Как работает солнечная батарея: устройство и принцип действия, подробное видео. Устройство солнечной батареи


Принцип работы и устройство солнечной батареи

Одним из источников энергии является солнечная батарея, генерирующая альтернативную энергию Солнца. Она появилась сравнительно недавно, но уже успела обрести популярность в странах Евросоюза, за счет высокой эффективности и приемлемой стоимости.

Солнечная батарея является почти неисчерпаемым источником энергии, способным накапливать и преобразовывать световые лучи в энергию и электричество. В странах СНГ новый источник энергии постепенно только набирает популярность. (Кстати, статью о том, как выбрать солнечную батарею, Вы можете прочитать здесь.)

Компоненты

Само устройство и принцип работы энергоисточника можно называть простым. Оно состоит всего из двух частей:

  • основного корпуса;
  • преобразовательных блоков.

В большинстве случаев корпус делают из пластика. Он похож на обыкновенную плитку, к которой прикреплены преобразовательные блоки.

Преобразовательным блоком является кремниевая пластинка. Она может изготавливаться двумя способами:

  • поликристаллическим;
  • монокристаллическим.

Поликристаллический способ является менее затратным, а монокристаллический считается наиболее эффективным.

Все остальные дополнительные части (например, контроллеры и инверторы), гаджеты и микросхемы присоединяют только для увеличения работоспособности и функционирования источника энергии. Без них солнечная батарея также сможет работать.

Имейте в виду: для того чтобы данный источник начал функционировать нужно правильно и аккуратно подключить все преобразовательные блоки.

Существует два вида их подключения:

  • последовательное;
  • параллельное.

Разница лишь в том, что в параллельном соединении происходит увеличение силы тока, а при последовательном увеличивается напряжение.

Если есть необходимость в максимальной работе сразу двух параметров, то используется параллельно-последовательное.

Но стоит учитывать, что высокие нагрузки могут способствовать тому, что некоторые контакты могут перегореть. Для предотвращения этого используют диоды.

Один диод способен защитить одну четвертую часть фотоэлемента. Если их нет в устройстве, то есть большая вероятность, что весь источник энергии прекратит своё функционирование после первого же дождя или урагана.

Важный момент: ни накопление, ни сила тока совершенно не соответствуют возможным параметрам современной бытовой техники, поэтому приходится перераспределять и накапливать электроэнергию.

Для этого рекомендуется дополнительно подключать минимум два аккумулятора. Один будет являться накопительным, а второй запасным или резервным.

Приведем пример работы дополнительных аккумуляторов. Когда на улице хорошая и солнечная погода, то заряд идет быстро и через малое количество времени появляется уже лишняя энергия.

Поэтому весь этот процесс контролирует специальный реостат, который способен в определенный момент перевести всю ненужную электроэнергию в дополнительные резервы.

Принцип работы

В чем же заключается принцип работы альтернативного источника энергии?

Во-первых, фотоэлементы являются кремниевыми пластинами. В свою очередь, кремний по своему химическому составу имеет максимальную схожесть с чистым силицием. Именно этот нюанс дал возможность понизить стоимость солнечной батареи и запустить ее уже на конвейер.

Кремний в обязательном порядке кристаллизуют, так как сам по себе он является полупроводником. Монокристаллы изготавливаются намного проще, но при этом не имеют много граней, за счет чего электроны имеют возможность двигаться прямолинейно.

Важно знать, что добавлением фосфора или мышьяка повышается электропроводность. Также, одним из важных свойств силиция является невидимость для инфракрасного излучения.

Благодаря этому элементу, преобразовательные блоки поглощают только полезные части солнечного спектра.

Последовательность действий солнечной батареи:

  1. Принцип работы солнечной батареи. (Для увеличения нажмите)Энергия солнца попадает на пластины.
  2. Пластины нагреваются и освобождают электроны.
  3. Электроны активно двигаются по проводникам.
  4. Проводники дают заряд аккумуляторам.

Вот мы и выяснили, из чего состоят солнечные батареи и каков их принцип действия.

В заключение хотелось бы добавить, что такую альтернативу можно сделать дома самостоятельно, при наличии всех необходимых частей.

Смотрите видео, в котором в легкой и познавательной форме объясняется принцип работы солнечных батарей:

Оцените статью: Поделитесь с друзьями!

teplo.guru

Устройство и принцип работы солнечной батареи

Принцип работы солнечной батареи основан на фотоэлектрическом эффекте, вне зависимости от ее разновидности и устройства.

Характеристика устройств

Ученым удалось обнаружить природные вещества, в которых происходит преобразование света в электроэнергию. Этот процесс они стали называть фотоэлектрическим эффектом. Впоследствии им удалось научиться управлять этим явлением. Потом благодаря полупроводниковым материалам они смогли создать небольшие эффективные приборы – фотоэлементы.

После этого было налажено производство миниатюрных преобразователей и эффективных гелиопанелей. КПД кремниевых панелей составляет 18–22%.

Устройство солнечного модуля

Устройство солнечного модуля

 

Из данных модулей собирают солнечные батареи, преобразующие фотоны солнечной энергии в постоянный ток, накапливающийся в аккумуляторах или трансформирующийся в переменный ток напряжением 220 V, необходимый для питания многих бытовых и промышленных электроприборов.

Такие источники питания незаменимы для удаленных районов, где нет централизованного электроснабжения или часто случаются перебои с электричеством. Кроме того, они позволяют экономить затраты на электроснабжение в быту и в некоторых отраслях промышленности.

Разновидность солнечных батарей

В зависимости от материала изготовления и способа производства, солнечные батареи подразделяют на кремниевые и плёночные.

Кремневые элементы – это устройства, сделанные из кремния, так как этот химический элемент обладает повышенной производительностью, поэтому на него сейчас огромный спрос на мировом рынке. По структуре их подразделяют на три подтипа.

Разновидность солнечных батарей

Монокристаллические батареи

Это солнечные батареи состоят из силиконовых ячеек, соединенных между собой. Их удается создавать только из чистейшего кремния, который добывают с помощью выращивания кристаллов. Когда монокристалл становится твёрдым, его делят на тончайшие пластинки, которые соединяют между собой с помощью сетки из металлических электродов. Такая технология изготовления очень дорогая и трудоемкая, поэтому её используют меньше, хотя у монокристаллических батарей высокий КПД, около 22%.

Монокристаллические солнечные батареи

Монокристаллические солнечные батареи

Поликристаллические батареи

Это солнечные батареи состоят из поликристаллов, полученных благодаря постепенному охлаждению сплава кремния. Данная технология изготовления обходится дешевле. Но в этом случае понижается КПД на 4–5%. Это характеризуется тем, что в поликристаллах образуются зоны с зернистыми границами, именно они понижают эффективность поликристаллических батарей.

Устройство поликристаллической батареи

Устройство поликристаллической батареи

Аморфные батареи

Это солнечные батареи делают из кремневодорода или силана. У аморфных батарей маленький КПД, порядка 5%, но они обладают многими достоинствами:

  • гибкие;
  • эффективно работают в пасмурную погоду;
  • очень тонкие (1 мкм).

Плёночные батареи подразделяются на несколько видов:

  • на основе теллурида кадмия;
  • на основе сплава меди, индия и селена, их КПД достигает 16–20%;
  • полимерные фотоэлементы из органики, у которых КПД небольшой 5–6%.
Аморфная солнечная батарея - устройство

Аморфная солнечная батарея — устройство

Принцип работы

На отрицательно заряженную панель воздействует солнечный свет, при этом образуется еще множество отрицательных зарядов и «пустот». Электрическое поле, присутствующее в p-n переходе, разделяет положительные и отрицательны частицы. При этом положительные переходят в верхний слой, а отрицательные в нижний. Это приводит к разности потенциалов, в результате возникает постоянное напряжение. Поэтому становится ясно, что каждый фотопреобразователь действует как батарейка. И если к нему подключить нагрузку, в цепи возникнет ток. При этом его сила зависит от следующего:

  • степень инсоляции;
  • габариты фотопреобразователя;
  • вид фотоэлемента;
  • полное сопротивление подключенных электроприборов.

Схема работы солнечного электроснабжения

Когда рассматривается схема солнечной батареи, то становятся заметны в ней загадочные наименования узлов. Но на первый взгляд, схема электрической цепи и устройство батареи выглядят просто.

Солнечные модули – это основные элементы солнечной батареи. Эти прямоугольные солнечные панели собирают из определенного количества фотоэлементов. Изготавливают фотопанели разные по мощности и напряжению, кратному 12V.

Панели плоской формы хорошо ложатся на поверхностях. Модульные блоки соединяются с помощью взаимосвязанных подключений в гелиобатарею. Главная цель устройства – это трансформация энергии света в постоянный ток необходимой величины.

Схема соединения солнечных батарей

Схема соединения солнечных батарей

Аккумуляторы – это устройства, накапливающие электричество. Когда потребители подключены к электрической сети, энергонакопители сохраняют в себе излишки электроэнергии.Аккумуляторный блок питает сеть нужным объемом энергии и в то же время поддерживает в ней стабильное напряжение, после возрастания величины потребления до высоких значений. Это бывает ночью и в пасмурную погоду, когда не работают солнечные панели.

Контроллер является посредником между солнечным модулем и аккумуляторами. Он корректирует степень заряженности батарей и защищает их от выкипания, что может произойти от перезарядки или уменьшения электрического потенциала ниже приделов, требуемых для стабильного функционирования системы.

Инвертор – это узел, который выполняет функцию трансформации постоянного тока солнечных панелей и аккумуляторов в переменный ток напряжением 220V. Именно это напряжение требуется для большинства бытовых и промышленных электроприборов.

Принцип работы солнечной батареи

Принцип работы солнечной батареи

Пример устройства

Основной смысл подключения солнечных источников электропитания в точном определении нагрузки и правильной настройке контролёра заряда. Самая примитивная схема представлена в устройстве садового фонаря. Эти фонари сегодня становятся очень популярными за счёт яркого освещения. Конечно, зимой свет фонарей, питающихся с помощью фотоэлектрического эффекта солнечной энергией, не такой яркий. В этом случае в схему входит фотоэлемент, накопительный аккумулятор и лампа.

Видео по теме: Солнечная батарея (как устроена)

teplyhouse.ru

Устройство и принцип работы солнечных батарей

Приветствую вас на сайте е-ветерок.ру - я не буду грузить вас ненужной информацией о структуре солнечных элементов и полупроводников, о том что они состоят из выращенных кристаллов кремния, которые являются кварцевым песком, прочей химией и физикой. Об этом вы можете почитать здесь О солнечных панелях Давайте сразу перейдём к конечному продукту и его характерристикам.

Солнечная батарея представляет из себя "пирог", который спекается при высокой температуре.

  • 1. выкладывается рама из анодированного алюминия
  • 2. вначале ложится специальная антибликовая плёнка
  • 3. на неё ложится стекло (закалённое 4мм)
  • 4. на стекло выкладывается специальная прозрачная плёнка (EVA)
  • 5. сверху на плёнку укладываются предварительно распаянная цепочка из солнечных элементов
  • 6. далее укладывается второй слой плёнки EVA
  • 7. последний слой это непрозрачная белая плёнка
  • Этот пирог отправляют в печь, где всё это спекается - склеивается. Плёнка намертво расплавляется и прилипает к стеклу, элементы полностью герметизируются внутри, прикрываясь плотно к пленкам с обеих сторон.

  • 8. после спекания присоединяется распределительная коробка
  • 9. присоединяются провода
  • >

    Солнечная батарея состоит из солнечных элементов, это фотоэлектрические модули (ФЭМ), их можно назвать ячейками. Ячейки в солнечной батарее соединяются последовательно, чтобы увеличить напряжение батареи до требуемого, так-как напряжение одной ячейки составляет всего 0,6V. А для зарядки 12-ти вольтового аккумулятора требуется как минимум 14 вольт. Но напряжение солнечного элемента зависит от освещённости, и чтобы напряжение даже в пасмурную погоду было выше 14 вольт, количество ячеек в батарее обычно равно 36. Напряжение холостого хода при этом 21.6 вольта. Бывают батареи с с другим количеством ячеек, для систем на 24 вольта изготавливаются солнечные панели на 72 ячейки, а так-же на 60 ячеек.

    Один солнечный элемент выдаёт напряжение максимум 0,6 вольт, но достаточно большой ток. Например ячейка размером 156×156мм с эффективностью 17% даёт ток короткого замыкания порядка 9А. Максимальная мощность одного элемента будет при просадке напряжения до 0,47-0,50 вольт. Таким образом батарея состоящая из 36 элементов будет максимально эффективна при напряжении 17-18 вольт. При этом ток под нагрузкой будет составлять чуть более 8 Ампер, а мощность порядка 150 ватт.

    Но если мы используем простой PWM контроллер зарядки АКБ, то напряжение будет равно текущему напряжению аккумулятора. А если напряжение достигнет 14 вольт, то контроллер будет отключать солнечную батарею чтобы аккумулятор не перезарядился. Это я к тому что при заряде напряжение солнечной панели не 17-18 вольт, а 13-14 вольт, а это значит что батарея выдаёт не всю свою мощность, так-как ток она даёт всего 8А, отсюда 14*8=112 ватт. Таким образом 30% энергии просто теряется.

    Такую-же мощность (112 ватт) можно получить если бы в солнечной батарее было не 36 элементов, а 28 элементов. При солнце была-ба такая-же мощность что и с 36 элементов, да хоть с 72 элемента, так-как ток не может быть больше 8 ампер, а напряжение проседает до напряжения АКБ. Но тогда в пасмурную погоду не будет зарядки, так-как напряжение упадет и будет ниже напряжения АКБ. Только для стабильной зарядки ставят лишние 8 солнечных элементов в батареи. Чтобы снимать до 98% энергии с солнечной батареи ставят MPPT контроллеры, которые держат панель в точке максимальной мощности и получаемую энергию преобразуют снижая напряжение на выходе и повышая ток. Так на входе контроллера будет 18 вольт и 8А, а на выходе 14 вольт и 10 Ампер.

    Выпускают солнечные батареи и на 60 элементов, напряжение холостого хода которых 36 вольт, они предназначены для АКБ на 24 вольта, или если соединить две последовательно то для систем на 48 вольт. Такие батареи получаются дешевле, но в пасмурную погоду отдача панелей ниже чем у панелей состоящих их 72 элемента, и если совсем пасмурно то зарядки не будет. Но хочу отметить что в пасмурную погоду мощность солнечных батарей падает в 15-20 раз. И например если при солнце вы получали 100 ватт*ч энергии, то при затянутом облаками небе вы получите всего порядка 5 ватт. Я думаю нет особого смысла переплачивать на 30% больше за солнечные батареи чтобы в пасмурную погоду иметь такое небольшое преимущество. Хотя лучше всего чтобы снимать 98% энергии использовать MPPT контроллер.

    Многие спрашивают что лучше, монокристаллические батареи или поликристаллические?

    Монокристаллические панели немного дороже так-как в их производстве ячеек используется кремний высокой очистки, до 100%, и процесс образования кристаллов происходит при 1300°. КПД монокристаллических панелей немного выше, и кристаллы в ячейках направлены строго параллельно, и однородны. От этого максимальный КПД только при прямых солнечных лучах, а при свечении под углом КПД значительно падает.

    Поликристаллические ячейки производятся методом осаждения паров кремния при температуре 300°, и кристаллы усаживаются неравномерно, и направлены в разные стороны. Из-за этого ниже КПД, но они лучше работают при рассеянном свете, и высоких температурах.

    Но разница совсем незначительна, и зависит от качества самих ячеек, их светочувствительности и других факторов. В итоге разница не превышает 5%, и это заметно только в пасмурную погоду. Или при очень острых углах падения солнечных лучей.

    e-veterok.ru

    Устройство солнечной батареи и солнечной панели

    Фотогальванический эффект впервые наблюдал в 1939 году Антуан Анри Беккерель, французский физик, но первый прототип солнечной батареи был сделан Чарльзом Фриттсом, американским изобретателем в 1883 году. Устройство этой солнечной батареи представляло собой полупроводник, который был покрыт тончайшим слоем золота. Такая батарея имела эффективность около 1%.

    Устройство солнечной батареи и солнечной панели

    Александр Столетов в 1888 году изобрел первый во всем мире фотоэлектрический элемент. Альберт Эйнштейн в 1905 году объяснил в своей работе явление фотоэлектрического эффекта, за что в 1921 году был удостоен Нобелевской премии по физике. Солнечная батарея, имеющая современный вид, была запатентована Расселом Олом в 1946 году.

    Современные солнечные батареи на основе кристаллического кремния были разработаны в Лабораториях Белла инженерами Кельвином Соулзером Фуллером, Дэрил Чапин и Геральдом Пирсоном в 1954 году.

    Сегодня солнечные батареи выполняются в основном на основе кремния. Есть две технологии изготовления – поликристаллическая и монокристаллическая. Первая технология более современна и применяется для получения солнечных батарей, стоимость которых дешевле.

    Есть также солнечные батареи на основе теллурия, селенидов меди, кадмия, галлия и индия, аморфного кремния.

    Солнечная батарея (ее называют также фотоэлектрические элементы) – это электрические твердотелые устройства, предназначенные для преобразования энергии солнца в электроэнергию посредством фотоэлектрического эффекта. Каждая солнечная батарея в своем устройстве содержит солнечные ячейки.

    Солнечные ячейки объединяют для создания модулей, вырабатывающих электричество из энергии солнца. Эти сборки монтируются вместе, чтобы получалась группа из солнечных модулей. Они устанавливаются на специальные стеллажи и поворотные устройства, которые направляют группу солнечных модулей, которая включает в себя электронный обвес, на солнце. Такие сборки имеют название солнечных панелей.

    В русском языке солнечными батареями называются и все детали сборки вместе, и по отдельности. Это неверно, так как слово «батарея» подразумевает аккумулирование или/и выделение энергии. С другой стороны, в солнечной панели иногда тоже есть батареи – это могут быть аккумуляторы, накапливающие заряд, который поступает от солнечных сборок. Но солнечная панель и её сборка – это уже больше генератор.

    В английском языке упоминается и солнечный модуль, и солнечная панель, и фотоэлектрическая панель. Отличие заключается в том, что солнечный модуль представляет собой спаянное, самостоятельное гидроизолированное устройство, он не разбирается на солнечные ячейки. Солнечную панель можно разделить на солнечные модули.

    Мы будем использовать словосочетание – солнечная батарея, которое будет означать именно неразборный солнечный модуль, скомпонованный из солнечных ячеек в солнечную панель.

    Существует много видов фотогальванических ячеек. Они не обязательно используются для обустройства солнечных батарей. Они служат также для обнаружения света в других системах, например, обнаруживая инфракрасное излучение. Также они применяются для измерения интенсивности светового потока.

    Существуют различные обозначения фотоэффекта. Фотовольтаический эффект – это появление электродвижущей силы под действием сил электромагнитного поля. Фотогальванический эффект – образование электрического тока в процессе освещения диэлектрика или полупроводника или образование электродвижущей силы на освещаемом образце при разомкнутой цепи.

    Одновременно с этим, фотоэффект – это испускание электронов или другого электромагнитного излучения в жидких или твердых веществах.

    Мы будем использовать термин фотогальванические элементы.

    Устройство солнечных батарей

    Как правило, устройство солнечной батареи таково, что фотогальванические модули заключены в корпус. Сверху они покрыты стеклом, позволяющим проникать солнечному свету до самих ячеек, одновременно защищая их от вредных химических и механических воздействий. Сзади модули защищает крышка из пластика с креплениями. Солнечные ячейки соединены в модулях в серии для создания необходимого напряжения, они соединяются в этом случае последовательно. В случае параллельного соединения будет выдаваться большой ток, но из-за электрических эффектов, происходящих в панелях, и условий внешней среды оно проблематично. Например, если отдельные строки из ячеек (а солнечному модулю свойственна строчная структура) будут затенены, то это может привести к обратным токам через затененные ячейки от ячеек, которые освещены. Это приведет к резкому снижению результативности и даже выходу из строя ячеек в устройстве солнечной батареи.

    Нужно, чтобы строки из ячеек были самостоятельными элементами, четыре строки по 10 вольт, например. Чтобы предотвратить теневые эффекты применяются специальные схемы защиты и распараллеливания строк.

    Для достижения нужного соотношения силы тока и напряжения солнечные модули соединяются в панели параллельно или последовательно. Но специалисты рекомендуют применять специальные независимые системы способствующие распределению нагрузки - maximum power point trackers (MPPT).

    Данные системы помогают избежать фиксированной цепи в процессе переключения модулей в последовательный или параллельный режимы для компенсации затененных участков в устройстве солнечной батареи или панели.

    Энергия, собранная с солнечной панели идет к потребителям через инвенторы напряжения. Энергия в автономных системах запасается в батареях и применяется по мере необходимости.

    Принцип работы солнечных батарей

    1. Фотоны попадают на поверхность солнечной батареи, ударяются о ее поверхность, а затем поглощаются ее рабочим материалом, кремнием, например.

    2. Фотоны, встречаясь с атомами вещества, начинают выбивать из него его собственные электроны. В итоге возникает разность потенциалов. Электроны, которые свободны, начинают двигаться внутри вещества для погашения разности потенциалов. Образуется электрический ток. Так как солнечная батарея по своему устройству является полупроводником, то электроны могут двигаться в одном направлении.

    3. Полученный ток солнечная батарея преобразует в постоянный ток и направляет его аккумулятору или потребителю.

    Стоимость солнечных панелей (батарей) ежегодно неуклонно снижается. Происходит это благодаря созданию новых методов изготовления ячеек, изучения и обработки материалов.

    Начиная с середины 2010 года стоимость ватта электроэнергии, производимой солнечной батареей, снизилась до 1,2-1,5 долларов для кристаллических модулей.

    Технологии и материалы

    Солнечные батареи создаются из кристаллического кремния. Сегодня это самое распространенное вещество для обустройства ячеек в солнечных батареях. Его еще называют «кремний солнечного качества». Данный вид кремния разделяется на виды, которые определяются размером кристаллов и методиками изготовления.

    Монокристаллический кремний. Изготовляется в основном тигельным методом или методом Чохральского. Он не отличается принципиально от методов выращивания медного купороса или кристаллов соли.

    Кремний расплавляется в большом тигле. Затем в него добавляется затравка, являющаяся кремниевым стержнем, вокруг которой начинается процесс нарастания нового кристалла. Затравка и тигель вращаются в разные стороны. В итоге образуется огромный круглый кристалл кремния, его нарезают на пластинки, из которых выполняются ячейки солнечной батареи. Основным недостатком метода является множество обрезков и специфическая форма солнечных монокристаллических ячеек – квадрат, у которого обрезаны углы.

    Поликристаллический кремний. Этот материал является более простым и дешевым в изготовлении. В отличие от монокристаллического кремния, являющегося единым кристаллом с регулярной решеткой, поликристаллический кремний представляет собой совокупность из множества разных кристаллов, которые образуют единый кусок. Отсюда и специфический блик на поверхности солнечных батарей, в устройстве которых он содержится, напоминающий металлические хлопья.

    Ленточный кремний. Это вид поли-кремния. Он создается путем наплавления тонких кремниевых слоев друг на друга. Образуется поликристаллическая решетка. Последующая распиловка не требуется, поэтому его производство еще дешевле. Но он мене эффективен.

    zeleneet.com

    Солнечная батарея - устройство солнечной батареи

    September 29, 2011

    Солнечная батарея – или как оно работает?

    Солнечная батарея – практически волшебное слово употребляемое в любой научной фантастике. Однако настоящая солнечная батарея – это далеко не обычная панель. В науке вообще нет понятия “солнечные батареи”, равно как и “солнечная батарея” – зато есть понятия ячеек, панелей и многого другого, о чем мы расскажем вам в этой статье.

    В современном мире все уже пришли к пониманию того, что на нефти и газе долго цивилизация не проживет. Следовательно надо переходить на другие источники, а именно солнце, геотермальные, ветер и вода. Про ветрогенераторы мы уже писали, теперь пора писать про устройство солнечной батареи.

    Впервые фотогальванический эффект наблюдал в 1839 году французский физик Антуан Анри Беккерель, однако первый прототип солнечной батареи сделал в 1883 году американский изобретатель Чарльз Фриттс. Устройство первой солнечной батареи представляло из себя полупроводник покрытый сверхтонким слоем золота. Эффективность батареи была около 1%.

    В 1888 году Александр Столетов создал первый в мире фотоэлектрический элемент. А в 1905 году Альберт Эйнштейн в своей работе объяснил явление фотоэлектрического эффекта, за что был удостоен Нобелевской премии по физике в 1921 году. В 1946 году солнечная батарея современного вида была запатентована Расселом Олом (Russell Ohl).

    Современные высокоэффективные солнечные батареи на кристаллическом кремнии были созданы в Лабораториях Белла (Bell Laboratories), инженерами Дэрил Чапин (Daryl Chapin), Кельвином Соулзером Фуллером (Calvin Souther Fuller) и Геральдом Пирсоном (Gerald Pearson) в 1954 году. С тех пор солнечная батарея начала свое победное шествие по миру.

    Устройство солнечных батарей

    Современные солнечные батареи делаются в основном на основе кремния. Существуют две технологии изготовления – монокристаллическая и поликристаллическая. Последняя более современна и используется для получения более дешевых солнечных батарей. Также существуют солнечные батареи созданные на основе теллурида кадмия, селенидов меди индия и галия, а также аморфного кремния.

    Солнечная батарея (называемые также фотоэлектрические элементы) — это твердотельные электрические устройства, предназначенные для преобразования солнечной энергии в электрическую, посредством фотоэлектрического эффекта. Каждая солнечная батарея состоит из солнечных ячеек.

    Сборки солнечных ячеек используются для создания модулей, для выработки электричества из солнечной энергии. Такие сборки монтируются вместе, для получения группы из солнечных модулей, которые в свою очередь устанавливаются на специальные поворотные устройства или слеллажи, ориентирующие группу солнечных модулей на солнце, которая также включает в себя другой электронный обвес. Такие сборки называются солнечными панелями.

    Надо заметить, что в русском языке и все детали сборки вместе и по отдельности называют солнечными батареями. Это неверно, поскольку слово “батарея” подразумевает под собой аккумулирование и/или выделение энергии. По сути, батареи в солнечной панели тоже есть — это могут быть аккумуляторы, которые накапливают заряд, поступающий от солнечных сборок. Но солнечная сборка это скорее генератор.

    Также следует сказать, что в английском языке присутствует упоминание как солнечного модуля, так и солнечной панели. Различие состоит в том, что солнечный модуль нельзя разобрать на солнечные ячейки, он представляет собой самостоятельное, спаянное и гидроизолированное устройство. В то время как солнечную панель можно разобрать на солнечные модули.

    В данном цикле статей мы будем использовать более привычное словосочетание — солнечная батарея, имея ввиду именно неразборный солнечный модуль, собранный из солнечных ячеек.

    Вообще видов фотогальванических ячеек много. Они необязательно используются для создания солнечных батарей. Они могут служить для обнаружения света в любых других системах, обнаруживая, например инфракрасное излучение. Также фотоэлектрические ячейки используются для измерения интенсивности светового потока.

    Присутствует несколько обозначений фотоэффекта.

    Фотовольтаический эффект (греч. φῶς (phōs) означающее свет и англ. “voltaic” по имени Вольты) — это возникновение электродвижущей силы под действием электромагнитного поля.

    Фотогальванический эффект — возникновение электрического тока при освещении полупроводника или диэлектрика или возникновение электро-движущей силы на освещаемом образце при разомкнутой цепи.

    В тоже время фотоэффект — это испускание электронов или любого электромагнитного излучения в веществах, будь то твердые или жидкие.

    Для удобства мы будем употреблять термин фотогальванические элементы.

    Применения солнечных батарей

    Фотогальванические модули обычно заключены в своеобразный корпус. Сверху их покрывают стеклом, которое позволяет солнечному свету проникать до самих ячеек, в тоже время защищая их от внешних механических и химический воздействий. Сзади модули защищены пластиковой крышкой с креплениями.Солнечные ячейки обычно соединены в модулях в серии, чтобы создавать достаточное напряжение, в этом случае они соединяются по последовательной схеме. Параллельное соединение ячеек дает больший ток, но оно проблематично из-за условий внешней среды и электрических эффектов, протекающих в панелях. Например затенение отдельных строк из ячеек (солнечный модуль имеет строчную структуру) может привести к обратным токам через затененные ячейки от освещенных товарищей. Это может привести к серьезному снижению эффективности и даже выходу ячеек из строя.

    Строки из ячеек должны быть самостоятельными элементами, например четыре строки по десять вольт. Для предотвращения теневых эффектов используются специальные схемы распараллеливания и защиты строк.

    Солнечные модули могут соединяться в панели последовательно или параллельно, для достижения необходимого соотношения напряжения и силы тока. Однако специалистами рекомендуется использовать специальные независимые системы распределения нагрузки – MPPT (maximum power point trackers).Системы распределения помогают избежать фиксированной цепи, переключая модули в параллельный или последовательный режимы для компенсации затененных участков солнечной панели.

    Собранная с солнечной панели энергия поступает к потребителям через инвенторы напряжения. В автономных системах, энергия запасается в батареях и используется по надобности.

    Как работают солнечные батареи

    Солнечная батарея работает следующим образом.

    1. Фотоны ударяются о поверхность солнечной батареи и поглощаются её рабочим материалом, например кремнием.2. Фотоны, сталкиваясь с атомами вещества выбивают из него его родные электроны. В результате чего возникает разность потенциалов. Свободные электроны начинают двигаться внутри вещества, чтобы погасить разность потенциалов. Возникает электрический ток. Так как солнечная батарея это полупроводник, электроны движутся только в одном направлении.3. Получаемый ток солнечная батарея преобразует в постоянный и отдает его потребителю или аккумулятору.

    Стоимость солнечных панелей (солнечных батарей) неуклонно снижается год от года. Это происходит благодаря разработке новых методов изготовления ячеей, изучению материалов и методов их обработки.Начиная с середины 2010 года цена производимого солнечной батареей ватта электрической энергии упала до 1,2-1,5 долларов для кристаллических модулей.

    Материалы и технологии

    силикон и кремний

    “Здесь интересно упомянуть, что кремний по английски — silicon, а силикон — silicone).”

    Солнечные батареи делаются из кристаллического кремния.Кристаллический кремний это самое популярное на сегодняшний день вещество для изготовления солнечных ячеек. Его также называют «кремний солнечного качества».  Этот вид кремния подразделяют на различные виды, определяемые методиками изготовления и размером кристаллов.

    Монокристаллический кремний

    Чаще всего изготовляется методом Чохральского или тигельным методом. Схематично он показан на рисунке.Принципиально он не отличается от методов выращивания кристаллов соли или медного купороса.В большом тигле расплавляется кремний. После чего в него опускается затравка, представляющая собой кремниевый стержень-затравку, вокруг которого и начинает нарастать новый кристалл. Затравка и тигель вращаются в противоположные стороны. В результате получается огромный круглый кристалл кремния, который нарезают на пластинки, из которых изготавливают ячейки солнечной батареи. Однако главным недостатком этого метода является большое количество обрезков, а также специфическая форма монокристаллических солнечных ячеек — квадрат с обрезанными углами.

    Поликристаллический кремний

    Поликристаллический кремний является более дешевым и более простым в производстве. В отличие от монокристаллического кремния, который являет собой единый кристалл с регулярной решеткой, поли-кремний это совокупность из массы различных кристаллов, образующих единый кусок. Отсюда появляется специфический блик, похожий на металлические хлопья, на поверхности солнечных батарей, сделанных из него.

    Ленточный кремний

    Это тип поликристаллического кремния. Он изготавливается путем наплавнения тонких слоев кремния друг на друга. Образует поликристаллическую структуру. Не требует последующей распиловки, поэтому еще более дешев в производстве. Однако он менее эффективен.

     

     

    lab-37.com

    Принцип работы и устройство солнечной батареи

    Принцип работы и устройство солнечной батареи

    В профессиональных кругах панели, преобразующие солнечный свет в электроэнергию, называют фотоэлектрическими преобразователями, которые в разговорной речи или при написании понятных для широких масс статей принято называть солнечными батареями. Принцип работы этих устройств, первые рабочие экземпляры которых появились достаточно давно, на самом деле достаточно простой для понимания человеком, имеющим только знания со школьной скамьи.

    Не секрет, что p-n переход может преобразовывать свет в электроэнергию. В школьных опытах нередко проводят эксперимент с транзистором со спиленной верхней крышкой, позволяющей свету падать на p-n переход. Подключив к нему вольтметр, можно зафиксировать, как при облучении светом такой транзистор выделяет мизерный электрический ток. А если увеличить площадь p-n перехода, что в таком случае произойдет? В ходе научных экспериментов прошлых лет, специалисты изготовили p-n переход с пластинами большой площади, вызвав тем самым появление на свет фотоэлектрических преобразователей, называемых солнечными батареями.

    Принцип действия современных солнечных батарей сохранился, несмотря на многолетнюю историю их существования. Усовершенствованию подверглась лишь конструкция и материалы, используемые в производстве, благодаря которым производители постепенно увеличивают такой важный параметр, как коэффициент фотоэлектрического преобразования или КПД устройства. Стоит также сказать, что величина выходного тока и напряжения солнечной батареи напрямую зависит от уровня внешней освещенности, который воздействует на неё.

    В структуре солнечной батареи используется p-n переход и пара электродов для снятия выходного напряжения

    На картинке выше можно видеть, что верхний слой p-n перехода, который обладает избытком электронов, соединен с металлическими пластинами, выполняющими роль положительного электрода, пропускающими свет и придающими элементу дополнительную жесткость. Нижний слой в конструкции солнечной батареи имеет недостаток электронов и к нему приклеена сплошная металлическая пластина, выполняющая функцию отрицательного электрода.

    Технология, по которой изготовлена солнечная батарея, влияет на её КПД

    Считается, что в идеале солнечная батарея имеет близкий к 20 % КПД. Однако на практике и по данным специалистов сайта www.sun-battery.biz он примерно равен всего 10 %, при том, что для каких солнечных батарей больше, для каких то меньше. В основном это зависит от технологии, по которой выполнен p-n переход. Самыми ходовыми и имеющими наибольший процент КПД продолжают являться солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все распространеннее. К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. Монокристаллические светопреобразователи имеют исключительно чёрно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи, изготавливаемые методом литья, оказались более дешевыми в производстве. Однако и у поли- и монокристаллических пластин есть один недостаток — конструкции солнечных батарей на их основе не обладают гибкостью, которая в некоторых случаях не помешает.

    Ситуация меняется с появлением в 1975 году солнечной батареи на основе аморфного кремния, активный элемент которых имеет толщину от 0,5 до 1 мкм, обеспечивая им гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на светопоглощаемость аморфного кремния, которая примерно в 20 раз выше, чем у обычного, эффективность солнечных батарей такого типа, а именно КПД не превышает 12 %. Для моно- и поликристаллических вариантов при всем этом он может достигать 17 % и 15 % соответственно.

    Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей

    Чистый кремний в производстве пластин для солнечных батарей практически не используется. Чаще всего в качестве примесей для изготовления пластины, вырабатывающей положительный заряд, используется бор, а для отрицательно заряженных пластин мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря ним солнечные батареи становятся менее чувствительными к перепадам окружающих температур.

    Большинство солнечных батарей могут накапливать энергию, представляя собой системы

    В современном мире отдельно от других устройств солнечные батареи используются все реже, чаще представляя собой так называемые системы. Учитывая, что фотоэлектрические элементы вырабатывают электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически бесполезными. С системами на солнечных батареях всё иначе. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его вырабатывает, а ночью, накопленный заряд может отдавать потребителям.

    Солнечная система представляет собой совокупность солнечной батареи и аккумулятора

    Для увеличения мощности, выходного напряжения и тока на основе солнечных батарей создаются панели, где отдельные элементы соединяются последовательно или параллельно.

    www.sun-battery.biz

    Солнечная батарея своими руками: устройство и изготовление

    Оглавление статьи: Солнечная батарея своими руками: принцип работы системы солнечного электроснабжения Устройство солнечной батареи: технология самостоятельного изготовления

    Согласитесь, иметь в загородном доме бесплатную электроэнергию – это мечта практически каждого человека. Мечтают многие, но только некоторые предпринимают шаги к ее осуществлению, несмотря даже на то, что электрифицировать дом с использованием альтернативного источника энергии не так уж сложно, а главное, не дорого. Если все делать самостоятельно, то расходы на такую электрификацию не превысят 300-400 долларов. В этой статье от сайта stroisovety.org мы расскажем, как делается солнечная батарея своими руками и как устроена система электроснабжения с ее использованием.

    использование солнечных батарей

    Использование солнечных батарей

    Солнечная батарея своими руками: принцип работы системы солнечного электроснабжения

    Прежде чем приступать к решению вопроса, как сделать солнечную батарею, сначала разберемся с принципом работы альтернативной системы электроснабжения в целом. Понимание того, для чего и какой именно ее элемент предназначен, даст вам возможность наглядно представить сложность системы, и вы уже определитесь, насколько реально самостоятельно электрифицировать дом в такой способ. Итак, система солнечного электроснабжения дома состоит из трех основных частей.

    1. Солнечная батарея – это комплекс небольших по размерам элементов, в задачи которого входит преобразование солнечного света в поток положительно и отрицательно заряженных электронов (электрический ток, если кто не знает). Особенность этих солнечных элементов заключается в том, что они не в состоянии вырабатывать ток большого напряжения – нормальным считается, если один такой элемент генерирует 0,5V. Поэтому о генерировании напряжения в 220V не может быть и речи, так как такая электростанция будет занимать огромную площадь. В задачи солнечных батарей входит выработка электроэнергии напряжением в 18V – этого вполне достаточно, чтобы зарядить двенадцати вольтовую аккумуляторную батарею. Это и есть второй элемент системы солнечного электроснабжения.
    2. Аккумуляторы. В одной системе их может использоваться свыше 10шт. Дело в том, что зарядки одной батареи не хватит надолго для обеспечения дома нужным количеством электричества. Здесь все зависит от количества и мощности одновременно используемых потребителей – по крайней мере, количество этого элемента системы можно со временем увеличивать. Но следует понимать, что одновременно придется выполнять подключение дополнительных солнечных батарей.
    3. Инвертор для солнечных батарей – в задачи этого устройства входит преобразование тока с низким напряжением в электричество высокого напряжения. Такое устройство можно свободно приобрести в готовом виде за сравнительно небольшие деньги. Приобретая инвертер, нужно обратить внимание на выдаваемую им мощность – для энергоснабжения дома понадобится купить устройство с выходной мощностью не менее 4кВт.
    солнечная батарея своими руками фото

    Солнечная батарея своими руками фото

    Именно с этими элементами системы придется поработать, чтобы сделать использование солнечных батарей эффективным. Последние два лучше приобрести (они продаются по вполне доступным ценам), а вот первые можно изготовить самостоятельно, если, конечно, не хотите платить баснословные деньги.

    как сделать солнечную батарею своими руками фото

    Как сделать солнечную батарею своими руками фото

    Устройство солнечной батареи: технология самостоятельного изготовления

    Для начала придется решить вопрос с приобретением солнечных элементов – ведь не думаете же вы, что их можно повынимать из дешевых китайских калькуляторов? Тут есть один нюанс – новые элементы обойдутся достаточно дорого (проще уже будет купить готовую батарею в сборе). Поэтому лучше приобретать поврежденные, но работоспособные элементы – купить их можно на аукционе eBay или других подобных торговых площадках. Для одной батареи таких элементов понадобится 36шт. – лучше взять с запасом, так как некоторые из них могут быть не совсем рабочими. Их нужно сразу проверить прибором и убедиться, что они справляются со своими задачами. После этого спрятать их подальше до стадии непосредственного монтажа, так как эти элементы очень хрупкие.

    изготовление и подключение солнечной батареи

    Изготовление и подключение солнечной батареи

    А пока элементы отлеживаются и ждут своего часа, самое время заняться изготовлением корпуса солнечной батареи. Для этого понадобятся деревянные бруски, фанера, ДВП и оргстекло. Из фанеры, предварительно рассчитав размер, вырезаем днище корпуса и обрамляем его по периметру бруском толщиной 20-25мм. В брусках с шагом 15-20см нужно будет насверлить отверстий диаметром 10мм – они обеспечат вентиляцию внутреннего пространства батареи и не дадут элементам перегреваться в процессе работы.

    устройство солнечной батареи

    Устройство солнечной батареи

    После того как с этим будет покончено, самое время заняться подложкой для солнечных элементов – ее изготавливают из ДВП и она должна четко ложиться внутрь корпуса. Подложку так же, как и бруски, нужно снабдить вентиляционными отверстиями. Они сверлятся квадратно-гнездовым способом через каждые 5см. Сразу же после этого можно позаботиться о крышке корпуса – она вырезается из оргстекла и крепится с помощью саморезов через заранее просверленные отверстия.

    После того как корпус будет готов, его можно красить в два слоя и откладывать для высыхания. А пока он сохнет, достаем из укромного местечка солнечные элементы, выкладываем их на подложке из ДВП вверх тормашками и занимаемся их распайкой – все элементы соединяются между собой последовательно. Здесь нужно тщательно продумать механизм спаивания – дело в том, что впоследствии переворачивать соединенные воедино элементы будет непросто. Соединять их нужно сначала рядами, потом переворачивать, а затем уже объединять ряды в единый последовательный комплекс. Как только с этой работой будет покончено, элементы следует приклеить с помощью силикона – одной капли в центре каждого солнечного элемента будет вполне достаточно.

    как изготовить солнечные батареи для частного дома фото

    Как изготовить солнечные батареи для частного дома фото

    Теперь проверяем, что у нас получилось – подсоединяем приборчик и измеряем выходное напряжение. Если все правильно собрано, то на выходе должно быть почти 19V. Если так и есть, то впаиваем в цепь (последовательно) небольшой диод марки Шоттки 31DQ03 или ему подобный для предотвращения разрядки аккумуляторов в солнечные батареи для частного дома, выводим выходные провода и устанавливаем крышку из оргстекла.

    Все, батарея готова. После нескольких дней тестирования на ее способность заряжать аккумулятор герметизируем все стыки, кроме вентиляционных отверстий и приступаем к сборке системы индивидуального электроснабжения.

    установка солнечных батарей фото

    В заключение несколько слов о том, где и как выполняется установка солнечных батарей. Здесь правило одно – солнечные батареи устанавливаются в самом незатененном месте. Как правило, это крыша дома, и здесь дополнительно понадобится изготовить специальные опоры. В принципе, это несложно – если вами была изготовлена солнечная батарея своими руками, то разработать и сделать для нее опоры не составит никакого труда.

    Автор статьи Александр Куликов

    stroisovety.org