Зарядка для шуруповерта 12 вольт своими руками. Зарядное устройство для ni cd аккумуляторов своими руками
Автоматический зарядник для ni-mh аккумуляторов
Процесс зарядки Ni-Mh аккумуляторов в авиамоделизме немного отличается от общепринятой. Обычно моделист заряжает аккумуляторы перед выездом на поле, ставя аккумулятор на ночную зарядку. Но бывает, что при быстром сборе на полёты, аккумы борта или аппаратуры оказываются полностью или частично разряженными и зарядить обычным "ночным" зарядником просто нет время.
Плюсы современных NiMh аккумуляторов, - это возможность заряжать их большим током, до 1С без последствий для его здоровья. Единственное, чему надо уделить внимание при заряде, - это температуре и конечному напряжению заряда. Простейший зарядник можно посмотреть тут, он не автоматизирован и контроль полного заряда контролируется рукой на повышение температуры. Так же можно купить зарядное устройство для всех типов аккумуляторов.
Чтобы обезопасить аккумулятор от перезаряда, контроль по напряжению можно доверить автомату, который отключит батарею при достижении оределённого напряжения и будет поддерживать аккум в заряженном состоянии. О таком автоматическом зарядном устройстве для Ni-Mh и Ni-Cd и пойдет речь в этой статье.
Схема зарядного устройства ni-mh аккумуляторов
Мною разработано и собрано на макетной плате зарядное устройство для NiMh и Ni-Cd , схема простая, все элементы доступны.
Пороговым элементом в схеме является стабилитрон D1, он открывается при достижении напряжения стабилизации открывая тем самым ключ на транзисторах и включая реле, которое отключает аккумулятор. Делитель напряжения на R1-R2 устанавливает верхний порог, при достижении которого отключается аккум, для 5 банок гидрида он составляет 7,2v (переключатель s1 замкнут). При подключении аккумулятора на R5 падает напряжение до напряжения аккумулятора, а так как оно меньше 7,2в , то D1 закрыт и реле обесточено, при этом его контакты замкнуты и происходит зарядка. При достижении 7,2в стабилитрон открывается, реле срабатывает и отключает аккумулятор.
Напряжение аккумулятора удерживает стабилитрон открытым, а реле включённым, контакты реле остаются разомкнутыми, - это происходит какое то время пока напряжение аккумулятора не упадёт ниже 7,1в, при этом стабилитрон закроется и реле опять подключит аккумулятор на зарядку. Этот процесс постоянно повторяется. Светодиод сигнализирует об окончании зарядки.
Назначение других элементов зарядного устройства для Ni-Mh следующее:
- C1 - снижает частоту переключения реле в отсутствии подключённого аккумулятора (признак работы ЗУ- щёлкание реле без подключённого аккума).
- D2 - защищает транзисторы от пробоя обратным напряжением возникающим в катушке реле.
- R5 мощностью не менее 2w - устанавливает ток заряда и подбирается для получения желаемого тока (вместо него можно использовать лампы накаливания 12v).
- S1 - переключает режимы для заряда 5 баночных и 8 баночных батарей.
- S2 - не обязательный элемент, служит он для принудительного перевода ЗУ в режим заряда.
- Реле у меня стоит не известной марки, от блока управления магазинного холодильника.
- D1 - можно заменить на любой другой стабилитрон 2...4v.
Вот что получилось у меня. Поставил два светодиода для красоты.
Настройка зарядника Ni-Mh
Подстроечные резисторы в среднее положение, подключаем зарядник к источнику питания 12...18v, реле начинает периодически щёлкать, S1 замкнут, подключаем ni-mh аккумулятор с подключённым к нему вольтметром. Резистором R1 добиваемся отсутствия свечения светодиода и контролируем напряжение на аккумуляторной батарее. При достижении 7,2в начинаем крутить R1 до загорания светодиода и щёлчка реле (желательно выполнить эту операцию несколько раз, для более точного позиционирования резистора). Всё, настройка для 5и баночной батарейки завершена.
Размыкаем S1 и то же самое проделываем с 8и баночной батареей, только теперь вращаем R2 и порог срабатывания 11,5...11,6v. R1 при этом крутить нельзя! При заряде 8и баночных батареек от источника 12в - светодиод не будет загораться, тут выхода два: Либо повесить светодиод на отдельную пару контактов реле, либо увеличить напряжение питания зарядника до 15...18в.
Аналогично можно настроить данный зарядник и для работы с Ni-Cd батареями.
В процессе зарядки током около 500мА нагрева Ni-Mh батарей ёмкостью 1700 мА не замечено как это бывает при зарядке малым током за ночь, при этом аккумулятор заряжается полностью, отдавая при дальнейшем разряде почти всю емкость.
Выставить конечное напряжение можно довольно точно и не сложной доработкой можно приспособить два таких зарядника для двух банок Li-Fe аккумуляторов.
xn--80ahduedo.xn--p1ai
Зарядное устройство для Ni-Cd аккумуляторов — Меандр — занимательная электроника
Читать все новости ➔
Хотя никель-кадмиевые аккумуляторы уступили позиции другим типам аккумуляторов (металлогидридным, литий-ионным и т.п.), но все равно этот тип аккумуляторов широко применяется для питания радиоэлектронной аппаратуры, в основном мобильного предназначения. Так, автор статьи использует никель-кадмиевый аккумулятор фирмы Gpbatteries уже несколько лет для питания компьютерной радиомышки Atech G7-630.
Основная характеристика аккумуляторов - емкость (количество запасенной в нем энергии). Емкость обычно указывают в мАч или Ач. Номинальной емкостью называют типовое значение, приводимое в характеристиках аккумулятора. Она определяется, в первую очередь, конструкцией аккумулятора и технологией изготовления.
В процессе эксплуатации напряжение аккумулятора уменьшается от максимального до минимального значения. Минимальным называют напряжение, при котором оставшаяся энергия аккумулятора незначительна и дальнейшая его эксплуатация нецелесообразна. Для никель-кадмиевых аккумуляторов минимальное напряжение составляет 1,0 В, и это четкий критерий завершения разрядки. Номинальным называют напряжение, установившееся на аккумуляторе через некоторое время после окончания зарядки. Это напряжение приводят в справочных данных на аккумулятор. Оно обычно равно 1,2 В. Номинальное напряжение аккумулятора определяется только его электрохимической системой, то есть гальванической парой и электролитом. Сразу после окончания заряда и отключения зарядного устройства напряжение аккумулятора максимально и составляет 1,5...1,55 В. Это напряжение, обычно, считают критерием окончания заряда аккумулятора. Конструкция аккумуляторов герметична. При зарядке давление в аккумуляторе повышается. В процессе разрядки давление внутри аккумулятора снижается, и при напряжении ниже минимального оно может снизиться до уровня, который не обеспечивает герметичность. Длительное хранение аккумулятора в разряженном состоянии может вывести его из строя. Известно, что аккумуляторы, долго не работавшие, теряют емкость и работоспособность. Восстановить их можно за несколько циклов заряда-разряда. С течением времени эксплуатации аккумуляторов происходят естественные процессы старения, и характеристики аккумуляторов ухудшаются. Срок службы аккумуляторов обычно достигает 5 лет, но при нормальной эксплуатации они надежно работают и до 10 лет.
Схема зарядного устройства (ЗУ), позволяющая в некоторых случаях продлить срок эксплуатации никель-кадмиевых и металлогидридных аккумуляторов, показана на рис.1. Это ЗУ производит циклический заряд-разряд аккумулятора разными по амплитуде и по длительности импульсами. Заряд- разрядные импульсы формирует генератор, выполненный на 555-м интегральном таймере DА1. У разных производителей в его маркировке имеются различные префиксы: NE, SЕ, SLC, TLС и др. Российский (советский) аналог этой МС - КР1006ВИ1.
Рис. 1
Рассмотрим работу ЗУ по схеме рис.1 подробнее. Когда на входах 2 и 6 микросхемы DА1 напряжение находится в пределах от 1/3 до 2/3 напряжения Еп1, происходит заряд конденсатора С1 от плюса источника питания Еп1 через резисторы R1 и R2 на минус Еп1. При этом на выходе микросхемы (выводе 3 DА1) формируется высокий уровень, несколько меньший по уровню, чем напряжение питания. Этот процесс длится до момента достижения на конденсаторе С1 напряжения, равного 2/3 напряжения питания. Так формируется импульс, управляющий зарядом аккумулятора. Длительность сформированного импульса заряда можно с достаточной точностью определить по формуле:
Tз=0,693(R1+R2)С.
При достижении на конденсаторе С1 напряжения, равного 2/3 Еп1, переключается внутренний компаратор микросхемы, и на выходе формируется напряжение, близкое к потенциалу общей шины. При этом также открывается внутренний транзистор таймера, коллектор которого подсоединён к выводу 7 микросхемы. Конденсатор С1 начинает разряжаться через резистор R2. Разряд происходит до момента достижения на С1 напряжения 1/3 Еп1. Так формируется импульс, управляющий разрядом аккумулятора. Длительность этого импульса можно рассчитать по формуле:
Tр=0,693Р2С.
При достижении на С1 уровня 1/3 Еп1 переключается внутренний компаратор нижнего уровня, и вновь на выходе микросхемы устанавливается высокое напряжение. Эти переключения будут повторяться до тех пор, пока включено напряжение питания. Как видно из приведенных выше формул, длительности импульсов заряда и разряда аккумулятора совершенно не зависят от величины питающего напряжения.
Далее импульсы инвертируются микросхемой с открытым коллектором типа SN74LS05 (отечественный аналог К555ЛН2). Микросхема с открытым коллектором необходима для формирования двухполярных импульсов. Когда на входе элемента DD1.2 присутствует низкий уровень, то на выходе - высокий, и транзистор VT2 закрыт. Когда на входе элемента DD1.6 присутствует низкий уровень, то на выходе - высокий, и транзистор VT1 открыт. Соответственно, открыт и транзистор УЇ3. Происходит заряд аккумулятора током от плюса источника Еп2 через аккумулятор, ограничительный резистор R12, участок К-Э транзистора на минус источника Еп2. Величину тока заряда можно определить по формуле:
Iз=(Еп2-UкэVТ3-Uакк)/R12.
Светодиод HL2 является индикатором режима заряда аккумулятора.
Когда на входе элемента DD1.2 присутствует высокий уровень, то на выходе - низкий, и транзистор VT2 открыт. Происходит разряд аккумулятора током от плюса источника Еп1 через участок Э-К транзистора и ограничительный резистор Р11, аккумулятор на минус источника Еп1. Величину тока разряда можно определить по формуле:
Iр=(Еп1-UкэVТ2-Uакк)/R11.
Светодиод HL1 является индикатором режима разряда аккумулятора.
При этом на входе элемента DD1.6 присутствует высокий уровень, то на выходе - низкий, и транзистор VT1 закрыт. Соответственно, закрыт и транзистор VT3, отключая цепь заряда.
Как видно из схемы и приведенных формул, длительность цикла заряда относится к длительности времени разряда как 10/1 и амплитуда зарядного тока относится к амплитуде разрядного приблизительно 10/1. Амплитуды приблизительно имеют такое соотношение, так как не равно UкэVT2. Более точные значения можно определить, сравнивая амплитуду импульсов осциллографом на резисторе 0,1 Ом, который следует включить между плюсом аккумулятора и общим контактом источников питания.
На схеме значения сопротивлений резисторов R10-R13 указанны приблизительно, для примера. Соотношение 10/1 не догма. Можно выбрать и меньшие отношение токов заряда и разряда: критерий выбора - восстановление работоспособности аккумулятора. Обычно зарядный ток выбирается величиной равной 1/10 от емкости аккумулятора, но можно выбрать и больший ток заряда. Все зависит от состояния аккумулятора. При заряде импульсом тока большой величины необходимо контролировать температуру аккумулятора во избежание его разгерметизации (бывает и со взрывом) и при значительном нагреве снизить зарядный ток. Следует также контролировать напряжение на нем, а при достижении максимального значения нужно отключить вовремя аккумулятор отзарядного устройства. Следует помнить, что при больших токах заряда время заряда значительно сокращается.
Необходимо заметить, что в случае, если зарядные импульсы будут иметь значительную величину, то источник питания Еп2 должен иметь повышенную мощность. Во избежание возникновения «эффекта памяти» следует ставить на зарядку только полностью разряженный аккумулятор.
ЗУ собрано на печатной плате из односторонне фольгированного стеклотекстолита размерами 50х70 мм, чертеж которой показан на рис.2, а расположение деталей на этой плате - на рис.3.
Рис. 2
Рис. 3
Литература
- Найдёров В.З. Функциональные устройства на микросхемах. - М.: Радио и связь, 1985.
- Шило В.Л. Функциональные аналоговые интегральные схемы. - М.: Радио и связь, 1982.
Автор: Олег Белоусов, г. Черкассы
Возможно, Вам это будет интересно:
meandr.org
Зарядное для шуруповерта схема
Обычный шуруповерт может иметь аккумуляторы различного типа, все они отличаются по характеристикам. Соответственно и зарядки к ним нужны разные — для свинцовых, литиевых, никелевых аккумуляторов и других. Перед тем как собирать или чинить зарядное устройство, необходимо обязательно определиться с его типом, условиями использования. Это важно, так как некоторые шуруповерты нельзя использовать при низких температурах, другие не выдерживают длительной эксплуатации. Вопрос, как сделать зарядное устройство для шуруповерта своими руками, стоит не так часто. Сегодня в продаже можно найти разнообразные варианты зарядок, предназначенных как для конкретных моделей, так и универсальных. Но при работе на даче или строительной площадке, когда ближайший магазин далеко, а инструмент нужен сейчас, может потребоваться собрать самому зарядное устройство. Схема сборки несложная и ниже мы выложим несколько вариантов.
Зарядное устройство для шуруповёрта на микроконтроллере
Схема собранна для корректной зарядки аккумуляторов шуруповёрта, вся схема умещается в штатный корпус, имеется световая и звуковая сигнализация, начала и окончания заряда, схема собрана на основе PIC12F629.
После включения включаются и гаснут оба светодиода, при этом звучит сигнал, (тест индикации и звука). Затем начинает мигать красный светодиод, когда светодиод горит идёт зарядка, когда погашен контроль напряжения на аккумуляторе.
После достижения напряжения полного заряда на аккумуляторе,перестает мигать красный светодиод и включается зелёный, при этом звучит сигнал, сообщающий о том что зарядка окончена. Уровень напряжения полного заряда устанавливаетя переменным резистором.
Напряжение, которое должно быть на полностью зараженном аккумуляторе, устанавливается переменным резистором. Входное напряжение = напряжение которое должно быть на полностью зараженном аккумуляторе +1 вольт. Транзистор любой полевой с P-каналом, подходящий по току.
Что необходимо сделать для зарядки 14 в аккумуляторов? Подать на вход 15-16 вольт, и установить переменным резистором порог срабатывания отключения зарядки при 14,4 вольт.
Зарядка происходит импульсами, импульсы зарядки индицируются светодиодом «заряд», в промежутках между импульсами происходит контроль напряжения на аккумуляторе, по достижение нужного напряжение подаётся звуковой сигнал, и начинает мигать светодиод «заряд окончен».
Зарядное устройство для дрели-шуруповерта
Схема выдает напряжение 18 вольт. Если заряжать аккумуляторы на 14.4 вольт, нужно будет подобрать резистором зарядный ток.
Схема импульсного разрядно-зарядного устройства Ni-Cd аккумуляторов для шуруповёрта
Зарядное устройство представляет собой трансформаторный, не стабилизированный источник питания, ограничение тока заряда осуществляется за счет насыщения трансформатора. Напряжение на выходе трансформатора примерно 14V.
Очень простое ЗУ для шуруповерта
А это вариант схемы простейшего зарядного устройства для шуруповерта, когда не хочется усложнять конструкцию лишними радиоэлементами. Те, кто хоть немного разбираются соберут данную схему очень быстро. По крайней мере данное зарядное устройство более простое и удобное в отличии от штатных. Естественно, что речь идет о дешевых моделях. В этой схеме регулировка зарядного тока АКБ производится резистором R10.
serp1.ru
Простое зарядное устройство для NiCd аккумуляторов
Универсальное зарядное устройство собирается в корпусе от промышленного блока питания для маломощной бытовой техники: аудио-плейеров, микрокалькуляторов, радиотелефонов и т.д., и рассчитано на заряд любой батареи NiCd-аккумуляторов (от 1 до 10 элементов).
Блок питания должен быть рассчитан на выходное напряжение не менее 12-15 вольт, ток 150-200 мА, и иметь подходящие размеры. Лучше, если на его корпусе не будет никаких переключателей или регуляторов, так как иначе придется заклеивать неиспользуемые отверстия.В блоке питания заменяется штатная плата стабилизатора напряжения, вместо которой устанавливается самодельная (не обязательно печатная, монтаж можно выполнить и навесным способом). Может оказаться так, что на «фирменной» плате уже имеются все необходимые элементы, которые просто придется соединить в другом порядке.
Рис. Принципиальная схема зарядного устройства
Основу зарядного устройства составляет общеизвестная схема генератора стабильного тока, выполненная на транзисторе Q1, в качестве которого можно использовать любой подходящий кремниевый p-n-p транзистор средней мощности — КТ-814, КТ-816 (с любой буквой) и т.д. Этот транзистор необходимо установить на пластине-радиаторе площадью не менее 5 кв. см из алюминия, меди или латуни. Выходной ток задается номиналом резистора R2 и типом светодиода D1, который одновременно служит и индикатором рабочего режима (он устанавливается на лицевую сторону корпуса). Грубую регулировку выходного тока осуществляют как подбором резистора R1 в диапазоне 3.3 — 15 Ом (при уменьшении номинала резистора ток возрастает и наоборот), так и заменой светодиода (разброс параметров светодиодов даже одной марки достаточно велик). Точную регулировку можно осуществить, припаивая параллельно резистору R1 другой резистор, с большим номиналом (50 — 500 Ом). Контролировать выходной ток можно стрелочным или цифровым миллиамперметром, рассчитанным на ток 250 — 500 мА, подключая его непосредственно к выходным клеммам зарядника. Контролировать выходное напряжение устройства — бессмысленно, без нагрузки оно всегда будет в 1.7 раза выше выходного напряжения трансформатора блока питания.
Особенность схемы состоит в том, что она не боится короткого замыкания на выходе (даже длительного). Положительным является и то, что не зависимо от количества элементов (от 1 до 10 штук) в аккумуляторной батарее, и степени их разряда, зарядный ток будет постоянным. Учтите, что время заряда, емкость аккумулятора и зарядный ток, связаны между собой так:Т = Е / I * 1.4 ,
где: Т — время заряда (час), Е — емкость аккумулятора (мА/час), I — зарядный ток (мА), а коэффициент 1.4 определен электрохимическим КПД NiCd-аккумуляторов.
Оптимальная величина зарядного тока равна 1/10 величины емкости батареи (в мА). При подборе «рабочего» тока зарядника надо ориентироваться на емкость аккумуляторов вашего передатчика (они, как правило, мощнее бортовых аккумуляторов). Таким образом, если, к примеру, у вас в передатчике установлена батарея емкостью 1000 мА/час, то номинальный зарядный ток для нее будет равен 1000/10 = 100 мА, а время заряда этим током:1000 / 100 * 1.4 = 14 часов.
Выходной ток зарядника, соответственно, необходимо установить равным 100 мА.
При емкости бортовой батареи 600 мА/час ваш зарядник полностью «накачает» ее за:600 / 100 * 1.4 = 8.4 часа.
Увеличение зарядного тока в 1.5-2,5 раза не вредит современным батарейкам, но позволяет во столько же раз сократить время заряда.
Но если вам понадобится зарядить более мощную батарейку, время заряда придется увеличить. К примеру, батарею емкостью 1700 мА/час вам придется заряжать током 100 мА:1700 / 100 * 1.4 = 23.8 часа.
Одним этим устройством, без сомнения, можно заряжать как бортовые аккумуляторы, так и батарею от передатчика, но, учитываю копеечную стоимость и низкие трудозатраты, целесообразнее изготовить 2 подобных блока: для приемника и передатчика, оснастив их соответствующими разъемами и настроив на оптимальные зарядные токи. В этом случае для приемника желательно подобрать исходный источник питания с выходным напряжением трансформатора не более 5-7 вольт. Кстати, электролитический конденсатор С1 может быть любой емкости (47 — 500 мкФ), но его рабочее напряжение должно не менее, чем в 2 раза превышать напряжение вторичной обмотки трансформатора. В принципе, от этой детали можно отказаться вовсе — хуже устройство работать не будет. Резистор R1 должен быть мощностью 0.125-0.25 Вт, R2 — не менее 0.5 Вт. Светодиод можно использовать любой марки и цвета свечения: АЛ102, АЛ307, АЛ310 и т.д. Номинал резистора R1 для специализированного «бортового» зарядника необходимо уменьшить до 510 Ом.
valentinych.ru
Зарядка для шуруповерта 12 вольт своими руками — sovetskyfilm.ru
Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.
15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.
Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.
Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.
20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.
Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.
Зарядное устройство для шуруповёрта на МС33340.
Автор — МР42В (или просто Захар).Опубликовано 23.10.2008.
Однажды любимый крутитель шурупов METABO попрощался со мной похрустев на последок планетарным редуктором.
Правда до этого момента он безотказно отработал примерно пять лет. Пришлось идти в магазин и пробовать подобрать новый инструмент для кручения. Глаза естественно разбежались в разные стороны от обилия моделей. Что нужно от шуруповёрта я уже знал. поэтому выбор был остановлен на этой модели Packard Spence (Паккард Спэнс). Всеми параметрами он мне полностью подходил и в руке лежал очень удобно.Шуроповерт PSCD 14 АD:
Неприятности начались при первой попытке применения шуруповёрта. Добросовестно прозаряжав его три часа (как написано в инструкции) получил время кручения шурупов около пяти минут. Спешить было некуда, поставил снова заряжаться.По прошествии 16 часов попробовал снова покрутить шурупы, на этот раз время кручения возросло аж до 15 минут. Подумалось что надули в магазине (подсунули брак). Поставил заряжать в третий раз, применив в этом случае свои познания в области заряда аккумуляторов (аккумулятор должен получить 140 % своей ёмкости). Отложил в сторону штатный зарядник и подключил автомобильный, установил ток заряда 150 ма. Через 16 часов попробовал снова покрутить шурупы, на этот раз шуруповёрт добросовестно отработал более 50 минут. Вот тут стало понятно что штатный зарядник не работает.Изнутри он выглядит так (схема неправильная). Эта-же схема плавает в интернете и зовётся «зарядник для Skil». Это не моя ошибка, так собрали на заводе.
Измерил ток заряда, получилось около 50мA. Проверил элементы, все были исправны. Схема оказалась зарядником SKIL, SPARKY и т.д и т.п моделей.
Пробовал спросить на форуме Кота как она (схема) работает но ответа не получил. Кстати правильно схема выглядит вот так:
Но это выяснилось намного позже.Процесс поиска приемлемой схемы занял некоторое время. Хотелось настоящий контроллер заряда.МАХ был отброшен по причине стоимости. ТЕА 1104 по причине дефицитности. Дискретные схемы из-за размеров. Выбор пал на МС33340 от Мотороллы.
Дальше всё обыденно и рутинно. Развёл плату под свой размер.
При первой попытке заряда вылезли некоторые нюансы. Посмотрим на картинку из даташита:
Обратите внимание на формулы внизу рисунка.Из-за некоторого несоответствия мой контроллер заряжал аккумулятор током 170 ма и только 15 минут. После чего прекращал заряд. Победить окончательно помогли заграничные камрады. Они придумали калькулятор для расчёта. Нумерация резисторов делителя Vsem соответствует рисунку, на котором изображён 78L12. В моём случае:
Часто родное зарядное устройство, входящее в комплект шуруповерта, работает медленно, долго заряжая аккумулятор. Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Несмотря на то, что в комплект входит обычно два аккумулятора (один установлен в рукоятку инструмента и в работе, а другой подключен к зарядному устройству и находится в процессе зарядки), часто владельцы не могут приспособиться к рабочему циклу аккумуляторов. Тогда имеет смысл изготовить зарядное устройство своими руками и зарядка станет удобнее.
Виды батарей
Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными. Никель-кадмиевые (Ni-Cd) батареи являются очень хорошим источником энергии, способны отдавать большую мощность. Однако, по экологическим причинам их производство прекращено и они будут встречаться все реже и реже. Сейчас всюду их вытеснили литий-ионные аккумуляторы.
Сернокислотные (Pb) свинцовые гелевые аккумуляторы имеют неплохие характеристики, но утяжеляют инструмент и поэтому не пользуются особой популярностью, несмотря на относительную дешевизну. Поскольку они гелевые (раствор серной кислоты загущается силикатом натрия), то никаких пробок в них нет, электролит из них не вытекает и ими можно пользоваться в любом положении. (Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.)
Литий-ионные аккумуляторы (Li-ion) являются сейчас наиболее перспективными и продвигаемыми в технике и на рынке. Их особенностью является полная герметичность ячейки. Они имеют весьма высокую удельную мощность, безопасны в обращении (благодаря встроенному контроллеру заряда!), выгодно утилизируются, являются наиболее экологически чистыми, имеют малый вес. В шуруповертах в настоящее время применяются очень часто.
Режимы заряда
Номинальное напряжение Ni-Cd ячейки 1.2 В. Никель-кадмиевый аккумулятор заряжается током от 0.1 до 1.0 номинальной емкости. Это означает, что аккумулятор емкостью 5 амперчасов можно заряжать током от 0.5 до 5 А.
Заряд сернокислотных аккумуляторов хорошо знаком всем людям, держащим в руках шуруповерт, ведь практически каждый их них еще и автолюбитель. Номинальное напряжение ячейки Pb-PbO2 составляет 2.0 В, а ток зарядки свинцового сернокислотного аккумулятора всегда 0.1 C (доля тока от номинальной емкости, см. выше).
Литий-ионная ячейка имеет номинальное напряжение 3.3 В. Ток заряда литий-ионного аккумулятора, 0.1 C. При комнатной температуре этот ток можно плавно повышать до 1.0 С – это быстрый заряд. Однако, это годится только для тех батарей, которые не были переразряжены. При заряде литий-ионных батарей следует точно соблюдать напряжение. Заряд производится до 4.2 В точно. Превышение резко снижает срок службы, понижение – уменьшает емкость. При зарядке следует следить за температурой. Теплый аккумулятор следует либо ограничить током до 0.1 С, либо отключить до остывания.
ВНИМАНИЕ! При перегреве литий-ионного аккумулятора при зарядке свыше 60 градусов Цельсия возможен его взрыв и возгорание! Не следует слишком полагаться на встроенную электронику безопасности (контроллер заряда).
При заряде литиевой батареи, контрольное напряжение (напряжение окончания заряда) образует приблизительный ряд (точные напряжения зависят от конкретной технологии и указаны в паспорте на батарею и на ее корпусе):
Напряжение заряда следует контролировать мультиметром или схемой с компаратором напряжения, настроенным точно на применяемую батарею. Но для “электронщиков начального уровня” реально можно предложить только простую и надежную схему, описанную в следующем разделе.
Зарядное устройство + (Видео)
Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных. Шуруповерты питаются от аккумуляторов с разными напряжениями 12 вольт или 18 вольт. Это неважно, главный параметр зарядного устройства для аккумуляторов – ток заряда. Напряжение зарядного устройства при отключенной нагрузке всегда выше номинального, оно падает до нормы при подключении батареи при заряде. В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания.
Зарядное устройство представляет собой генератор тока на мощном составном транзисторе VT2, который питается от выпрямительного мостика, подключенного к понижающему трансформатору с достаточным выходным напряжением (см. таблицу в предыдущем разделе).
Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Иначе он может сгореть. Ток заряда выставляется регулировкой резистора R1 при подключенном аккумуляторе. Он остается постоянным в процессе заряда (тем постоянней, чем выше напряжение от трансформатора. Примечание: напряжение от трансформатора не должно превышать 27 В).
Резистор R3 (не менее 2 Вт 1 Ом) ограничивает максимальный ток, а светодиод VD6 горит, пока идет заряд. К концу заряда, свечение светодиода уменьшается и он гаснет. Тем не менее, не забывайте про точный контроль напряжения литий-ионных аккумуляторов и их температуру!
Все детали в описанной схеме монтируются на печатной плате из фольгированного текстолита. Вместо диодов, указанных в схеме, можно взять русские диоды КД202 или Д242, они довольно доступны в старом электронном ломе. Располагать детали надо так, чтобы на плате оказалось как можно меньше пересечений, в идеале ни одного. Не следует увлекаться высокой плотностью монтажа, ведь вы собираете не смартфон. Распаивать детали вам будет значительно легче, если между ними останется по 3-5 мм.
Транзистор должен быть установлен на теплоотводе достаточной пощади (20-50 см.кв). Все части зарядного устройства лучше всего смонтировать в удобный самодельный корпус. Это будет самым практичным решением, в работе вам ничто не будет мешать. Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Поэтому лучше сделать так: взять старое или неисправное зарядное устройство у знакомых, подходящее к вашей модели аккумулятора, и подвергнуть его переделке.
- Вскрыть корпус старого зарядного устройства.
- Удалить из него всю бывшую начинку.
- Подобрать следующие радиоэлементы:
Шуруповерт есть в каждом доме, где выполняются элементарный ремонт. Любому электроприбору требуется стационарное электричество или блок питания. Поскольку наиболее популярными являются аккумуляторные шуруповерты — требуется еще и зарядник.
Он идет в комплекте с дрелью, и как любой электроприбор может выйти из строя. Чтобы вы не столкнулись с проблемой неработающего оборудования, изучим общее описание зарядных устройств для шуруповерта.
Виды зарядников
Аналоговые со встроенным блоком питания
Их популярность обусловлена низкой стоимостью. Если дрель (шуруповерт) не предназначена для профессионального использования, продолжительность работы — не самый первый вопрос. Задача простого зарядника — получить постоянное напряжение с достаточной для зарядки аккумулятора токовой нагрузкой.
Важно! Для начала заряда, напряжение на выходе блока питания должно быть выше номинального значения аккумулятора.
Работает такая зарядка по принципу обычного стабилизатора. Для примера рассмотрим схему зарядника для аккумулятора на 9-11 вольт. Тип батарей не имеет значения.
Такой блок питания (он же зарядник ) можно собрать своими руками. Спаять схему можно на универсальной монтажной плате. Для рассеивания тепла микросхемы стабилизатора, достаточно медного радиатора площадью 20 см².
Для информации: Стабилизаторы такого типа работают по компенсационному принципу — лишняя энергия отводится в виде тепла.
Входной трансформатор (Тр1) понижает переменное напряжение 220 вольт до значения 20 вольт. Мощность трансформатора рассчитывается по току и напряжению на выходе зарядного устройства. Далее переменный ток выпрямляется при помощи диодного моста VD1. Обычно производители (особенно китайские) используют сборку диодов Шоттки.
После выпрямления ток будет пульсирующим, это вредно для нормального функционирования схемы. Пульсации сглаживаются фильтрующим электролитическим конденсатором (С1).
Роль стабилизатора выполняет микросхема КР142ЕН, на радиолюбительском слэнге — «кренка». Для получения напряжения 12 вольт, индекс микросхемы должен быть 8Б. Управление собрано на транзисторе (VT2) и подстроечных резисторах.
Автоматика на подобных устройствах не предусмотрена, время зарядки аккумулятора определяет пользователь. Для контроля заряда собрана несложная схема на транзисторе (VT1) и диоде (VD2). При достижении напряжения заряда, индикатор (светодиод HL1) гаснет.
Более продвинутые системы имеют в своем составе коммутатор, отключающий напряжение по окончанию заряда в виде электронного ключа.
В комплекте с шуруповертами эконом класса (произведенными в Поднебесной), встречаются зарядники и попроще. Немудрено, что процент выхода из строя довольно высок. У владельца появляется перспектива остаться с относительно новым неработоспособным шуруповертом. По приложенной схеме вы сможете собрать зарядное устройство для шуруповерта своими руками, которое прослужит дольше фабричного. Меняя трансформатор и стабилизатор, вы сможете подобрать необходимое значение для вашего аккумулятора.
Аналоговые с внешним блоком питания
Сама по себе схема зарядного устройства примитивна, насколько это возможно. В комплект входит сетевой блок питания, и собственно зарядник, в корпусе фиксаторе модуля аккумуляторных батарей.
Блок питания рассматривать нет смысла, его схема стандартная – трансформатор, диодный мост, конденсаторный фильтр и выпрямитель. На выходе, как правило, 18 вольт, для классических 14 вольтовых аккумуляторных батарей.
Плата управления зарядом занимает площадь спичечного коробка:
Как правило, никакого теплоотвода на таких сборках нет, разве что нагрузочный резистор большой мощности. Поэтому подобные устройства часто выходят из строя. Возникает вопрос: как зарядить шуруповерт без зарядного устройства?
Решение простое для человека, умеющего держать в руках паяльник.
- Первое условие – наличие источника питания. Если «родной» блок исправен, достаточно собрать несложную схему управления. В случае выхода из строя всего комплекта – можно использовать блок питания для ноутбука. На выходе требуемые 18 вольт. Мощности такого источника хватит за глаза для любого комплекта аккумуляторов
- Второе условие – элементарные навыки сборки электросхем. Детали самые доступные, можно выпаять из старой бытовой техники, или купить на радиорынке буквально за копейки.
Принципиальная схема блока управления:
На входе стабилитрон на 18 вольт. Схема управления на транзисторе KT817, усиление обеспечивает мощный транзистор КТ818. Его необходимо снабдить радиатором. В зависимости от тока заряда, не нем может рассеиваться до 10 Вт, поэтому потребуется радиатор площадью 30-40 см².
Именно экономия «на спичках» делает китайские зарядники такими ненадежными. Подстроечник 1 КОм необходим для точной установки тока заряда. Резистор 4,7 Ом, стоящий на выходе цепи, также должен рассеивать достаточно тепла. Мощность не менее 5 Вт. Об окончании заряда оповестит светодиодный индикатор, он погаснет.
Собранную схему легко разместить в корпус штатной зарядки. Радиатор транзистора выносить не обязательно, главное обеспечить циркуляцию воздуха внутри корпуса.
Экономия заключается в том, что блок питания от ноутбука, по прежнему используется по назначению.
Важно! Общий недостаток аналоговых зарядных устройств – долгий процесс заряда.
Для бытового шуруповерта это не страшно. Оставил заряжаться на ночь перед началом работ – на сборку шкафа хватит. Среднее время заряда китайской аккумуляторной дрели – 3-5 часов.
Импульсные
Переходим к тяжелому вооружению. Профессиональные шуруповерты используются интенсивно, и простой в работе по причине разряженного аккумулятора недопустим. Ценовой вопрос опускаем, любая серьезная техника стоит дорого. Тем более что в комплекте обычно два аккумулятора. Пока один в работе – второй на подзарядке.
Импульсный блок питания в комплекте с интеллектуальной схемой управления зарядом, заполняет батарею на 100% буквально за 1 час. Можно собрать и аналоговый зарядник с такой же мощностью. Но его вес и размеры будут сопоставимы с шуруповертом.
Всех этих недостатков лишены импульсные зарядники. Компактный размер, высокие токи заряда, продуманная защита. Проблема одна: сложность схемы, и как следствие – высокая цена.Тем не менее, можно собрать и такое устройство. Экономия минимум в 2 раза.
Предлагаем вариант для «продвинутых» никель кадмиевых аккумуляторов, снабженных третьим сигнальным контактом.
Схема собрана на популярном контроллере MAX713. Предложенная реализация рассчитана на входное напряжение 25 вольт постоянного тока. Собрать такой источник питания не сложно, поэтому его схему опускаем.
Зарядное устройство интеллектуально. После проверки уровня напряжения, запускается режим ускоренного разряда (для предотвращения эффекта памяти). Заряд происходит за 1-1,15 часа. Особенностью схемы является возможность выбора напряжения заряда и типа батарей. В описании на рисунке указано положение перемычек и значение резистора R19 для смены режимов.
Если фирменная зарядка профессионального шуруповерта выйдет из строя – вы сможете сэкономить на ремонте, собрав схему своими руками.
Блок питания для шуруповерта – схема и порядок сборки
Многим знакома ситуация: шуруповерт жив-здоров, а блок аккумуляторов приказал долго жить. Есть масса способов восстановления АКБ, но не всем нравится возиться с токсичными элементами.
Как использовать электроприбор
Ответ прост: подключить внешний блок питания. Если у вас типичный китайский прибор с аккумуляторами 14,4 вольта – можно использовать автомобильный аккумулятор (удобно для работы в гараже). А можно подобрать трансформатор с выходом 15-17 вольт, и собрать полноценный БП.
Набор деталей самый недорогой. Выпрямитель (диодный мост) и термостат для защиты от перегрева. Остальные элементы имеют сервисную задачу – индикация входного и выходного напряжения. Стабилизатор не требуется – электродвигатель вашего шуруповерта не такой требовательный, как аккумулятор.
Как видите, оживить аккумуляторную дрель не так уж и сложно. Главное не принимать поспешного решения: «выбросить и купить новый электроприбор»
Если у вас полностью вышли из строя аккумуляторы шуруповерта, то вы можете переделать его на сетевой как сделать такой блок питания смотрите в этом видео
Так выглядит схема переделки зарядного устройства.
Поделиться с друзьями:
Обычный шуруповерт может иметь аккумуляторы различного типа, все они отличаются по характеристикам. Соответственно и зарядки к ним нужны разные — для свинцовых, литиевых, никелевых аккумуляторов и других. Перед тем как собирать или чинить зарядное устройство, необходимо обязательно определиться с его типом, условиями использования. Это важно, так как некоторые шуруповерты нельзя использовать при низких температурах, другие не выдерживают длительной эксплуатации. Вопрос, как сделать зарядное устройство для шуруповерта своими руками, стоит не так часто. Сегодня в продаже можно найти разнообразные варианты зарядок, предназначенных как для конкретных моделей, так и универсальных. Но при работе на даче или строительной площадке, когда ближайший магазин далеко, а инструмент нужен сейчас, может потребоваться собрать самому зарядное устройство. Схема сборки несложная и ниже мы выложим несколько вариантов.
Зарядное устройство для шуруповёрта на микроконтроллере
Схема собранна для корректной зарядки аккумуляторов шуруповёрта, вся схема умещается в штатный корпус, имеется световая и звуковая сигнализация, начала и окончания заряда, схема собрана на основе PIC12F629.
Рекомендуем: Схема зарядного устройства для аккумулятора
После включения включаются и гаснут оба светодиода, при этом звучит сигнал, (тест индикации и звука). Затем начинает мигать красный светодиод, когда светодиод горит идёт зарядка, когда погашен контроль напряжения на аккумуляторе.
После достижения напряжения полного заряда на аккумуляторе,перестает мигать красный светодиод и включается зелёный, при этом звучит сигнал, сообщающий о том что зарядка окончена. Уровень напряжения полного заряда устанавливаетя переменным резистором.
Напряжение, которое должно быть на полностью зараженном аккумуляторе, устанавливается переменным резистором. Входное напряжение = напряжение которое должно быть на полностью зараженном аккумуляторе +1 вольт. Транзистор любой полевой с P-каналом, подходящий по току.
Что необходимо сделать для зарядки 14 в аккумуляторов? Подать на вход 15-16 вольт, и установить переменным резистором порог срабатывания отключения зарядки при 14,4 вольт.
Зарядка происходит импульсами, импульсы зарядки индицируются светодиодом «заряд», в промежутках между импульсами происходит контроль напряжения на аккумуляторе, по достижение нужного напряжение подаётся звуковой сигнал, и начинает мигать светодиод «заряд окончен».
Рекомендуем: Резервная USB батарейка
Зарядное устройство для дрели-шуруповерта
Схема выдает напряжение 18 вольт. Если заряжать аккумуляторы на 14.4 вольт, нужно будет подобрать резистором зарядный ток.
Схема импульсного разрядно-зарядного устройства Ni-Cd аккумуляторов для шуруповёрта
Зарядное устройство представляет собой трансформаторный, не стабилизированный источник питания, ограничение тока заряда осуществляется за счет насыщения трансформатора. Напряжение на выходе трансформатора примерно 14V.
Очень простое ЗУ для шуруповерта
А это вариант схемы простейшего зарядного устройства для шуруповерта, когда не хочется усложнять конструкцию лишними радиоэлементами. Те, кто хоть немного разбираются соберут данную схему очень быстро. По крайней мере данное зарядное устройство более простое и удобное в отличии от штатных. Естественно, что речь идет о дешевых моделях. В этой схеме регулировка зарядного тока АКБ производится резистором R10.
Related Posts
В этой статье я решил представить новинки этого года, речь пойдет о технологический изобретениях, которые уже можно найти на рынке. В основном все устройства представленные в данной статье связаны с […]
USB устройство для зарядки аккумуляторов с индикацией окончания заряда — схема для самостоятельной сборки и описание работы конструкции. Существует множество конструкций зарядных устройств от простейших, содержащих выпрямительный диод и токоограничительный […]
Недавно на одном китайском сайте встретилось интересное устройство, которое работает как очень мощный Power Bank на 20000mAh, и как стартер для автомобиля, своеобразное автономное пусковое, если сел его аккумулятор 12 […]
В зимний период для многих владельцев автомашин становится очень актуальным вопрос: как уменьшить расход топлива зимой? Но для того, чтобы грамотно ответить на возникший вопрос, необходимо разобраться в причинах его […]
Внимание, только СЕГОДНЯ!sovetskyfilm.ru
Зарядное от USB своими руками
Зарядное устройство из данного проекта предназначено для зарядки двух AA Ni-MH или Ni-Cd аккумуляторов практически любой емкости (при условии, что они одинаковы) током примерно 0,5 A. Зарядное будет заряжть 700mAh Ni-Cd примерно 1,5 часа, 1500mAh Ni-MH около 3,5 часов, и 2500mAh Ni-MH примерно 5,5 часов.
Зарядное устройство включает в себя блок автоматического отключения АКБ на основе повышенной температуры, и значит аккумуляторы можно оставлять в зарядном устройстве на неопределенный срок после того, как они полностью зарядятся.
График заряда различных АКБ
Принципиальная схема зарядного
Это зарядное устройство имеет следующие технические характеристики:
— АКБ: Два AA Ni-MH или Ni-Cd— Зарядный Ток: 0,5 ампер— Прекращение заряда: температура батареи— Подзарядка: 10 мА— Источник питания: настольный компьютер, ноутбук, или концентратор USB порта.
Рисунки печатных плат
Основа этого зарядного устройство — половина микросхемы LM393 (двойной компаратор напряжения). Выход (контакт 1) может быть в одном из двух состояний, плавающим или низким. При использовании этого устройства с любого компьютера, убедитесь, что компьютер не настроен так, чтобы перейти в режим энергосбережения, которое выключает питание USB-портов при переходе в спящий режим. Если это произойдет, зарядка прекратится.
Если питается это зарядное от USB-концентратора убедитесь, что вы используете хаб. Дополнительная длина кабеля также, как правило, снижает напряжение, достигающее зарядное устройства. Особенно это относится с дешёвм тонким кабелем. Для заряда литиевых аккумуляторов, следует использовать немного другую схему.
serp1.ru
РАЗРЯДНОЕ УСТРОЙСТВО ДЛЯ АККУМУЛЯТОРОВ
Как известно, Ni-Cd и в меньшей степени Ni-Mh аккумуляторы обладают эффектом памяти, т. е. частичной теряют емкость при зарядке, если перед этим они не были полностью разряжены. Обычно при этом напряжение на одном элементе составляет около 1 В. По этому, перед зарядкой аккумулятор следует разрядить до конца [1]. Однако простая разрядка через резистор может привести к сильному разряду аккумулятора, если разрядку не прекратить вовремя. Чрезмерный разряд также вреден для аккумулятора. Для замедления разряда аккумулятора можно включить в цепь полупроводниковый диод Д223А. Последовательно с диодом в цепь включен резистор, сопротивлением 12 Ом.
Схема простейшего разрядного
Как известно диод – прибор нелинейный и при малых напряжениях (менее 1 В) p-n – переход даже в прямом направлении оказывает заметное сопротивление электрическому току. Для работы в данном устройстве подойдут кремниевые маломощные выпрямительные или универсальные диоды. Согласно справочнику [2] кремниевый диод Д-233А открывается в прямом направлении при напряжении, около 0,6 В. Следовательно при включении в цепь диода, разряд аккумулятора будет ограничен.
Конструктивно устройство представляет собой колодку для одного гальванического элемента типоразмера АА. Резистор R1 и диод VD1 закреплены навесным монтажом.
Недостатком данного устройства является то, что разряд аккумулятора прекратится полностью при достижении напряжения 0,6 В. Т. е. аккумулятор разрядится сильнее, чем нужно.
Второй вариант схемы
Автор пробовал соединить последовательно германиевый и кремниевый диоды для того, чтобы остановить разряд при напряжении около 0,9-1 В. В дополнении к кремниевому Д-233А был использован германиевый диод Д-18ВП, который открывается в прямом направлении при напряжении около 0,4 В [2].
Но опыт показал, что в таком случае даже полностью заряженный аккумулятор создает в цепи ток около 4 мА. Очевидно, что с таким током разряд аккумулятора займет неприемлемый промежуток времени.
С падением напряжения на аккумуляторе в процессе разряда, ток тоже будет слабеть, а, следовательно, уменьшится скорость разряда аккумулятора. Поэтому хотя первый вариант схемы допускает разряд аккумулятора больше желаемого, на деле для этого его надо забыть в разрядном устройстве на несколько часов.
Литература
- http://el-shema.ru/publ/pitanie/razrjadnoe_ustrojstvo_dlja_akkumuljatorov/5-1-0-332
- Полупроводниковые приборы: Диоды, транзисторы, оптоэлектронные приборы. Справочник / А. В. Баюков, А. Б. Гитцевич, А. А. Зайцев и др.; Под общ. Ред Н. Н. Горюнова. – 2-е изд., перераб. – М.: Энергоатомиздат, 1985. – 744 с.
el-shema.ru