Способ изготовления электрода для контактной точечной сварки. Электроды для точечной контактной сварки


Электроды для контактной сварки: цены

Электроды для контактной сваркиНеплавкие электроды для контактной сварки функционируют в очень сложных условиях. Сквозь такие электроды проходит высокоамперный электрический ток, разогревающий хону контакта. И, одновременно с этим, к электродам прикладывают прижимное усилие, формирующее сварочный шов между двумя деталями.

Поэтому все электроды, используемые в процессе контактной сварки, должны обладать особыми физико-механическими свойствами. И в данной статье мы расскажем о физических и конструкционных свойствах таких электродов, попутно коснувшись особенностей их сортамента.

Схема  работы термомеханического сварочного аппарата

Схема работы «контактного» сварочного аппарата очень проста:

  • Заготовки укладывают друг на друга или стыкуют «внахлест».
  • Электроды подводят к внешней поверхности стыкуемых деталей (сверху и  снизу)
  • На электроды транслируют прижимное усилие, провоцирующее пластическую деформацию в зоне контакта.
  • После этого, сквозь пятно контакта пропускают ток огромной силы (тысячи или десятки тысяч ампер).
  • В это же время на электроды подают дополнительную нагрузку, завершающую образование межкристаллических мостов между стыкуемыми поверхностями.

То есть, электроды в контактной сварке используются, и как проводники сварочного тока, и как спрессовывающие место контакта элементы.

Особенности конструкции

Условия, в которых «работают» электроды контактной сварки, предполагают наличие особых требований к конструкционным материалам подобных изделий, и  вынуждают подбирать особую форму контактной площадки (пяты электрода).

Конструкционный материал должен обладать высокой электропроводимостью и механической прочностью. Поэтому в качестве такового используется сплавы на основе меди (кадмиевая, хромокадмиевая, хромовая или хромоциркониевая бронзы).

Контактная сварка

Медные электроды для контактной сварки производят в форме цельных и полых стержней (со сплошной или кольцеобразной пятой). Прочностные характеристики контактной поверхности электродов повышают за счет термомеханической обработки заготовок в горячем и холодном состоянии.

В итоге, стержневые электроды способны транслировать в зону сварки не только ток высокой силы, но и не менее значительное давление, обеспечивающие прижимное усилие до 40 кН.

Хвостовик стержневого электрода выполнен в виде цилиндра или усеченного конуса (конусность 1:5 или 1:10). Электроды для контактной точечной сварки монтируют  в прижимной механизм аппарата с помощью рожкового ключа. Поэтому на цилиндрическом или коническом хвостовике может присутствовать сточенная плоскость под такой ключ.

Наконечники электродов выполняют в форме усеченного конуса со сферическим окончание, сферы, плоскости или «сапожка» — усеченного под углом цилиндра с расположенным за пределами оси вращения наплывом (каблуком).

Сортамент электродов для термомеханической сварки

Сортамент контактных электродов определяется ГОСТ 14111-90 или  ТУ 3441-003-20813136-2001, пришедшими на смену ТУ 302-13.006-90. Согласно этим нормативным документам электроды для машин контактной сварки изготовляются из прутка диаметром от 10 до 40 миллиметров. По этому параметру (диаметру прутка) сортамент электродов делится на семь разновидностей.

Диаметр контактной части электрода с окончанием в форме «сапожка» меньше основного диаметра и в зависимости от последнего изменяется в пределах от 4 (для 10-миллиметровых прутков) до 16 (для 40-милиметровых прутков) миллиметров.

Диаметр контактной части плоского электрода совпадает с диаметром прутка. Диаметр электрода с конической контактной частью зависит от основного диаметра и изменяется в пределах от 4 до 16 миллиметров.

Хвостовики электродов диаметром от 10 до 25 миллиметров имеют конусность 1:10, хвостовики электродов диаметром от 32 до 40 миллиметров имею конусность 1:5. Длина «короткой» площадки под гаечный ключ лежит в пределах от 7 до 10 миллиметров. Габариты удлиненной площадки под ключ – 13-16 миллиметров.

Цены на электроды контактной сварки

Стоимость электродов зависит от сложности профиля контактной поверхности изделия, типа конструкционного материала и габаритов прутка.

Самые дорогое электроды — это изделия с контактной поверхностью в форме «сапожка», самые дешевые – с плоской контактной поверхностью. Причем 10-миллиметровые изделия обойдутся дешевле 40-миллиметровых электродов.

По конструкционному материалу такой четкой градации стоимость нет. Можно только сказать, что электроды из холоднотянутой меди М1 стоят дешевле продукции из сплава меди и серебра МС1, хотя многокомпонентные сплавы – хромокадмиевая или хромоциркониевая бронза могут составить конкуренцию даже серебру.

steelguide.ru

Способ изготовления электрода для контактной точечной сварки

 

Способ изготовления электрода для контактной точечной сварки может найти применение в машиностроении при изготовлении машин для контактной сварки. В процессе калибровки мерной заготовки на ее верхней части формируют цилиндрическую головку с наметкой под пуансон обратного выдавливания. На ее нижней части путем прямого выдавливания формируют рабочую часть электрода. В процессе прямого выдавливания обеспечивают пластическую деформацию материала в зоне рабочей части электрода со степенью деформации не менее 25%. Осуществляют формирование охлаждающего канала путем обратного выдавливания глухого отверстия в цилиндрической головке и холодной вытяжки с утонением стенки цилиндрической головки. Путем обжима утоненной стенки цилиндрической головки осуществляют формирование посадочного конуса электрода. При формировании посадочного конуса одновременно формируют конусообразный участок в верхней части охлаждающего канала. Технический результат заключается в увеличении стойкости рабочей части электрода. 5 ил.

Изобретение относится к области сварки и может быть использовано при изготовлении электродов для контактной точечной сварки.

Одной из проблем в данной области техники является повышение стойкости электрода, который, являясь рабочим инструментом, осуществляет связь между сварочной машиной и свариваемыми деталями. В процессе сварки электрод осуществляет сжатие свариваемых деталей между собой, подвод тока к свариваемым деталям и отвод тепла, выделяющегося в процессе сварки. Способ изготовления электрода оказывает значительное влияние на его способность выполнять указанные выше функции. Известен способ изготовления электродов для контактной точечной сварки [1], согласно которому электроды вытачивают из прутков, обычно поступающих в термически необработанном (для дисперсионно-упрочняемых сплавов) или отожженном состоянии. Такой способ изготовления электродов нерационален, поскольку в стружку идет до 30-40% дефицитных медных сплавов. Кроме того, этот способ малопроизводителен. Известен способ изготовления электродов для контактной точечной сварки литьем по выплавляемым моделям [2]. Способ позволяет уменьшить расход металла и сократить последующую механическую обработку, но оправдывает себя только при изготовлении электродов сложной формы. Известен способ изготовления электродов для контактной точечной сварки, по которому электрод изготавливают путем холодной сварки хвостовика к рабочей части электрода [3]. Известен способ изготовления электродов для контактной точечной сварки методом порошковой металлургии [4], по которому порошок засыпают в форму, осуществляют уплотнение порошка путем вибрационного вдавливания пуансона, имеющего форму охлаждающего канала для подвода воды, а затем осуществляют спекание порошка. Оба способа [3, 4] требуют для своего осуществления специального оборудования, процесс изготовления характеризуется сложностью и большой продолжительностью. Был предложен способ изготовления электрода [5]. На первом этапе способа заготовка из медного материала подвергалась штамповке с целью формирования внутренней охлаждающей полости с вертикальными ребрами. На втором этапе выполнялось обжатие верхней части заготовки для формирования на ней посадочного конуса. Предложенный электрод имеет полость для охлаждения, диаметр которой больше диаметра входного отверстия канала охлаждения. Это обстоятельство, а также наличие в полости вертикальных ребер способствует более интенсивному отводу тепла от рабочей поверхности электрода и повышает его эксплуатационную долговечность. Данный способ характеризуется сложностью, а изготовленные этим способом электроды имеют большое поперечное сечение, т.е. он имеет ограниченную область применения. Наиболее близким по своей технической сущности к заявляемому способу является способ изготовления электрода для контактной точечной сварки холодным выдавливанием [6]. Данный способ включает операции формирования рабочей части электрода и охлаждающего канала путем обратного выдавливания глухого отверстия в цилиндрической заготовке, холодной вытяжки с утонением стенки цилиндрической заготовки и последующей деформации стенки для образования посадочного конуса электрода. Формирование рабочей части электрода осуществляют путем закрытой осадки заготовки в конусообразной глухой матрице. Конусообразная глухая матрица образована тремя усеченными конусами, сужающимися от открытого торца матрицы к ее глухой части. В процессе закрытой осадки материал заготовки заполняет и воспринимает форму матрицы. Но в силу большого трения, возникающего по коническим поверхностям матрицы, неизбежно заклинивание металла на отдельных участках матрицы, что приводит к некачественной поверхности рабочей части электрода, поэтому степень деформации металла на поверхности рабочей части электрода будет непостоянна, и как следствие этого твердость поверхности рабочей части электрода различна в разных местах. Все это сказывается на эксплуатационной долговечности электрода. Увеличение усилия осадки не приводит к устранению последствий заклинивания, а может привести к разрушению матрицы. Следует также отметить, что причиной снижения эксплуатационной долговечности электрода может оказаться цилиндрическая форма охлаждающего канала, которая формируется рассматриваемым способом. Технический результат, создаваемый изобретением, выражается в увеличении стойкости рабочей части электрода. В основу настоящего изобретения была положена задача разработать способ изготовления электрода для контактной точечной сварки с повышенной эксплуатационной долговечностью. Указанная задача решается тем, что в способе изготовления электрода для контактной точечной сварки, включающем операции формирования рабочей части электрода и формирования охлаждающего канала путем обратного выдавливания глухого отверстия в цилиндрической заготовке, холодной вытяжки с утонением стенки цилиндрической заготовки и деформации стенки для образования посадочного конуса электрода, согласно изобретению формирование рабочей части электрода осуществляют в процессе калибровки мерной заготовки, при этом в верхней части заготовки формируют наметку под пуансон обратного выдавливания, а на ее нижней части формируют рабочую часть электрода путем прямого выдавливания, причем в процессе прямого выдавливания обеспечивают пластическую деформацию материала в зоне рабочей части электрода со степенью деформации не менее 25%, а формирование посадочного конуса электрода осуществляют с одновременным формированием конусообразного участка в верхней части охлаждающего канала. Отличительная особенность заявляемого способа состоит в том, что формирование рабочей части электрода осуществляют прямым выдавливанием, что позволяет получить необходимую степень деформации металла заготовки на рабочей части электрода, а следовательно, повысить его твердость. Формирование посадочного конуса электрода, осуществляемое с одновременным формированием конусообразного участка в верхней части охлаждающего канала, позволяет получить расширяющуюся полость, примыкающую к рабочей части электрода, что улучшает отвод тепла от рабочей части электрода. В результате достигается повышение стойкости электрода. Эти и другие особенности и преимущества настоящего изобретения будут приведены ниже при рассмотрении конкретного примера его исполнения со ссылками на прилагаемые чертежи поэтапного изготовления электрода. Исходную заготовку 1 диаметром
заг (фиг. 1), полученную резкой прутка, смазывают смазкой, устанавливают в матрицу 2 (фиг. 2) и подвергают калибровке воздействием пуансона 3. В процессе калибровки осуществляют радиальную раздачу заготовки до диаметра
1 , образуют конический участок 4, наметку 5 под пуансон обратного выдавливания и формируют прямым выдавливанием рабочую часть 6 электрода диаметром 2 и высотой h. Диаметр 2 выбирают исходя из требуемой степени деформации материала рабочей части электрода. Диаметр 2 несколько меньше диаметра 3 отверстия 7 матрицы, в силу этого отсутствуют причины для заклинивания металла в процессе прямого выдавливания. На второй операции формообразования электрода (фиг. 3) полученный полуфабрикат 8 смазывают смазкой и размещают в матрице 9. При этом конический участок 4 контактирует с переходным конусом 10 матрицы 9, рабочая часть 6 будущего электрода центрируется центральным отверстием 11 матрицы 9, а верхняя часть 12 полуфабриката 8 выставлена с зазором относительно отверстия 13 матрицы 9. Благодаря центровке полуфабриката 8 в матрице 9 верхняя часть 12 полуфабриката образует равный зазор по всему периметру отверстия 13. При опускании пуансон 14 входит в контакт с наметкой 5 и начинает раздачу верхней части 12 полуфабриката 8 путем обратного выдавливания в ней цилиндрического глухого отверстия 15, будущего канала охлаждения. В силу того, что пуансон 14 выполнен с цилиндрическим пояском, контактирующим с наметкой 5, требуется несколько большее усилие выдавливания (по сравнению, например, с острым конусом пуансона), но при этом в процессе выдавливания глухое отверстие имеет меньший эксцентриситет, увеличивается стойкость пуансона. Поскольку процесс выдавливания глухого отверстия 15 совмещен с процессом раздачи верхней части 12 полуфабриката 8, усилие деформации в этом случае ниже (по сравнению с обратным выдавливанием полых изделий), что обусловлено уменьшением сопротивления трения о стенки матрицы. В процессе раздачи верхней части 12 ее наружный диаметр
1 увеличивается до величины 4 - диаметра отверстия 13 матрицы 9, диаметр дна глухого отверстия 15 - 5. . Дно этого отверстия отстоит от торца рабочей части электрода на величину h2>h. На третьей операции формообразования электрода (фиг. 4) полученный полуфабрикат 16 смазывают смазкой и устанавливают на стержне 17, нижний конец которого имеет диаметр 5. Полуфабрикат 16 с расположенным внутри него стержнем 17 проталкивают через многоступенчатую матрицу 18, формируя предварительный профиль канала 19 охлаждения, путем холодной вытяжки с утонением стенки верхней части 12 полуфабриката до наружного диаметра 2. Внутренний диаметр канала 19 охлаждения со стороны открытого торца - 6, а его профиль имеет слабовыраженную конусность, которая обеспечивает свободное удаление стержня 17 из канала 19. На заключительной операции формообразования электрода (фиг. 5) полуфабрикат 20 смазывают смазкой и устанавливают торцем рабочей части 6 электрода на неподвижную опору 21. Опускают матрицу 22, она входит в контакт с утоненной стенкой диаметра 2 полуфабриката 20 и, перемещаясь вниз, осуществляет обжим верхней части утоненной стенки, формируя посадочный конус 23 электрода. С формированием посадочного конуса 23 электрода одновременно осуществляют формирование конусообразного участка 24 в верхней части охлаждающего канала. При этом диаметр 2 уменьшают до диаметра 7 , а диаметр 6 - до диаметра 8. В результате этой операции охлаждающий канал в зоне, примыкающей к рабочей части электрода, имеет расширяющуюся полость 25, что способствует улучшению отвода тепла от рабочей части электрода в процессе сварки. Операция формирования конусообразного участка 24 охлаждающего канала сопровождается увеличением толщины стенки в зоне формирования посадочного конуса электрода и конусообразного участка охлаждающего канала, что также способствует увеличению стойкости электрода. Пример. Заготовку диаметром 20 мм и длиной 31,3 мм отрезают от бронзового прутка марки Бр.Х1 и производят ее закалку в электропечи при нагреве до температуры 98020oC с охлаждением в воде. Затем заготовку очищают, промывают в водном растворе кальцинированной соды с тринатрийфосфатом, сушат и смазывают смазкой. На первом этапе в процессе калибровки заготовки осуществляют радиальную раздачу заготовки до диаметра 20,2 мм, на верхнем торце заготовки формируют наметку под пуансон обратного выдавливания и формируют прямым выдавливанием рабочую часть электрода высотой 14 мм. В процессе прямого выдавливания обеспечивают пластическую деформацию материала в зоне рабочей части электрода со степенью деформации не менее 25%. При меньшей степени деформации твердость рабочей части электрода будет меньше твердости, заданной ГОСТом на электроды для контактной точечной сварки. Между рабочей зоной электрода и верхней частью заготовки (ее длина определяется в зависимости от длины электрода, что сказывается на мерной длине исходной заготовки) формируют конический участок с углом конусности 13o. На втором этапе полученный полуфабрикат смазывают смазкой, укладывают в ступенчатую матрицу так, что конический участок полуфабриката располагается на ответной конусообразной расточке матрицы, а верхняя часть заготовки выставлена с зазором относительно цилиндрической расточки матрицы диаметром 20,3 мм. Осуществляют раздачу верхней части полуфабриката до указанного выше диаметра путем обратного выдавливания в ней глухого цилиндрического отверстия диаметром 12,7 мм, будущего канала охлаждения. Дно этого глухого отверстия отстоит от торца рабочей части электрода на 16 мм. На третьем этапе ранее полученный полуфабрикат вновь смазывают смазкой, а затем на прессе выполняют холодную вытяжку с утонением через многоступенчатую матрицу, получая прямой стакан с наружным диаметром рабочей части электрода и внутренним предварительным каналом охлаждения, профиль которого имеет слабовыраженную конусность с толщиной стенки у дна канала около 2 мм. На заключительном этапе ранее полученный полуфабрикат также смазывают смазкой, устанавливают торцем рабочей части электрода на неподвижную опору и осуществляют деформацию обжатием верхней части утоненной стенки для формирования посадочного конуса электрода протяженностью 30 мм и конусообразного участка в верхней части охлаждающего канала. При этом наружная поверхность тонкостенного цилиндра превращается в конус Морзе, наружный диаметр которого со стороны входа охлаждающего канала уменьшается с 16 до 13,5 мм, а внутренний диаметр охлаждающего канала уменьшается с 12,7 до 10 мм. В результате этой операции происходит некоторое увеличение толщины стенки в зоне посадочного конуса электрода, а в зоне, примыкающей к рабочей части электрода, образуется расширяющаяся полость. Оба эти фактора сказываются на увеличении стойкости электрода. Использование патентуемого изобретения позволяет увеличить твердость рабочей части электрода на 20-40 НВ, позволяет создать в рабочей части электрода канал охлаждения с расширяющейся полостью, что позволяет повысить стойкость электрода.

Формула изобретения

Способ изготовления электрода для контактной точечной сварки, включающий операции формирования рабочей части электрода, формирования охлаждающего канала путем обратного выдавливания глухого отверстия в верхней части заготовки и холодной вытяжки с утонением стенки верхней части заготовки и формирование посадочного конуса электрода путем обжима утоненной стенки, отличающийся тем, что формирование рабочей части электрода осуществляют в процессе калибровки мерной заготовки, при этом в процессе калибровки на верхней части заготовки формируют цилиндрическую головку с наметкой под пуансон обратного выдавливания, а рабочую часть электрода формируют на ее нижней части путем прямого выдавливания, причем в процессе прямого выдавливания обеспечивают пластическую деформацию материала в зоне рабочей части электрода со степенью деформации не менее 25%, а формирование посадочного конуса электрода осуществляют с одновременным формированием конусообразного участка в верхней части охлаждающего канала.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

www.findpatent.ru

Способ контактной точечной сварки разнотолщинных деталей и электрод для его осуществления

Изобретение относится к области машиностроения и может быть использовано для получения неразъемных деталей из сталей и сплавов. Используют электрод с термостойкой вставкой, выступающей за поверхность основания электрода. Высоту выступа выбирают в зависимости от толщины и свойств материала тонкой детали. Свариваемые детали размещают между электродами таким образом, чтобы электрод со вставкой оказался со стороны тонкой детали. В процессе сварки деформируют тонкую деталь на высоту выступа вставки с образованием рельефа и получением сварного соединения в зоне деформации. В начале процесса сварки происходит деформация тонкой детали, резко сокращается площадь касания между тонкой и толстой деталями, увеличивается плотность сварочного тока. Концентрация теплоты в зоне касания возрастает до плавления и образования сварного соединения. Изобретение обеспечивает упрощение способа сварки, повышение производительности и снижение трудоемкости. 2 н.п. ф-лы, 4 ил.

 

Изобретение относится к области машиностроения, а именно к контактной сварке, и может быть использовано для получения неразъемных соединений разнотолщинных деталей из сталей и сплавов.

Известен способ контактной точечной сварки разнотолщинных деталей (см. "Технология и оборудование контактной сварки" Под ред. Б.Д.Орлова - М., Машиностроение, стр.163, рис.б), при котором для формирования зоны прохождения сварочного тока между деталями разной толщины помещают шарик или шайбу из материала, близкого к материалу свариваемых деталей. Способ не обеспечивает хорошего качества сварки, так как сложно точно расположить и зафиксировать шарик или шайбу в нужном месте. Известен электрод по а.с. СССР №1660902 кл. В 23 К 11/30, 1991, Б.И. №25, состоящий из основания и вставки из износостойкого материала, причем рабочая поверхность основания и вставки выполнены заподлицо.

Согласно этому источнику недостатком известного электрода является необходимость подбора типоразмера электрода в зависимости от размера шарика или шайбы.

Наиболее близким к предлагаемому способу является способ контактной точечной сварки разнотолщинных деталей с помощью предварительно изготовленного на тонкой детали рельефа, который позволяет сформировать зону прохождения сварочного тока, то есть резко увеличить плотность тока в контакте "деталь-деталь" за счет малой площади касания рельефа (см. "Технология и оборудование контактной сварки" Под ред. Б.Д.Орлова – М., Машиностроение, стр.163, рис.а) принят за прототип способа, и электрод (по а.с. СССР №1745463 кл. В 23 К 11/30, 1992, Б.И. №25) принят за прототип электрода, состоящего из основания с рабочей поверхностью, выполненной из материала с высокой электро- и теплопроводностью, и вставки, изготовленной из материала с высокой температуро- и износостойкостью, например вольфрама, причем соотношение диаметров вставки и основания лежит в пределах:

где dв - диаметр вставки;

dэ - диаметр рабочей поверхности основания электрода.

Рабочая поверхность вставки и основания электрода выполнены заподлицо. Способ и электрод обеспечивают достаточно высокое качество сварного соединения.

Недостатком способа является его сложность в связи с тем, что необходимо иметь большое количество оснастки для получения рельефа при большой номенклатуре свариваемых деталей.

Недостатком электрода является необходимость подбора вставки электрода под типоразмер рельефа.

Технический эффект, на достижение которого направлены изобретения, заключается в упрощении способа сварки при сохранении высокого качества сварного соединения и снижении трудоемкости изготовления рельефа и исключении большого количества оснастки для получения рельефа на тонкой детали.

Указанный технический эффект достигается тем, что в способе точечной контактной сварки разнотолщинных деталей, при котором между двумя электродами помещают свариваемые детали, сжимают их и пропускают сварочный ток, согласно изобретению перед сжатием свариваемых деталей в одном из электродов формируют термостойкую вставку, выступающую за поверхность основания электрода, после чего помещают свариваемые детали между электродами таким образом, чтобы электрод со вставкой оказался со стороны тонкой детали. Технический эффект обеспечивается также тем, что в электроде для контактной точечной сварки разнотолщинных деталей, включающем основание, выполненное из материала с высокой электро- и теплопроводностью, и вставки из материала с высокой температуро- и износостойкостью, согласно изобретению вставка выполнена выступающей над рабочей поверхностью основания, причем высота выступа определяется формулой

hв=δ т.д·k,

где δ т.д - толщина тонкой детали;

k - коэффициент, зависящий от свойств материала тонкой детали (твердость, температура плавления и т.д.), лежащий в пределах 0,3≤ k≤ 0,48, а отношение диаметров вставки и основания электрода изменяется в пределах:

где dв - диаметр вставки;

dэ - диаметр основания электрода.

На фиг.1 представлен электрод для контактной точечной сварки, продольный разрез.

На фиг.2 показано исходное положение деталей и электродов перед сваркой.

На фиг.3 показано положение, при котором в результате нагрева произошла деформация тонкой детали, т.е. образование рельефа.

На фиг.4 показано положение, при котором образовалось сварное соединение.

Способ осуществляется следующим образом.

Предварительно в электроде для контактной точечной сварки 1, содержащем охлаждающий канал 2, формируют выступающую термоизносостойкую вставку 3, а именно по известной методике в теле электрода высверливают канал, в который помещают термоизносостойкий материал, например стержень вольфрама, после чего происходит соединение вставки 3 с телом электрода 1 с помощью сварки взрывом. Причем выбирают заведомо больший стержень, выступающий за поверхность основания электрода 1. Затем свариваемые разнотолщинные детали 5 и 6 помещают между двумя электродами таким образом, чтобы со стороны тонкой детали 5 оказался электрод 1 с выступом 4 вставки 3.

После чего сжимают детали 5 и 6 посредством электродов 1 и 7. Используемые параметры сварки стандартны.

Проведенные испытания сварного соединения показали, что качество сварного шва соответствует требованиям ГОСТ 3242-79.

Для осуществления данного способа использован электрод 1 (фиг.1), включающий охлаждающий канал 2, термоизносостойкую вставку 3 с выступом 4. Термоизносостойкая вставка 3 изготавливается, как правило, из вольфрамового стержня. Вставка выступает над основанием электрода на величину hв, определяемую из формулы

hв=δ т.д·k,

где δ т.д - толщина тонкой детали;

k - коэффициент, зависящий от свойств материала тонкой детали (твердость, температура плавления и т.д.), полученный экспериментально и лежащий в пределах 0,3≤ k≤ 0,48.

При значении коэффициента k менее 0,3 недостаточно четко формируется зона деформации (рельеф) на тонкой детали, а при значениях k более 0,48 уменьшается прочность сварного соединения из-за большой деформации тонкой детали.

Соотношение диаметров основания электрода и вставки лежит в пределах

где dв - диаметр вставки;

dэ - диаметр основания электрода.

При выборе отношения dв/dэ менее 0,4 будет недостаточна прочность выступа, при соотношении dв/dэ более 0,6 будут значительные потери тепла на электроде, в результате чего возможны образования дефектов в сварном ядре.

Электрод для контактной точечной сварки работает следующим образом. На фиг.2 показано исходное состояние перед сваркой. Электрод 1 располагается со стороны тонкой детали 5, а со стороны толстой детали размещен электрод 7.

Предварительно производят сжатие разнотолщинных деталей 5 и 6 электродами 1 и 7. Включают сварочный ток. В зоне контакта выступа 4 электрода 1 в начале процесса сварки происходит максимальная концентрация теплоты. Так как температуростойкость выступа 4 электрода 1 значительно превышает температуростойкость свариваемых деталей, происходит деформация тонкой детали 5 на высоту выступа 4. Электрод 1 вступает в контакт с деталью 5 всей своей рабочей поверхностью, то есть поверхностью вставки и поверхностью основания. Сварочный ток достигает своего максимального значения. За счет деформации тонкой детали 5 резко сокращается площадь касания тонкой 5 и толстой 6 деталей. Плотность сварочного тока в зоне деформации резко увеличивается, концентрация теплоты в этой зоне возрастает, происходит подплавление тонкой 5 и толстой 6 деталей с образованием сварного соединения 8.

Предлагаемый способ контактной точечной сварки разнотолщинных деталей и электрод для его осуществления позволяют существенно упростить способ, сократить время на подготовительные операции за счет исключения операции предварительного формирования рельефа на тонкой детали, исключения изготовления дополнительной оснастки, т.е. повысить производительность процесса сварки и снизить его трудоемкость при обеспечении высокого качества сварного шва.

1. Способ контактной точечной сварки разнотолщинных деталей, при котором между двумя электродами помещают свариваемые детали, сжимают их и пропускают сварочный ток, отличающийся тем, что используют электрод с термостойкой вставкой, выступающей за поверхность основания электрода, при этом высоту выступа выбирают в зависимости от толщины и свойств материала тонкой детали, размещают свариваемые детали между электродами таким образом, чтобы электрод со вставкой оказался со стороны тонкой детали, а в процессе сварки деформируют тонкую деталь на высоту выступа вставки с образованием рельефа и получением сварного соединения в зоне деформации.

2. Электрод для контактной точечной сварки разнотолщинных деталей, включающий основание, выполненное из материала с высокой электро- и теплопроводностью и вставку из материала с высокой температурой и износостойкостью, отличающийся тем, что вставка выполнена выступающей над рабочей поверхностью основания, причем высота выступа определена формулой

hв=δ т.д.·k,

где δ т.д. - толщина тонкой детали;

k - коэффициент, зависящий от свойств материала тонкой детали (твердость, температура плавления и т.д.), лежащий в пределах 0,3≤ k≤ 0,48,

а отношение диаметров вставки и основания электрода изменяется в пределах

где dв - диаметр вставки;

dэ - диаметр основания электрода.

www.findpatent.ru

Электрод для точечной контактной сварки

 

Изобретение относится к контактной электросварке, в частности к электродам для точечной контактной сварки. Цель изобретения - повышение качества сварного соединения. С помощью привода наконечник 7 приводят в соприкосновение со свариваемыми деталями. Давление на сварное соединение создается натяжением плоских пружин 6 при их прогибе. При этом зазор между торцом винта 9 и держателем 2 уменьшается. Сварочный ток, проходя через соединение, разогревает его, при этом происходит осадка. Электрод обеспечивает сварку без выплесков, а также исключается смещение рабочего наконечника. 1 з.п. флы, 3 ил.

СОЮЗ СОВЕТСКИХ

СОЦИАЛИСТИЧЕСКИХ

РЕСПУБЛИК (я)э В 23 К 11/30

ГОСУДАРСТВЕН

ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ

ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ (21) 4708024/27 (22) 20,04.89 (46) 15.09.91. Бюл. Q 34

0л 4

О (72) M. С. Каплун и Т. В. Вишнякова (53) 621.791.763.1(088.8) (56) Слиозберг С. К. и др. Электроды для контактной сварки. M.: Машиностроение, 1972, с. 57 — 58.

Арский В. Н. Контактная сварка деталей в электронной промышленности, ч. II. М.;

ЦНИИ "Электроника", 1973, с. 8. (54) ЭЛЕКТРОД ДЛЯ ТОЧЕЧНОЙ КОНТАКТНОЙ СВАРКИ

Изобретение относится к контактной электросварке, в частности к электродам для точечной контактной сварки деталей и узлов.

Цель изобретения — повышение качества сварного соединения, что делает его безынерционным и позволяет осуществить слежение за процессом сварки.

На фиг. 1 изображен электрод точечной сварки, разрез; нэ фиг. 2 — плоская пружина; на фиг. 3 — электрод в процессе сварки сетки.

Электрод содержит токоведущий стержень 1, на конце которого закреплен опорный медный элемент 2 в форме трехлучевой звездочки, на лучах которой выполнены выступы 3. К выступам 3 лучей элемента 2 с помощью винтов 4 и втулок 5 параллельно друг другу и на расстоянии 8 мм прикреплены две плоские пружины 6 также в форме

„, SU„„1676770 А1 (57) Изобретение относится к контактной электросварке, в частности к электродам для точечной контактной сварки, Цель изобретения — повышение качества сварного соединения, С помощью привода наконеч. ник 7 приводят в соприкосновение со свариваЬмыми деталями. Давление на сварное соединение создается натяжением плоских пружин 6 при их прогибе. При этом зазор между торцом винта 9 и держателем 2 уменьшается. Сварочный ток, проходя через соединение, разогревает его, при этом происходит осадка. Электрод обеспечивает сварку беэ выплесков, а также исключается смещение рабочего наконечника. 1 э.ll. флы, 3 ил. трехлучевых звездочек. Наконечник 7 закреплен в центральны отверстиях 8 плоских пружин 6 с помощью винта 9 и втулок

10, 11 и 12 так, чтобы зазор 13 между торцом винта 9 и держателем 2 был равен 2 ° 10 м, В рабочем положении наконечник 7 находится в контакте с перекрестием 14 витка

15 и траверсы 16.сетки, расположенной на оправке 17.

Величина зазора 13, равная 2 ° 10 м, определена в соответствии с выражением

h- К вЂ”, где P — допустимая нагрузка на

fl электрод, H; — жесткость скрепленных пружин, н/м; К1,5...2,0.

Допустимая нагрузка на электрод составляет 78,5 Н и определена техническими характеристиками сварочной машины, Жесткость скрепленных п ружин, рассчитанная с, учетом их Прогиба Гдля усилия 9.81 Н соста1.676770 вила 75,5 1О Н/м, Тогда h- 3=

78,5

755 10з

2,08 10 (м).

Работа электрода происходит следующим образом. С помощью механизма привода (не показан) наконечник 7 приводят в контакт с и рекрестием 14. Механическое давление на перекрестие создается дополнительным натяжением плоских пружин 6 при их прогибе Р1 мм {определено экспериментально) при приложении максимальной нагрузки Р=78,5 Н, При этом зазор между винтом 9 и держателем 2 уменьшается до 1 мм, Включается сварочный ток, который, проходя через перекрестие 14, разогревает 15 его до пластического состояния, при этом происходит осадка перекрестия 14 на величину С. Однако контакт наконечника 7 с перекрестием 14 не нарушается, так как пружины 6 частично выпрямляются и при- 20 жимают наконечник 7 к перекрестию 14, И так далее от перекрестия к перекрестию.

Предлагаемый электрод обеспечивает стабильное слежение наконечника 7 за осаживаемыми в процессе сварки перекрести- 25 ями 14 и тем самым поддерживает постоянное давление на них. Величина зазора 13 учитывает различную величину прогиба Всистемы плоских пружин 6 для всего диапазона рабочих давлений на электрод, 0

При коэффициенте К2 увеличиваются габариты и масса электрода, что приводит к увеличению, активного сопротивления электрода и, следовательно, к увеличению сопротивления вторичного контура сварочной цепи. В ре- 40 зультате при большой продолжительности включения увеличивается нестабильность сварочного тока, что заметно ухудшает качество сварки.

Одновременно при увеличении MBccbl 45 электрода недопустимо нарушается режим работы плоских пружин, что значительно ухудшает стабильность давления на перекрестия и, во время их осадки, недопустимо снижается качество сварки.

Предложенный электрод для точечной контактной сваркИ обладает безынерционностью, что обеспечивает повышение качества сварки за счет исключения выплесков, что весьма характерно при сварке проволочных перекрестий. Известно, что выплеск существенно влияет на прочность сварного соединения и на электропрочность приборов.

Осесиметричное закрепление рабочего наконечника исключает его смещение, а также позволяет уменьшить жесткость пружин.

Формула изобретения

1. Электрод для точечной контактной сварки, содержащий опорный токоподводящий элемент и связанный с ним посредством плоских пружин рабочий наконечник, отличающийся тем, что, с целью повышения качества сварного соединения путем снижения инерционности электрода, в нем плоские пружины выполнены с центральными отверстиями, расположены соосно параллельно и с зазором относительно друг друга и относительно опорного элемента и скреплены между собой. и с опорным элементом по периферии, рабочий наконечник закреплен в центральных отверстиях плоских пружин с зазором относительно опорного элемента, при этом величина зазора между опорным элементом и торцом наконечника равна

h- =К вЂ”, -Ю где P — допустимая нагрузка на электрод, Н; — жесткость скрепленных пружин, Н/м, К вЂ” коэффициент, К-1,5...2,0.

2. Электрод по и. I, о т л и ч а ю щ и йс я тем, что плоские пружины и опорный элемент выполнены в виде трехлучевых звездочек и скреплены по концам лучей.

1676770

f1

Фиг.

Составитель Э.Ветрова

Техред M.Моргентал

Редактор Т.Клюкина

Корректор С.Шевкун т

Заказ 3069 Тираж 506 Подписное .

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

Электрод для точечной контактной сварки Электрод для точечной контактной сварки Электрод для точечной контактной сварки 

www.findpatent.ru

Способ изготовления электрода для контактной точечной сварки

 

Изобретение относится к сварке, в частности к способу изготовления электрода для контактной точечной сварки, и может найти применение при изготовлении электродов сложного профиля. Сущность изобретения заключается в следующем: в процессе калибровки мерной заготовки на верхней ее части формируют цилиндрическую головку, а на ее нижней части - рабочую часть электрода. При этом осуществляют раздачу цилиндрической головки путем обратного выдавливания в ней полости в виде прямого усеченного конуса. Формируют предварительный профиль канала охлаждения путем холодной вытяжки с утонением стенки цилиндрической головки. Затем одновременно формируют посадочный конус и окончательный профиль канала охлаждения путем обжима с редуцированием. Процесс ведут в два этапа путем деформирования утоненной стенки и части цилиндрической головки в зоне расположения конической поверхности полости. 6 ил.

Изобретение относится к сварке и может быть использовано при изготовлении электродов для контактной точечной сварки.

Большое значение на повышение производительности процесса сварки, улучшение качества и надежности сварных соединений оказывают электроды, являющиеся рабочим инструментом и осуществляющие связь между сварочной машиной и свариваемыми деталями. В процессе точечной сварки электроды выполняют различные функции, основными из которых являются сжатие свариваемых деталей между собой, подвод тока к свариваемым деталям и отвод тепла, выделяющегося в процессе сварки, поэтому форма и размеры рабочей поверхности электрода, его конструкция в целом, а также способ его изготовления оказывают значительное влияние на качество сварных соединений и производительность процесса. Известен способ изготовления электродов для контактной точечной сварки [1] cогласно которому электроды вытачивают из прутков, обычно поступающих с металлургического завода в термически необработанном (для дисперсионно-упрочняемых сплавов) или отоженном состоянии. Такой способ изготовления электродов нерационален вследствие больших отходов металла, так как в стружку при этом идет до 30oC40% дефицитных медных сплавов, а также малопроизводителен, а потому не может быть рекомендован для массового производства. Известен также способ изготовления электродов для контактной точечной сварки литьем по выплавляемым моделям [2] который оправдывает себя только при изготовлении в массовом производстве электродов сложной формы, поскольку уменьшает расход металла и сокращает последующую механическую обработку. Кроме того, был предложен способ изготовления составного электрода, состоящего из рабочей сменной части и основания электрода. При этом рабочая сменная часть может быть закреплена на основании с помощью крепежного средства [3] либо может быть установлена на основании по прессовой посадке [4 и 5] В первом случае [3] использование электродов такой конструкции удобно, так как позволяет при изменении толщины марки металла свариваемых деталей устанавливать нужную рабочую часть. Недостатками электрода со сменной частью является возможность применения его только при сварке деталей с хорошими подходами и недостаточно интенсивное его охлаждение. Во втором случае [4] рабочая сменная часть заменяется только после ее полного износа, поэтому для увеличения износостойкости рабочей сменной части ее целесообразно выполнить методом объемного выдавливания [6] поскольку в процессе выдавливания производится наклеп материала. Кроме того, данный метод характеризуется высокой производительностью, экономным использованием материала и возможностью получения в процессе выдавливания канала охлаждения. Кроме того, ориентированное расположение волокон исходной заготовки, например цилиндрической, обусловленное характером ее получения прокаткой или волочением, обеспечивает высокую стойкость рабочей сменной части за счет создания направленной волокнистой структуры по ее сечению. Однако в процессе изготовления электрода таким способом не удается добиться полного геометрического совпадения посадочных поверхностей сменной части и основания в силу геометрических погрешностей (овальность, круглость, цилиндричность, конусность) их поверхностей, возникающих в процессе их изготовления, поэтому в местах контакта посадочных поверхностей имеет место неравномерное электрическое сопротивление, что приводит к неравномерному нагреву электрода со всеми вытекающими из этого последствиями. Кроме того, трудно обеспечить длительное надежное соединение между собой посадочных поверхностей в силу того6 что они подвергаются циклической термонагрузке. При этом следует также отметить, что способ [6] может быть рекомендован для получения канала охлаждения постоянного сечения. С помощью этого способа нельзя получить канал охлаждения с расширенной полостью, расположенной в рабочей части электрода и предназначенной для интенсивного отвода тепла от рабочей части электрода. Известен способ изготовления изделий типа стакан с кольцевым поднутрением [7] согласно которому заготовку подвергают обратному выдавливанию пуансоном в матрице с круговой поперечной полостью изнутри. На конечной стадии выдавливания полости изделия металл интенсивно течет в поперечном направлении из-под пуансона, заполняя указанную круговую полость матрицы и образуя тем самым технологический выступ снаружи изделия. Одновременно благодаря интенсивному поперечному течению металла изнутри стакана образуется кольцевое поднутрение (расширенная полость). Если данный способ применить для изготовления электрода для контактной точечной сварки, то на его рабочей части возникает значительное утолщение, которое приводит к увеличению диаметральных габаритов электрода и такой электрод можно применить при сварке деталей с хорошими подходами. Если же эту часть срезать, то образовавшаяся в процессе выдавливания направленная волокнистая структура электрода прерывается, что приводит к снижению стойкости его рабочей части. Наиболее близким к изобретению по своей технологической сущности является способ изготовления электродов для контактной точечной сварки холодным выдавливанием [8] включающий операции калибровки серной заготовки, обратного выдавливания, формирования охлаждающего канала и посадочного конуса. Способ разработан для изготовления прямых электродов. Согласно способу мерная заготовка отрезается от цилиндрического прутка с помощью втулочных ножей, затем предварительно очищенную и смазанную смазкой заготовку помещают в матрицу. С помощью пуансона осуществляют калибровку заготовки. После этого в процессе обратного выдавливания осуществляют формирование рабочей части электрода и охлаждающего канала, а затем формируют посадочный конус. Образованный таким способом электрод имеет охлаждающий канал постоянного сечения, что затрудняет отвод тепла от рабочей части электрода. Кроме того, как показали проведенные исследования, величина пластической деформации рабочей части такого электрода в районе его торца достигает 225% [8] что сказывается на его стойкости. Технический результат изобретения снижение трудоемкости изготовления электрода, повышени его стойкости и снижение расхода металла. Задачей изобретения является разработка способа изготовления электрода для контактной точечной сварки, охлаждающий канал которого в районе его рабочей части имел бы расширяющуюся полость. Задача решается тем, что в способе изготовления электрода для контактной точечной сварки, включающем операции калибровки мерной заготовки, обратного выдавливания, формирования охлаждающего канала и посадочного конуса, согласно изобретению в процессе калибровки на верхней части заготовки формируют цилиндрическую головку, а на ее нижней части рабочую часть электрода, осуществляют раздачу цилиндрической головки путем обратного выдавливания в ней полости в виде прямого усеченного конуса и формируют предварительный профиль канала охлаждения путем холодной вытяжки с утонением стенки цилиндрической головки, а затем одновременно формируют посадочный конус и окончательный профиль канала охлаждения путем обжима с редуцированием в два этапа утоненной стенки и части цилиндрической головки в зоне расположения конической поверхности полости в матрице. Отличительная особенность предлагаемого способа состоит в том, что уже на первом этапе обработкой давления исходной заготовки из одной ее части формируют рабочую часть электрода и осуществляют операцию по созданию цилиндрической головки на ее противоположном конце, которую затем подвергают раздаче и формируют канал охлаждения сложного профиля (с расширяющейся полостью) и посадочный конус. В результате этого достигается вышеуказанный технический результат. Эти и другие особенности и преимущества предлагаемого изобретения приводятся далее при рассмотрении конкретного примера его исполнения со ссылками на прилагаемый чертежи поэтапного изготовления электрода. Изобретение поясняется фиг. 1-6. Исходную заготовку 1 диаметром заг полученную резкой прутка, смазывают смазкой и подвергают калибровке в матрице 2 воздействием пуансона 3, при этом на верхней части заготовки формируют цилиндрическую головку 4 диаметром 1 а на ее нижней части рабочую часть 5 будущего электрода. Обе части заготовки соединены между собой коническим участком 6 с размерами переходного конуса матрицы 2. На второй операции формообразования полученный полуфабрикат 7 смазывают смазкой и размещают в матрице 8, при этом конический участок 6 контактирует с переходным конусом матрицы 8, рабочая часть 5 будущего электрода центрируется цилиндрическим отверстием 9 матрицы 8, а цилиндрическая головка 4 полуфабриката 7 выставлена с зазором относительно отверстия 10 матрицы 8. Благодаря центровки полуфабриката 7 в матрице 8 цилиндрическая головка 4 образует равный зазор по всему периметру отверстия 10. При опускании пуансон 11 входит в контакт с цилиндрической головкой 4 и начинает ее раздачу, путем обратного выдавливания в ней полости 12 в виде прямого усеченного конуса. В силу того, что пуансон 11 выполнен с тупым конусом, это требует несколько большего усилия выдавливания (по сравнению с острым конусом), но при этом в процессе выдавливания внутреннее отверстие имеет меньший эксцентриситет, увеличивается стойкость пуансона. Полость 12 является расширяющейся полостью будущего канала охлаждения электрода. Поскольку процесс выдавливания полости 12 совмещен с процессом раздачи цилиндрической головки 4, усилие деформации в этом случае ниже (по сравнению с обратным выдавливанием полых изделий), что обусловлено уменьшением сопротивления трения о стенки матрицы. В процессе раздачи цилиндрической головки 4 ее наружный диаметр 1 увеличивается до величины 2 диаметра отверстия 10 матрицы 8. Диаметр при вершине конуса полости 12 равен диаметру 3 вершины тупого конуса пуансона 11. На третьей операции формообразования полученный полуфабрикат 13 смаэывают смазкой и устанавливают на стержень 14, нижний конец которого эквивалентен профилю полости 12. Полуфабрикат 13 с расположенным внутри него стержнем 14 проталкивают через многоступенчатую матрицу 15, формируя предварительный профиль канала охлаждения, путем холодной вытяжки с утонением стенки цилиндрической головки 4 до наружного диаметра 4. Размер внутреннего диаметра 5 канала охлаждения соответствует диаметру стержня 14 и диаметру основания усеченного конуса полости 12. На четвертой операции формообразования полученный полуфабрикат 16 также смазывают смазкой и устанавливают торцем рабочей части 5 электрода на неподвижную опору 17. Опускают матрицу 18, она входит в контакт с утоненной стенкой диаметра 4 полуфабриката 16 и, перемещаясь вниз, осуществляет деформирование утоненной стенки и части цилиндрической головки 4 в зоне расположения конической поверхности 19 полости 12 путем обжима с редуцированием с одновременным предварительным формированием посадочного конуса электрода и профиля канала охлаждения. При этом диаметр 4 уменьшится до диаметра 6 а диаметр 5 до диаметра 7. На заключительной операции формообразования полуфабрикат 20 смазывают смазкой и вновь устанавливают торцом рабочей части 5 электрода на неподвижную опору 17. Затем опускают матрицу 21, которая входит в контакт с утоненной стенкой диаметра 6 полуфабриката 20 и, перемещаясь вниз, осуществляет окончательное формирование посадочного конуса 22 электрода и профиль канала 23 охлаждения. Формирование заканчивают в момент достижения требуемых размеров изделия, при этом диаметр 6 уменьшается до диаметра 8, а диаметр 7 до диаметра 9 Пример. Заготовку диаметром 25 мм и длиной 24,5 мм отрезают от бронзового прутка марки Бр.Х1 и производят ее закалку в электропечи при нагреве до температуры 98020o с охлаждением в воде. Затем заготовку очищают, промывают в водном растворе кальцинированной соды с тринатрийфосфатом, сушат и смазывают смазкой. На первом этапе осуществляют калибровку заготовки, при этом на верхней части заготовки формируют цилиндрическую головку, а на ее нижней части - рабочую часть электрода. Между обеими частями формируется конический участок с углом конусности 13o. Высота рабочей части электрода h. На второй позиции полученный полуфабрикат смазывают смазкой, укладывают в ступенчатую матрицу так, что конический участок полуфабриката располагается на конусообразной расточке матрицы, а цилиндрическая головка выставлена с зазором относительно цилиндрической расточки матрицы. Затем осуществляют раздачу цилиндрической головки путем обратного выдавливания в ней полости в виде прямого усеченного конуса. В результате получают полуфабрикат в виде ступенчатого стакана, внутренняя полость которого представляет собой прямой усеченный конус, основание которого примыкает к цилиндрическому участку. Толщина дна стакана h, а угол при вершине 53o. На третьей позиции ранее полученный полуфабрикат также смазывают смазкой, а затем на прессе выполняют холодную вытяжку с утонением через многоступенчатую матрицу, получая прямой стакан с наружным диаметром рабочей части электрода и внутренним каналом в виде конусообразной полости переходящей в цилиндрическую с толщиной стенки на цилиндрическом участке несколько более 1 мм. На четвертой и пятой позициях ранее полученный полуфабрикат смазывают смазкой, устанавливают торцом рабочей части электрода на неподвижную опору и осуществляют одновременное формирование посадочного конуса и окончательного профиля его канала охлаждения, путем обжима с редуцированием в два этапа утоненной стенки и части цилиндрической головки в зоне расположения конической поверхности полости канала охлаждения. При этом наружная поверхность тонкостенного цилиндра превращается в конус Морзе, наружный диаметр которого со стороны входа охлаждающего канала на первом этапе обжима уменьшается с 25 до 18 мм, а на втором этапе обжима уменьшается с 18 до 13,5 мм. Кольцевой объем полуфабриката, образованный его наружной цилиндрической поверхностью и конической поверхностью полости канала охлаждения, представляет жесткую зону, деформация которой в процессе редуцирования исключает выпучивание внутренней поверхности канала охлаждения и образует внутренний профиль канала охлаждения в виде конической поверхности, плавно переходящей в расширяющуюся полость, расположенную в рабочей части электрода, за счет утолщения стенки канала охлаждения в зоне перехода. Использование предлагаемого способа позволяет создать в рабочей части электрода канал охлаждения с расширяющейся полостью, исключить возникновение пластических деформаций в области торцевой поверхности рабочей части электрода (повышается стойкость электрода) и снизить расход металла и трудоемкость изготовления электрода. Источники информации принятые во внимание: 1. Слиозберг С. К, Чулошников П. Л. Электроды для контактной сварки. Л. Машиностроение, 1972, с. 72. 2. Галкин А. и др. Технология получения литых электродов для контактной сварки. Совершенствование технологии получения и обработки сплавов и композиционных материалов. Тезисы доклада студенческой краевой конференции, 19 21 апреля 1990 г. Красноярск, 1990, с. 15 16. 3. Слиозберг С. К, Чулошников П. Л. Электроды для контактной сварки. Л. Машиностроение, 1972, с. 58. 4. Авторское свидетельство СССР N 1637981, кл. B 23 K 11/30. 5. Ак. заявка JP N 2-40428, кл. B 23 K 11/30. 6. Патент US N 4760235, кл. B 23 K 11/30. 7. Авторское свидетельство СССР N 1660829, кл. B 21 K 21/08. 8. Ершов Л. К. Демченков И. В. Изготовление электродов для контактной точечной сварки холодным выдавливанием. Сборник "Сварка, резка, пайка, наплавка и металлизация", вып. 16, тема 4, N М-60-236/16, М. ВИНИТИ, 1960, с. 22 31.

Формула изобретения

Способ изготовления электрода для контактной точечной сварки, включающий операции калибровки мерной заготовки, обратного выдавливания, формирования охлаждающего канала и посадочного конуса, отличающийся тем, что в процессе калибровки на верхней части заготовки формируют цилиндрическую головку, а на ее нижней части рабочую часть электрода, затем осуществляют раздачу цилиндрической головки путем обратного выдавливания в ней полости в виде прямого усеченного конуса и формируют предварительный профиль канала охлаждения путем холодной вытяжки с утонением стенки цилиндрической головки, а затем одновременно формируют посадочный конус и окончательный профиль канала охлаждения путем обжима с редуцированием в два этапа утоненной стенки и части цилиндрической головки в зоне расположения конической поверхности полости.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

www.findpatent.ru

Электрод для контактной точечной сварки

 

ОПИСАНИЕ

ИЗОБРЕТЕНИЯ

Союз Советских

Социалистических

Республик

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ (61) Дополнительное к авт. свид-ву 529027 (22) Заявлено 31.10.74 (21) 2072419/27 (51) М. Кл. - В 23К 11/30 3 и с присоединением заявки Ке

Гос удар ственный ком и тет

Совета Министров СССР по делам изобретений и открытий (23) Приоритет

Опубликовано 15.03.77. Бюллетень М 10

Дата опубликования описания 08.04.77 (53) УДК 621.791,763.1. .039 (088.8) (72) Авторы изобретения

В. И. Кокорин и М. М. Рахманюк (71) Заявитель (54) ЭЛЕКТРОД ДЛЯ КОНТАКТНОЙ ТОЧЕЧНОЙ СВАРКИ

Электрод может быть использован преимущественно в том случае, когда необходимо сохранение гладкой поверхности свариваемых листов и не допускаются внутренние выплески ядра сварного соединения.

Известен электрод для контактной точечной сварки, состоящий из центральной токоведущей части, выполненной из электродного металла, напрессованной на нее наружной оболочки, выполненной из высокопрочного металла, обладающего малой электропроводностью, и тонкого слоя электропроводного металла толщиной 0,2 — 0,3 мм, нанесенного на торец токоведущей части и оболочки с помощью наплавки с последующим обжатием (1). При сварке металла электродом такой конструкции сварочный ток проходит по центральной токоведущей части, а давление прикладывается по всей поверхности торца электрода, включая площадь оболочки. Площадь, по которой к свариваемым листам подводится электрический ток, определяется диаметром центральной токоведущей части и в процессе эксплуатации не меняется, что делает процесс стабильным.

Сварка с помощью такого электрода протекает без выплесков, а поверхность листов после сварки получается гладкой, без вмятин, Однако наплавка электропроводного металла на разнородные металлы деталей известного электрода процесс весьма трудоемкий, требующий для своего осуществления специальное оборудование и оснастку. Наличие сплошного токопроводящего наплавленного слоя на всей рабочей поверхности электрода приводит к снижению КПД сварочной машины за счет рассеивания части энергии, которая расходуется на нагревание периферийных участков сварного соединения, что увеличивает его зону термического влияния, снижающего качество сварки. Ввиду незначительной толщины (0,2 — 0,3 мм) и неравномерного износа наплавленного слоя заправка рабочей поверхности электрода от окисных пленок, нагаров и других дефектов известными рекомендуемыми

15 способами — заправниками, накладочными материалами и т. п. — не представляется возможной. Восстановление же рабочей поверхности наплавкой и обжатием — трудоемкий и дорогостоящий процесс.

30 Известен электрод для контактной точечной сварки по авт. св. Ке 529027, содержащий центральную токоведущую часть из высокоэлектропроводного материала, наружное кольцо, выполненное из материала центральной

25 части, и изоляционную прокладку между кольцевыми плоскостями контакта токоведущей части и кольца.

Однако отсутствие изоляции между боковы ми поверхностями центральной части и кольЗО ца, высокая электропроводность кадмиевой

550254

Формула изобретения

Составитель Л. Комарова

Редактор Т. Юрчикова Техред А. Камышникова Корректор И. Позняковская

Заказ 609/16 Изд. Ко 291 Тираж 1229 Подписное

ЦНИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытий

1!3035, Москва, 7К-35, Раушская наб., д. 4/5

Типография, пр. Сапунова, 2 меди н большинства других электродных материалов, из которых обычно изготавливают электроды, способствуют не увеличению, а уменьшению плотности тока при сварке.

Целью изобретения является улучшение качества сварного соединения путем повышения плотности тока в центральной исти электрода.

Поставленная цель достигается тем, что электрод снабжен размещенной между боковымн поверхностями центральной части и наружного кольца изоляционной прокладкой.

На чертеже показан описываемый электрод.

Токоведущая часть 1 помещена внутри наружной оболочки 2 и изолирована от нее изоляционной прокладко" 3. Обе детали неподвижно ссединены между собой. При таком выполнении электрода снижаются электрические потери за счет рассеивания энергии, а следовательно, повышается КПД сварочной машины.

Сварочный ток в момент сварки проходит только по центральной токоведущей части, так как наружная оболочка 2 изолирована от нес прокладкой. В момент сварки в месте контакта свариваемых деталей происходит расплавление металла с образованием ядра сварной

5 точки. Оболочка 2 при этом, контактируя с поверхностью свариваемых деталей, обжимает периферийную зону ядра и предотвращает внутренний выплеск.

Электрод для контактной точечной сварки по авт. св. № 529027, отличающийся тем, что, с целью улучшения качества сварного со15 единения путем повышения плотности тока в центральной части электрода, он снабжен размещенной между боковыми поверхностями центральной части и наружного кольца изоляционной прокладкой.

20 Источник информации, принятый во внимание при экспертизе:

1. Авторское свидетельство № 354956, М. 1 л.

В 23К 11/10, 1969,

Электрод для контактной точечной сварки Электрод для контактной точечной сварки 

www.findpatent.ru

Электрод для контактной точечной сварки

 

Использование: для контактной точечной сварки с целью повышения стойкости и электрои теплопроводности электрода. Сущность изобретения: электрод оснащен износостойкой вставкой, имеющей металлическую связь с основанием электрода. Соотношение диаметров вставки и рабочей поверхности основания электрода регламентируется . Электрод воспринимает сварочное усилие как цельнометаллическая конструкция, что уменьшает деформацию рабочей части электрода. 1 ил.

СОЮЗ СОВЕТСКИХ

СОЦИАЛИСТИЧЕСКИХ

РЕСПУБЛИК (19) (11) (я)ю В 23 К 11/30

ГОСУДАРСТВЕННЫИ КОМИТЕТ

ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ

ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

0,28 — диаметр вставки;.(— (Ð2ð (. дз72

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ (21) 4787949/08. (22),31.01.90 (46) 07.07.92. Бюл. йг 25 (71) Волгоградский политехнический институт (72) В.С.Седых, В.Я,Смелянский, В.А.Хрипунов и А.Б.Углев (53) 621.791.763.1.037 (088.8) (56) Кутковский С.И. Электроды контактных электросварочных машин. — M. — Л.: Машиностроение, 1964, с. 48 — 49.

Изобретение относится к сварке, в частности к контактной сварке, и может быть использовано при изготовлении электродов для контактной точечной сварки.

Целью изобретения является повышение износостойкости и электро- и теплопроводности электрода.

На чертеже изображен точечный электрод, и родол ьн ый разрез.

Точечный электрод состоит из основания 1 с охлаждаемым каналом 2 и вставки 3 из изйосостойкого материала, например вольфрама, причем рабочая поверхность основания и вставка выполнены заподлицо.

При этом соотношение диаметров рабочей поверхности электрода и вставки лежит в пределах (54) ЭЛЕКТРОД ДЛЯ КОНТАКТНОЙ ТОЧЕЧНОЙ СВАРКИ (57) Использование: для контактной точечной сварки с целью повышения стойкости и электро- и теплопроводности электрода.

Сущность изобретения: электрод оснащен износостойкой вставкой, имеющей металлическую связь с основанием электрода, Соотношение диаметров. вставки и рабочей поверхности основания электрода регламентируется. Электрод воспринимает сварочное усилие как цельнометаллическая конструкция, что уменьшает деформацию рабочей части электрода. 1 ил.

d — диаметр рабочей поверхности электрода.

Точечный электрод работает следующим образом.

° еевич

Подвод тока к свариваемым заготовкам осуществляется преимущественно через ос- ф нование 1. Вставка 3 выполнена из вольфра- Qq ма. Благодаря наличию металлической связи р между основанием 1 и.износостойкой вставкой 3 точечный электрод воспринимает сварочное усилие как. цельнометаллическая конструкция, что уменьшает деформацию рабочей части и существенно повышает стойкость электрода.

° и

Соотношение диаметров рабочей поверхности электрода и вставки определяется из закона распределения тока по рабочей поверхности электрода

1745463

0,28 (— 8

1.16 бе а 2,28

0,28 — «» 0,38 оэ

40 где бв — диаметр износостойкой вставки, мм;

d3-диаметр рабочей поверхности основания электрода.

0„28 — 0,38 э где I —. сварочный ток, кА; Y — коэффициент, учитывающий неравномерность распределения тока по рабочей поверхности электpОда.

Диаметр рабочей повеохности электро- 5 да ds принимается равным требуемому диаметру рабочей час и точечного электрода.

Соотношение диаметров частей электрода — ограничено указанными пределами и

d8 бэ считается оптимальным, так как обеспечивает увеличение стойкости точечного электрода без существенного понижения его электро- и теплопроводности, При выборе

d 15 соотношения — меньше 0,28 вставка из

ds износостойкого материала несущественно влияет на стойкость точечного электрода,. так как сварочное усилие воспринимается основанием, не обладающим износостойки- 20 ми свойствами при повышенных температуds рах. При выборе соотношения — больше оэ

0,38 значительно снижается электро- и теплопроводность электрода, что приводит к 25 потерям при выделении тепла в контакте электрод — де аль. 8 результате возможно образование дефектов в зоне сварочной точки, что значительно снижает прочность сварного соединеиэа.

Пример. Точечный электрод изготовлен из композиционного материала медь + вольфрам, полученного сваркой взрывом, и и рименяется для сварки углеродистых и низколегированных сталей толщиной 1,5 мм.

Диаметр рабочей поверхности электрода выбирается из условия, что для сварки укаэанных заготовок диаметр рабочей поверхности должен быть не менее 6 мм. Исходя иэ этого, диаметр износостойкой вставки определяется из соотношения

Диаметр износостойкой вставки de принят, исходя из полученного соотношения, равным 2 мм, а высота 10 мм.

Точечный электрод из композиционного материала с рабочей поверхностью диаметром 6 мм используется для точечной сварки заготовок толщиной 1,5 мм иэ углеродистых 9l низколегированных сталей.

Стойкость предлагаемого точечного электрода в 3,5 раза больше, чем у точечного электрода, выполненного из меди М1, Электро- и теплопроводность увеличивается в 2 раза по сравнению с электродом с запрессованной рабочей вольфрамовой вставкой при увеличении износостойкости в

1,5 раза.

Формула изобретения

Электрод для контактной точечной сварки, состоящий иэ основания с рабочей поверхностью, выполненного из материала с высокой электро- и теплопроводностью, и вставки, изготовленной из материала с высокой износостойкостью, о т л и ч а ю щ и йс я тем, что, с целью повышения износостойкости и электро- и теплопроводности электрода, соотношение диаметров вставки и рабочей поверхности основания лежит в пределах

1745463

Составитель Е.Гузиков

Техред M.Ìoðãåíòàë Корректор А.Осауленко

Редактор И.Горная

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

Заказ 2350 Тираж Подписное .

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., 4/5

Электрод для контактной точечной сварки Электрод для контактной точечной сварки Электрод для контактной точечной сварки 

www.findpatent.ru