным рискам. Качество газовой резки и ее производительность зависят от подогревающего пламени, а также от равномерности и скорости передвижения резака и его расстояния от поверхности разрезаемого металла. Подогревающее пламя должно обеспечивать быстрый нагрев детали в начале резки и максимальную скорость резки. Оно должно быть узким и достаточно длинным. Во время резки следует стремиться делать наименьшую ширину реза, избегать оплавления и науглероживания кромок вырезаемых деталей. Ручная газовая резка в настоящее время применяется сравнительно мало. Она заменена машинной резкой.

Применяется также высокопроизводительная плазменная резка листов. Это резко повышает производительность и улучшают качество работ. Глубина прорезания кислородной струей может достигать одного метра и более, поэтому этот вид резки имеет неограниченное применение при разделке различных болванок, броневых листов и даже применяется под водой при разрезании затонувших корпусов судов. Чугун, алюминий, медь и ее сплавы газовой резке не поддаются, так как температура воспламенения у этих металлов выше температуры плавления.

Кузнечная сварка состоит в том, что разогретые концы двух стальных свариваемых деталей накладываются друг на друга и место соединения проковывается вручную или под молотом. В процессе проковывания при t~ l400-l460°C происходит диффузия частиц металла и обеспечивается достаточно прочное соединение.

Термитная сварка основана на способности термита (порошковая смесь металлического алюминия с железной окалиной) при воспламенении давать высокую температуру. При этой температуре (2300-3000°) восстанавливается из окиси железо, которое в жидком состоянии заполняет ванну и образует сварочный шов; высвободившийся из окиси железа кислород частично сгорает, а частично вступает в соединение с алюминием, образуя окись алюминия в виде падежной защитной пленки на поверхности сварочного шва. Термитная сварка, так же как и кузнечная, применяется ограниченно, например при сварке рельсов, что, видимо, объясняется большой трудоемкостью и малой производительностью этих методов.

Для сварки аналогичных деталей и инструментов встык в настоящее время применяется метод сварки — трением. Сварка выполняется на специальном оборудовании. Две заготовки из разных или одинаковых металлов зажимаются в приспособления, торцы их сближаются друг с другом. При этом одной из деталей сообщается вращение. В результате трения при вращении заготовки возникает высокая температура и оплавляются торцы. Вращение останавливают и дают дополнительное сдавливание, в результате чего получается надежное, прочное соединение. Сварка трением пока еще широкого промышленного распространения не получила, однако этот вид сварки имеет ряд преимуществ в сравнении с электроконтактным методом (повышенная прочность, отсутствие газовых выделений и пр.). Метод вполне пригоден для сварки деталей небольших размеров, изготовленных из стали, меди, алюминия, латуни и других материалов.

Еще используется метод, так называемой холодной сварки. Он основан на пластической деформации металла. Применим для сварки цветных металлов одноименных и разноименных марок. Процессу сварки предшествует хорошая зачистка соединяемых поверхностей. После зачистки оба образца сближаются торцами и их сдавливают друг с другом на специальном пневматическом прессе. После сдавливания получается надежное, прочное соединение, основанное на пластической деформации и диффузии металлов. Метод сварки назван холодным потому, что образцы при сдавливании остаются совершенно холодными

themechanic.ru

Сварные соединения

ПРОЕКТ ПО ТЕХНОЛОГИИ

На тему: "СВАРОЧНЫЕ СОЕДИНЕНИЯ "

Выполнил:

Ученик 10 класса "Б"

Средней школы 206

Ковалев Алексей

Проверил:

Вараксин В.Н.

МОСКВА 2000 г.

Вступление.

Одни детали соединят "раз и навсегда" (неразборные соединения), другие - так, чтобы их можно было разобрать и собрать вновь (разборные соединения), а третьи - чтобы они могли перемещаться относительно друг друга в определенном направлении (подвижные соединения).

Неразборные соединения получают пайкой, запрессовкой одной детали в другую, клепкой, а чаще всего - сваркой. И именно о ней и пойдет речь…

Сварка - технологический процесс соединения твердых материалов в результате действия межатомных сил, которое происходит при плавлении или пластическом деформировании свариваемых частей. С помощью получают изделия из металла и неметаллических материалов (стекла, керамики, пластмасс и др.), проводят операцию сборки деталей в отдельные узлы и целые конструкции. Используя источники нагрева, применяемые при сварке, можно осуществлять процессы, противоположные соединению, например термическую резку металлов.

Способ получения неразъемные соединений деталей путем сварки и пайки был известен людям еще в глубокой древности. Так, в египетских пирамидах нашли при археологических раскопках золотые изделия, которые имели паянные оловом соединения, а при раскопках итальянского города Помпей обнаружили свинцовые водопроводные трубы с продольным паяным швом.

Широко применялась в прошлом и кузнечная сварка. При этом способе сварки соединяемые материалы нагреваются до состояния пластичности, а затем проковываются в местах соединения.

Быстрое развитие сварки началось в XΙX в.. В 1802 г. русский ученый В.В. Петров открыл явление электрической дуги - один из видов электрического разряда в газовой среде. Он рекомендовал применять электрическую дугу в качестве источника теплоты для мгновенного расплавления металлов. Но только в 1880-гг. наши соотечественники Н.Н. Бенардос и Н.Г. Славянов первыми в мире применили "дугу Петрова" для сварки металлов.

В середине XX в., в связи с бурным развитием промышленности и строительства, интенсивно стали разрабатываться новые способы сварки. В это время возникла необходимость соединять элементы конструкций толщиной от нескольких микрометров до нескольких метров из самых различных материалов.

Чтобы обеспечить прочное соединение твердых тел, нужно обеспечить взаимодействие атомов на их поверхности. Для этого атомы необходимо сблизить настолько, чтобы между ними могли возникнуть межатомные связи, что в обычных условиях поверхности всегда покрыты пленками оксидов, адсорбированных газов, всевозможных загрязнений. Существующие в настоящее время виды сварки можно разделить на 2 основные группы. К одной из них относят способы, при которых металлы в месте соединения расплавляются (сварка плавлением). К другой группе - способы, при которых металлы свариваются в твердом состоянии при совместной пластической деформации, иногда одновременно с дополнительным нагревом (сварка давлением).

При сварке плавлением металл в зоне сварки расплавляется и переходит в жидкое состояние, соединение возникает за счет самопроизвольного слияния и взаиморастворения металла соединяемых частей.

При сварке давлением металлические поверхности соединяемых частей совместно сжимаются и деформируются. Приложенное усилие (ковка, давление, удар) вызывает течение металла вдоль поверхности раздела и его перемешивания, разрушает поверхностные слои металла, сближает соединяемые поверхности и способствует соприкосновению их атомов. Сопутствующий нагрев ослабляет связи между атомами, делает их более подвижными, снижает твердость металла и повышает его пластичность - способность к пластическим деформациям.

Рис.1 Пример сварного соединения.

Пайка - процесс, родственный плавке плавлением. Между соединяемыми частями изделия вводится расплавляемый промежуточный металл-припой, который плавится при более низкой температуре, чем соединяемые металлы. Припой в жидком виде заполняет зазор между поверхностями соединяемых деталей под действием капиллярных сил, а застывая, кристаллизуется, образуя прочные связи.

Сварка плавлением включает газовую, дуговую, электрошлаковую, электроннолучевую, лазерную, плазменную. Среди способов плавки давлением наиболее широко применяются контактная, холодная, ультразвуковая, трением, взрывом, диффузионная.

Для соединения металлов используется энергия взрыва, трения, электрической дуги, электронного пучка и др. Изучением способов плавки и их применением, а также разработкой сварочного оборудования занимаются ученые и инженеры-сварочники.

Научные исследования в области сварки направлены на замену ручного труда машинами и автоматами, позволяющими облегчить труд сварщиков и значительно повысить его производительность.

Так, для сварки стыка труб большого диаметра, при прокладке магистрально газо- и нефтепроводов сварщики, работая вручную, затрачивают 8-10 ч. созданная учеными специальная сварочная машина выполняет эту работу в течение 2,5 минут. Для работы на сварочных контейнерах , а также в местах, недоступных непосредственно человеку, используются сварочные роботы.

Роль сварки в народном хозяйстве нашей страны очень велика. Сварка широко применяется в промышленности, строительстве, на транспорте, с сельском хозяйстве, во всех производствах, связанных с обработкой металла.

Электроннолучевая обработка - новая область техники.

Обработка материалов (сварка, резание и т. п.) пучком электронов - совсем новая область техники. Она родилась в 50-гг. XX в. В современной технике приходится иметь дело с очень твердыми или очень хрупкими трудно обрабатываемыми материалами. В электронной технике, например, применяются пластинки из чистого вольфрама, в которых необходимо просверлить сотни микроскопических отверстий диаметром в несколько десятков микрометров. Искусственные волокна изготовляют с помощью фильер, которые имеют отверстия сложного профиля, и столь малые, что волокна, протягиваемые через них, получаются значительно тоньше человеческого волоса. Электронной промышленности нужны керамические пластины толщиной 0,25 мм. И менее с многочисленными углублениями и прорезами.

Рис 2 Стыковые швы.Оказалось, что электронный луч, так же как и лазерный,а)Односторонний без скоса кромокобладает заманчивыми для технологии свойствами.

б)Односторонний со скосом двух Попадая на обрабатываемый материал, он в местекромок в)Двусторонний с двумявоздействия нагревает до 6000º С (температура поверхности симметричнымискосами одной кромок солнца) и почти мгновенно испаряется, образовав в кромкиг)двусторонний с двумя материале отверстие или углубление. Современная техникасимметричными скосами двух позволяет регулировать плотность излучения электронов, а кромок. следовательно, и температуру нагрева металла. Чрезвычайно ценно также, что действие электронного луча не сопровождается ударными нагрузками на изделие. Особенно это важно при обработке хрупких материалов, таких, как стекло, кварц.

Установки для обработки электронным лучом - это сложные устройства, основанные на достижениях современной электроники, электро-техники и автоматики. Основная их часть - электронная "пушка", генерирующая пучок электронов. Электроны, вылетающие с подогретого катода, остро фокусируются и ускоряются специальными электростатическими и магнитными устройствами. Благодаря им электронный луч сфокусирован на площади менее 1 мкм. Обработка ведется в высоком вакууме. Это необходимо, чтобы создать для электронов свободные условия, без помех, пробега от катода до заготовки.

Обрабатываемое изделие устанавливается на столе, который может двигаться по горизонтали и по вертикали. Луч благодаря специальному отклоняющему устройству также может перемешаться на небольшие расстояния (3-5 мм.). Когда отклоняющее устройство отключено и стол неподвижен, электронный луч может просверлить в изделии отверстие диаметром 5-10 мкм. Если включить отклоняющее устройство (оставив стол неподвижным), то луч, перемещаясь, будет действовать как фреза и сможет прожигать небольшие пазы различной конфигурации. Когда же нужно "отфрезеровать" более длинные пазы, то перемещают стол, оставляя луч неподвижным.

Техника безопасности.

Техника безопасности - одно из главных направлений работы по охране труда на наших фабриках и заводах. Контроль за соблюдением режимов работы и отдыха в зависимости от условий труда, норм освещенности рабочих мест, допустимого уровня шума и загрязненности в цехах, забота о медицинском обслуживании, о спецодежде, удобных раздевалках и душевых, специальном питании для тех, кто работает в цехах с вредным производством, и многое другое входит в понятие "охрана труда".

Рис 3 Угловые швы В нашей стране охране труда и технике а)Лубовые б)Фланговые в) Комбинированные. безопасности на производстве уделяется большое влияние. Местные комитеты профсоюзов наравне с администрацией ведут строгий контроль за выполнением мероприятий, обеспечивающих хорошие условия труда и безопасность работы на предприятиях.

Но не так уж и безопасна работа сварщиков…

В каждой отрасли народного хозяйства, для каждой профессии есть свои средства защиты и безопасности. Так, например, сварщик обязательно должен работать в брезентовом комбинезоне и темных очках. Но не всегда этих средств достаточно, чтобы обеспечить нам безопасность при работе.

mirznanii.com