Как сделать электроискровой станок своими руками? Электроискровой станок


Электроискровой проволочный станок своими руками

Для изменения формы размеров заготовки из металла можно использовать электроэрозионный метод обработки. Он используется на протяжении многих лет в различных отраслях промышленности, характеризуется высокой точностью, но малой производительностью. Для применения данного метода обработки следует использовать специальный электроискровой станок, который можно приобрести или сделать своими руками. Самодельный вариант исполнения можно использовать в быту при мелкосерийном производстве. Его стоимость изготовления своими руками будет ниже, чем покупка промышленного варианта исполнения. Поэтому рассмотрим подробнее то, как можно сделать рассматриваемый электроискровой станок своими руками, что для этого понадобиться и в каких случаях он сможет использоваться.

Самодельный элетроискровой станок

Самодельный элетроискровой станок

Принцип рассматриваемого метода обработки

Особенностью обработки электроискровой установкой можно назвать то, что испарение металла происходит из-за воздействия определенного заряда на поверхность заготовки. Примером подобного воздействия можно назвать замыкание конденсатора на металлической пластинке – образуется лунка определенных размеров. Электроэрозионный разряд создает высокую температуру, которая просто испаряет металл с поверхности. Стоит отметить, что станок из этой группы уже используется на протяжении последних 50 лет в различных сферах промышленности. Главным условием использования подобного электроискрового станка можно назвать то, что заготовка должна быть изготовлена из определенного металла. При этом учитывается не степень обрабатываемости, а электропроводящие свойства.

Основной элемент конструкции

Электроэрозионный станок имеет искровой генератор, который выступает в качестве конденсатора. Для обработки следует использовать накопительный элемент большой емкости. Принцип обработки заключается в накоплении энергии в течение длительного времени, а затем ее выброс в течение короткого промежутка времени. По этому принципу работает также устройство лазерной установки: уменьшение промежутка времени выброса энергии приводит к увеличению плотности тока, а значит существенно повышается температура.

Электрическая схема электроискровой установки

Электрическая схема электроискровой установки

Принцип работы генератора, который установлен на электроэрозионный станок, заключается в следующем:

  1. диодный мост проводит выпрямление промышленного тока напряжением 220 или 380 Вольт;
  2. установленная лампа ограничивает тока короткого замыкания и защиты диодного моста;
  3. чем выше показатель нагрузки, тем быстрее проходит зарядка электроискрового станка;
  4. после того как зарядка закончится, лампа погаснет;
  5. зарядив установленный накопитель можно поднести электрод к обрабатываемой заготовке;
  6. после того как проводится размыкание цепи, конденсатор снова начинает заряжаться;
  7. время зарядки установленного накопительного элемента зависит от его емкости. Как правило, временной промежуток от 0,5 до 1 секунды;
  8. на момент разряда сила тока достигает несколько тысяч ампер;
  9. провод от конденсатора к электроду должен иметь большое поперечное сечение, около 10 квадратных миллиметров. При этом провод должен быть изготовлен исключительно из меди.

Частота генерации при подводе электрода электроискрового станка составляет 1 Гц.

Конструкция электроискрового станка

Есть схемы, реализовать которые достаточно сложно. Рассматриваемая схема может быть реализована своими руками. Детали для устанавливаемого генератора не в дефиците, их можно приобрести в специализированном магазине. Конденсаторы также имеют большое распространение, как и диодный мост. При этом, создавая самодельный электроискровой станок, следует учесть нижеприведенные моменты:

  1. на конденсаторе указываемое напряжение не должно быть менее 320 Вольт;
  2. количество накопителей энергии и их емкость выбираются с учетом того, что общая емкость должна составлять 1000 мкФ. Соединение всех конденсаторов должно проводится параллельно. Стоит учитывать, что мощность самодельного варианта исполнения увеличивается в случае необходимости получения более сильного искрового удара;
  3. лампу устанавливают в фарфоровый патрон. Следует защитить лампу от падения, устанавливается автомат защиты с силой токи от 2 до 6 Ампер;
  4. автомат используется для включения цепи;
  5. электроды должны иметь прочные зажимы;
  6. для минусового провода используется винтовой зажим;
  7. Плюсовой провод имеет зажим с медного электрода и штатив для направления.

Самодельный проволочный вариант исполнения имеет относительно небольшие габаритные размеры.

Самодельный электроискровой станок

Самодельный электроискровой станок

Основные элементы схемы электроискрового оборудования

Схема представлена нижеприведенными элементами:

  1. электрод;
  2. винт зажима, используемый для фиксации плюсового провода и электрода;
  3. втулка для направления;
  4. корпус, изготавливаемый из фторопласта;
  5. отверстие, используемое для подачи масла;
  6. штатив.

Корпус, который используется для соединения всех элементов, вытачивается их фторопласта. В качестве втулки используется заземляющий штырь, в котором вдоль оси вытачивается отверстие с резьбой для крепления электрода. Все элементы конструкции крепятся на штатив, который изготавливается с возможностью изменения высоты. Также создается отверстие, через которое подается масло.

Схема электроискрового станка

Схема электроискрового станка

Зачастую резка проводится при использовании устройства, которое питается от пускателя с катушкой, подключаемой к напряжению 220В. Шток пускателя может иметь ход 10 миллиметров. Обмотку пускателя подключают параллельно лампе. Именно поэтому на момент зарядки конденсаторов лампа горит, а после завершения этого процесса – она гаснет. После того, как шток был опущен, происходит искровой заряд.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

 

stankiexpert.ru

electric spark machine - grease monkey

The basis of the method of electric-metal processing of electro-metal process. Its essence lies in the fact, that under the influence of short sparks, sent to the source of electric current, metal collapses. In the processing of holes for electrospark machine EEPROM (rice. 18.3, а) workpiece 2 immersed in the liquid tank and connected to the positive pole, performing the function of the anode. Electrode (tool) 4, which cathode, connected to the negative pole and is fixed on the slide 5, having a vertical movement along the guide rails 6. blank 2, стол 1, on which it is fixed, tank body and the machine frame are electrically interconnected and grounded, so that their electrical potential is always zero. It is necessary for safe operation of the machine.

Если, down slider 5, touch electrode 4 the workpiece 2, the electric current goes to the circuit from the negative terminal 7 generator G to the positive terminal 8. In an electrical circuit incorporated resistors 11. This coil of a long thin wire varying resistance, You can adjust the strength of the current, controlling it on the ammeter 10.

In order to obtain pulsed discharges, continuously following each other, between electrode 4 and the workpiece 2 flock to electric circuit includes a capacitor bank 12. It includes parallel procurement 2 and electrode 4. If the circuit breaker to close an electrical circuit when the electrodes divorced machine, then at first hand ammeter 10 swing sharply and gradually return to 0. Arrow voltmeter 9, conversely, gradually deviate from the voltage values, which is created by a generator. Это означает, that there was a charge capacitor. Now you can bring the electrode to the workpiece. As soon as the distance between them would be a small, an electrical discharge occurs. At the same time all the energy, accumulated in capacitors, discharges between the electrode and the workpiece, and the greater the amount of energy, the greater the electrical erosion of the anode (заготовки).

After discharge an electric current between the electrode and the workpiece disappears, since all the energy, accumulated in capacitors, consumed, and then begins charging a capacitor bank. The next category will, as soon as the charge of the capacitor. This process occurs continuously, pulsed discharges follow one another until, until the end of treatment.

During electrode processing 4 must not touch the workpiece, otherwise there will be a short circuit. between electrode 4 and the work must always be kept small, so called spark gap. This is achieved through a variety of devices. The most simple device - regulator solenoid (rice, 18.3, б). To the upper end of the slide 5 attached steel rod-core 13, which goes inside the coil (solenoid) 14, attached to the backbone. Connection is made on opposite sides of the resistor 11 так, that the ends of the wires 15 They are at different potentials.

when the electrode 4 touches the workpiece, electric machine circuit closes and it will flow an electric current. Then, at the ends of the coil 14 It creates a potential difference, and it also flows electric current. Core 13 magnetized and drawn into the coil 14, t. it is. rise, raising with a slider 5 and electrode 4. Iskrovoy promezhutok 3 between electrode 4 and the workpiece 2 recover, and the main electrical circuit will be broken - talk it disappear. At the same time it will disappear and the current in the solenoid coil. Core 13 demagnetize, stop and retract the coil by its own weight fall. With him will go down the slide 5 and electrode 4. Between the electrode and the workpiece an electrical discharge occurs again. With the deepening hole electrode will fall under gravity.

This will continue, while there is a hole firmware process. The solenoid controller automatically lowers the electrode is gradually increasing hole depth. If the electrode can be compared with the tool, the solenoid control can be likened to a feeder. electrodes, used for spark firmware, made of soft brass. The electrode must have a profile, similar profile to stitch holes. If the hole diameter is greater 6 mm, it is better to do a hollow electrode.

Electrospark firmware fails to produce holes with a curved axis (rice. 18.4) Electrode 2 brass wire is curved along a circular arc, a radius equal to the radius fastening bore axis. The electrode holder fortified 3, which can be rotated about an axis 1. Holder 3 around the axis 1 rotated by a cord 4, upper end of which is attached to the solenoid regulator. The rest of the process takes place in the same, as in the insertion holes with a straight axis.

Universal electrical discharge machines typically have a vertical layout (rice. 18.5). Automatic regulator innings 7 According to the vertical movement of the electrode-tool 8. bath 4 the workpiece 9, mounted on a table 3, It can be moved in the vertical direction by a motor. Support 5 machining holes in a curvilinear axis rotates around a horizontal axis. cross slide 6 is moved along the guide longitudinal slide. Longitudinal caliper 5 mounted on rails 2 staninы. The mechanisms are inside the machine housing 1.

Поделиться ссылкой:

Liked this:

Like Loading...

Похожее

tehnar.net.ua

Электроискровая обработка металла - гаражная схема

Промышленная обработка металлов включает в себя несколько десятков способов и методов изменения формы, объема и, даже молекулярной структуры материала. Электроискровая обработка металлов — одна из распространенных технологий работы с металлом, отличающаяся высокой точностью и производительностью. При помощи электроискровых станков можно:

  • резать металл;
  • сверлить отверстия микроскопического диаметра;
  • наращивать дефектные области деталей;
  • производить ювелирные работы с драгоценными металлами;
  • упрочнять поверхность изделий;
  • шлифовать изделия самой сложной формы;
  • извлекать застрявшие сломанные сверла и резцы.

На базе электроискрового метода обработки металлов создано немало станков промышленного назначения. Это высокоточная и дорогая техника, которую могут позволить себе купить только крупные предприятия, специализирующиеся на металлообработке.

Электроискровой станокЭлектроискровой станок

Электроискровой станок

Но иногда электроискровые станки требуются и в мастерских или цехах, где их услуги требуются время от времени. Для этого можно купить промышленное устройство с несколько ограниченными возможностями (функционал в пределах самых востребованных операций), или построить самодельный электроискровой станок. Это вполне возможно даже в домашних условиях, не говоря уже о предприятиях, в составе которых есть токарные и электромеханические цеха или участки.

Принцип работы электроискрового станка

Базируется обработка металлов электроискровым способом на свойстве электрического тока переносить вещество при пробое. При высоком напряжении и силе постоянного тока (1-60 А) анод (положительно заряженный электрод) нагревается до высокой температуры в пределах 10-15 тысяч градусов Цельсия, расплавляется, ионизируется и устремляется к катоду. Там, в силу электрических взаимодействий он осаживается.

Чтобы в процессе работы не возникала полноценная электрическая дуга, электроды сближаются только на короткие мгновения, длящиеся доли секунда. За это время возникает искра, разрушающая анод и наращивающая катод. Обрабатываемый участок подвергается нагреву и воздействию электротока на протяжении миллисекунд, при этом соседние области и лежащий ниже слой не успевают прогреться и структура их не нарушается. Проблема пограничных состояний не возникает в принципе.

Если требуется резка или сверление — катодом служит рабочий инструмент, а анодом — обрабатываемая деталь. При наращивании, укреплении поверхности или восстановлении формы детали, они меняются местами. Для этих видов обработки созданы специальные станки, каждый из которых выполняет свои операции.

Инструментом в установках электроэрозионного действия служат латунные или медно-графитные электроды, хорошо проводящие ток и недорогие в изготовлении. С их помощью можно резать и сверлить самые твердые сплавы. Чтобы металл катода не оседал на электроде и не увеличивал его размера, процесс происходит в жидкой среде — жидкость охлаждает капли расплава, и он не может осесть на электроде, даже если и достигает его. Вязкость жидкости определяет скорость движения материальных частиц, и они не успевают за током. Металл оседает в ванне в виде осадка и не мешает дальнейшему прохождению тока.

При наращивании поверхности деталей или укреплении, металл с анода переносится на катод. В этом случае на вибрационной установке закрепляется положительный электрод, служащий донором металла, а деталь присоединяется к отрицательному полюсу. Вода или масло в этом процессе не используются, все происходит в воздухе.

Технологические показатели

Электроискровая установка, в зависимоти от режима роботы, может обеспечивать точность результата в широких пределах. Если требуется высокая производительность при относительно невысоких требованиях к состоянию поверхности (I и II класс), то используются токи 10-60 А при напряжении до 220В. В этом случае электроискровая эрозия может удалить из зоны реза или сверления металл в объеме до 300 мм3/мин. При более высоких показателях класса точности — VI и VII, производительность снижается до 20-30 мм3/мин, но и токи требуются поменьше, не более 1 А при напряжении до 40 В.

Такой широкий диапазон регулировок показывает, что электроискровая обработка металла может использоваться в различных областях, как для производства крупных серий деталей, так и для разовых работ, включая ювелирные.

Особенностью применения электроискровых установок можно считать возможность укрепления деталей различной конфигурации. На поверхность заготовки наноситься тончайший слой более прочного сплава или металла без нагрева основания на большую глубину. Это позволяет сохранить структуру металла базового изделия и значительно изменить свойства его поверхности. В некоторых случаях требуется вязкость основания и высокая твердость поверхности, или в обратном порядке. Решить эту задачу может только электроискровой станок.

Схема электроискрового станка

Обработки металлов электроискровым способом очень распространена, поэтому очень сложно рассмотреть все виды оборудования и модели конкретных установок. Они все объединены общими конструктивными элементами:

  • источником постоянного тока;
  • конденсатором;
  • вибратором;
  • переключателем режимов.

Конструкция, работающая в электроискровом режиме, может отличаться рядом характеристик, допускающих работу с тем или иным материалом, но общие принципы построения рабочей схемы одинаковы.

Батарея конденсаторов согласована с механическим движением электрода, разряд происходит в момент максимального сближения рабочих поверхностей. Релаксационные генераторы импульсов определяют максимальный заряд конденсатора при максимальной амплитуде отклонения от точки сближения. После искрового разряда конденсатор успевает зарядиться в полном объеме.

Отличие электроискровой эрозии от дуговой сварки и резки

Использование импульсного воздействия электрического тока отличается от воздействия дуги. Импульс работает в очень ограниченном пространстве, не успевая прогреть соседние участки. Даже на самых сложных в плане термического окисления сплавах инертная атмосфера не потребуется — взаимодействие происходит на площадях не более 0,05-1 мм2 при глубине воздействия 0,05-0,3 мм. Даже в самой агрессивной атмосфере не успевают возникнуть условия для активного окисления.

Электроискровой станок своими руками

Одной из главных деталей электроискровой установки, которую можно реализовать своими руками, конечно, при соблюдении всех правил техники безопасности, приведена ниже. Следует отметить, что это только одна из многих схем, которые можно использовать в конструкции станка.

Ориентировочная схема генератора искровых разрядовОриентировочная схема генератора искровых разрядов

Ориентировочная схема генератора искровых разрядов

Рабочий стол станка должен быть оборудован системой удаления окислов (непрерывной подачей масла или керосина). Они снижают вероятность отложения оксидной пленки на поверхности детали и, в результате, прекращения искрообразования. Для пробоя необходим надежный электрический контакт. Как основной вариант можно использовать ванночку, заполненную жидкостью.

Электрод представляет собой латунную или медную проволочку требуемого диаметра, которая закреплена в зажиме. Зажим, в свою очередь, представляет собой деталь вертикального штока кривошипно-шатунного механизма, который приводится в движение от электродвигателя. Частота возвратно-поступательного движения электрода выбирается в зависимости от особенностей обрабатываемого материала.

Все токопроводящие детали и кабели должны быть качественно и надежно изолированы, сама установка заземлена. Посмотреть, как работают бытовые самодельные установки можно на видео:

Следует отметить, что самодельные станки никогда не сравняются по возможностям с промышленными, например серией АРТА. Для производства кустарных изделий или использования в качестве одного из видов хобби, они, может быть и пригодны, но для работы в мастерской или слесарном цехе не «дотягивают». Не говоря уже о том, что сложность электрической схемы и необходимость точного согласования кинематики и разряда конденсатора делают их очень сложными в регулировке.

wikimetall.ru

Как сделать электроискровой станок?

#1

Для тех, кто не в курсе возможностей такого агрегата, целесообразно указать, что только с его помощью можно выполнять отверстия любого диаметра на самых твердых и прочных материалах, вне зависимости от их толщины и плотности. Кроме того, электроискровой станок способен гравировать поверхности, затачивать насадки инструментов, выполнять самые тонкие просветы и щели и даже высверливать резьбовые инструменты, которые сломались и безнадежно застряли, делая дальнейшее использование устройства невозможным. Вполне естественно, что наличие такого агрегата на подсобном хозяйстве открывает совершенно новые горизонты возможностей, однако стоимость и габариты готовых электроискровых станков делают их, мягко говоря, трудно доступными. Однако, подобное положение вещей не должно заставлять мастера отказываться от своей мечты, ведь при большом желании можно попытаться изготовить такое устройство самостоятельно.

#2

На самом деле в этом нет ничего сложного, да и себестоимость самодельного электроискрового станка приятно удивит своей бюджетностью, ведь в ход можно пустить многие имеющиеся в наличии подручные средства. Однако, перед тем, как приступить к выполнению поставленной задачи, целесообразно более подробно описать устройство электроискрового станка, а самое главное, принцип его действия. Так, вся суть работы данного приспособления сводится к полному либо частичному разрушению обрабатываемой поверхности, которое происходит в результате воздействия импульсного электроразряда. Говоря проще, металл или любой другой материал попросту расплавляются от выделяемого установкой тепла, причем для усиления эффекта желательно использовать вспомогательную жидкость. Так, в идеале на потенциально контактное место наносить обычный керосин, который всегда найдется на хозяйстве.

#3

Между тем, вспомогательная жидкость способна не только омывать само место соединения вибрирующей насадки и обрабатываемой поверхности, но и смывать все продукты эрозии. Что касается электродов, то в их качестве лучше всего использовать специальные стержни из такого жесткого материала, как латунь, причем они должны иметь ту же форму и габариты, что и у выполняемого отверстия. Не должно возникнуть трудностей и с принципиальной схемой электроискрового станка, ведь при желании подробный аналог подобного рода мини-установки можно отыскать на любом интернет-ресурсе. Так, весь принцип работы готового устройства подразумевает собой следующий процесс: контактный "плюс" разрядного конденсатора подводится к обрабатываемой детали, в то время, как его же "минус" подключают к самому инструменту, после чего приводится в действие электромагнитный вибратор.

#4

В результате выделяемых искр удается блокировать сварку инструмента с обрабатываемой поверхностью, которая для обеспечения элементарных мер безопасности закрепляется в специальном зажимном устройстве, оборудованном дополнительным электрическим контактом со специальной "ванночкой". Для того, чтобы собрать силовой трансформатор своими руками, лучше всего использовать сердечник (модификация Ш-32), выполненный из обычных трансформаторных стальных листов с толщиной набора не менее 4 сантиметров. Что касается самих подмоток, то первичная должна содержать не менее тысячи витков (отвод на 650 витке), в то время как вторичная - до 200 витков. В первом случае лучше всего использовать стальные провода модификации ПЭВ/0,41, а во втором - ПЭВ/2, диаметр которых составляет целых 125 миллиметров.

#5

Не следует забывать и о таком важнейшем нюансе, как обеспечение промежуточной экранирующей обмотки, предусматриваемой между первичной и вторичной обмотками. Небольшие трудности могут возникнуть с созданием емкости конденсатора, которая должна расположить в себе сразу два приспособления по 50 Вольт каждое. Что касается реостата, то максимальное сила тока, на которую он рассчитан, составляет от трех до пяти Ампер, причем использовать следует лишь приспособление с нахромовой обмоткой.

uznay-kak.ru

Электроэрозионные станки проволочные вырезные: принцип работы, схемы

Процесс  электроэрозионной обработки (ЭЭО) токопроводящих материалов основан на принципе направленного разрушения анода (заготовки), который находится в жидкой диэлектрической среде, в результате прохождения между  ним и катодом (рабочим инструментом) электрического разряда большой мощности. Ввиду значительных технологических возможностей метода, он реализуется на электроэрозионных станках  различного исполнения. 

Координатно-прошивочный электроэрозионный станок

Координатно-прошивочный электроэрозионный станок

Структура и разновидности оборудования для ЭЭО

Типовой электроэрозионный станок включает в себя:

  1. несколько автономно действующих друг от друга электродвигателей;
  2. узел подачи электрода-инструмента;
  3. ванну с рабочей средой;
  4. стол для размещения обрабатываемой заготовки;
  5. схему управления.

Классификация рассматриваемого оборудования производится по следующим признакам:

  • По технологическому предназначению. Можно выделить универсальные, специализированные и специальные станки для ЭЭО;
  • По принципу компоновки основных узлов. Её можно сделать горизонтальной и наклонной, но чаще используется вертикальная компоновка;
  • По типу стола: неподвижный или координатный;
  • По типу ванны – съёмная или поднимающаяся;
  • По степени точности – оборудование для работ обычной точности и прецизионное;
  • По принципу возбуждения и последующего регулирования параметров электрического разряда.

Размерный ряд видов электроэрозионного оборудования отечественного производства определяется требованиями ГОСТ 15954.

Способы получения электрического разряда в рабочих цепях  станков

Размерную обработку можно производить искровым, импульсным и дуговым разрядами. В первом случае между катодом и анодом образуется искровой разряд малой скважности, но с точно заданными характеристиками межэлектродного промежутка. Такие станки компактны, отличаются высокой точностью работы и качеством поверхности после электроэрозии, удобством регулирования технологическими показателями, но одновременно имеют малую мощность, и, следовательно – производительность. Области целесообразного использования таких станков – точная разрезка труднообрабатываемых материалов (в частности, твёрдых сплавов), получение деталей со сложными контурами. Их можно также использовать для извлечения сломанного инструмента и т.п.

Схема проволочно-вырезного электроэрозионного станка

Схема проволочно-вырезного электроэрозионного станка

Повышение энергии электрического разряда достигается введением в схему генератора импульсов, который увеличивает интервал между смежными разрядами и одновременно увеличивает тепловую мощность при единичном электроэрозионном акте.  Как следствие, производительность работы увеличивается, но зато снижаются точность, а поверхность обработанной детали может иметь довольно протяжённую зону термического влияния, что не всегда допустимо. Электроимпульсные станки применяются там, где требуется более значительный съём металла в единицу времени.

При необходимости обеспечить ещё более высокий съём металла (причём не только для формоизменения исходной заготовки, но и для её упрочнения) применяются электродуговые станки. Производительность такого оборудования увеличивается в несколько десятков раз, поскольку дуга, в отличие от остальных видов электрического разряда, горит непрерывно. Для управления технологическими параметрами дугового разряда он сжимается поперечным потоком среды-диэлектрика, которая постоянно, и под большим давлением прокачивается через зону горения дуги насосной установкой, предусмотренной в схеме станка. Электродуговыми станками можно изготовить крупные заготовки под валки, молотовые штампы горячей штамповки и т.д.

Применение электроэрозионных станков разных типов

Из оборудования  электроискрового типа одним из наиболее точных считается копировально-прошивочный станок МА4720. Он предназначен для работ с труднообрабатываемыми заготовками сложной конфигурации, например, для твёрдосплавной штамповой оснастки, пресс-форм, кокилей. Производительность станка не превышает 70 мм3/мин, зато можно достичь точности в 0,03…0,04 мм, при достаточно невысокой шероховатости конечной поверхности (не выше Rz 0,32…0,4 мкм на чистовых режимах обработки). Перемещение рабочего стола производится системой ЧПУ. Размеры рабочего стола и допустимый диапазон значений межэлектродного зазора между анодом и катодом не позволяет получать на данном станке изделия с габаритными размерами более 120×180×75 мм.

Примером электроимпульсного станка является распространённая модель 4Е723, также оснащаемая ЧПУ. Более высокие показатели удельной мощности позволяют достигать производительности ЭЭО до 1200м3/мин, при погрешности обработки на чистовых режимах в пределах 0,25…0,1 мм. Более высокая точность достигается при ЭЭО фасонных поверхностей. Станок также используется преимущественно в инструментальном производстве, однако шероховатость поверхности заметно увеличивается – до Ra 2,5 мкм, поэтому после обработки в большинстве случаев потребуется шлифование. На станке можно выполнять ЭЭО деталей с габаритными размерами 620×380×380 мм, а также прорезание фасонных пазов.

Данные виды относятся к универсальным электроэрозионным станкам. Примером специализированного оборудования является электроэрозионный станок модели 4531, производящий профильную вырезку сложных контуров  при помощи непрофилированного электрода. На станке 4531 применяется латунная проволочка, которая непрерывно перематывается через межэлектродный промежуток, возбуждая разряд между катодом и анодом. При относительно невысокой производительности (не более 16…18 мм3/мин по стали; для твёрдого сплава производительность ещё ниже), станок 4531 в принципе  позволяет обеспечить погрешность ±0,01 мм, поэтому рассматриваемое оборудование эффективно при производстве матриц вырубных штампов особо сложной конфигурации и шаблонов. Максимальные размеры вырезаемого контура составляют 100×60 мм.

Принципы оптимального  выбора технологии и типоразмера станка для ЭЭО

Исходными данными являются точность контура, размеры (глубина) термически изменённой зоны, а также желаемое значение съёма в единицу времени. Для станков, работающих с непрофилированными электродами, важно наличие устройств для автоматической заправки проволоки, а для импульсных станков – генераторов, позволяющих использовать биметаллическую проволоку, которая повышает производительность ЭЭО.

Для повышения качества процесса и снижения эрозионного износа электрода-инструмента в качестве рабочих сред лучше использовать масло (наиболее употребительна смесь масла «индустриальное-20» с керосином). В принципе, для изделий с увеличенными допусками, возможно использование и воды.

Технологические возможности электроэрозионных станков значительно расширяются наличием дополнительных приспособлений (например, для получения конических поверхностей).

Для съёма металла от 20000 мм3/мин и выше нужно применять только электродуговые станки. Наименьшая погрешность работы такого оборудования достигается на обратной полярности при использовании графитовых электродов. Вместе с тем, сравнительно высокая шероховатость поверхности – не ниже Rz 0,8…1,6 мкм – вынуждает после ЭЭО дуговым разрядом предусматривать чистовое шлифование полученного контура. Давление прокачки рабочей среды должно быть не менее 50…60 кПа.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

 

stankiexpert.ru

Изучение назначения и устройства электроискрового станка модели 57М

длина 100 мм. На чистовых режимах обработки точность получаемых размеров соответствует 8–10 квалитету точности, а наименьшая высота неровностей обработанных поверхностей по параметру Rа не превышает 1,25 мкм.

Устройство и принцип работы станка

Станок 57М (рис. 1.53) состоит из корпуса 1, в котором расположено электрооборудование, и рабочей головки, установленной на верхней плите корпуса. На передней панели корпуса расположены переключатель режима работы 2, потенциометр для настройки автоматического регулятора движения подачи 4, тумблер 5 для включения и выключения станка и тумблер 3 автоматического подъема и опускания электрода–инструмента 7.

Основными узлами рабочей головки являются: шестигранная колонка 14, каретка 10, продольный 9 и поперечный 16 суппорты, электродвигатель 11, стол 18 и ванна 6, заполняемая диэлектрической жидкостью. Колонка 14 неподвижно закреплена на верхней плите корпуса 1. По ней вверх и вниз перемещается каретка 10 при помощи винта, находящегося в отверстии колонки, и гайки, прикрепленной к каретке. Винт приводится во вращение электродвигателем постоянного тока 11 через зубчатые колеса 12 и 13.

Поперечный 16 и продольный 9 суппорты передвигают по каретке вручную с помощью рукояток Р1 и Р2. Эти движения суппортов позволяют устанавливать закреплённый на электрододержателе 8 электрод–инструмент 7 в заданное положение относительно рабочего стола 18, на котором закрепляют заготовку. Для контроля величины смещения электрода–инструмента при установочных перемещениях суппортов служат два индикатора 15.

На колонке 14 с помощью двух лап 17 неподвижно закреплен стол 18. Ванну 6 с диэлектрической жидкостью (минеральное масло или керосин) можно поднять и закрепить на колонке 14 с помощью рукоятки таким образом, что заготовка вместе со столом будет полностью погружена в жидкость.

Рис. 1.53. Электроискровой станок модели 57М

Процесс электроискровой обработки основан на явлении электрической эрозии, возникающей при прохождении часто повторяющихся электрических разрядов между электродом–инструментом и заготовкой. Длительность, мощность и частота следования разрядов определяют производительность и точность обработки. На станке значения этих величин можно регулировать в достаточно широких пределах.

Разряды, необходимые для электроискровой обработки, создаются генератором электрических импульсов станка, который состоит из батареи конденсаторов различной емкости, заряжаемых постоянным током. Поэтому энергия импульса может быть заранее задана путем включения необходимого конденсатора или их набора. Напряжение заряда конденсаторов U равно 250 В.

Электрод–инструмент при работе станка нижним концом погружают в диэлектрическую жидкость (рис. 1.54, а), находящуюся в ванне. В этом положении он совершает поступательное движение в направлении электрода–заготовки 2, неподвижно закрепленной на столе станка. Движение электроду–инструменту 1 сообщают двигателем постоянного тока 3 через зубчатую передачу 4 и винтовой механизм 5.

Рис. 1.54. Схема электроэрозионного прошивания отверстия

Когда зазор dТ становится меньше предельного, между сближающимися электродом–инструментом и заготовкой происходит искровой разряд длительностью 10-6–10-7 c. Так как объём искрового канала очень мал, а мощность импульса тока достаточно велика, температура плазмы в канале может достигать 10000–120000С. Поэтому процесс разряда сопровождается интенсивным нагревом, частичным расплавлением и испарением металла с поверхностей электрода–инструмента и заготовки. Большему тепловому воздействию при малой длительности импульсов подвергается анод, поэтому в качестве такового обычно используют заготовку.

При увеличении мощности импульсов, которую регулируют изменением емкости конденсатора, производительность процесса повышается. Однако при этом снижается точность обработки и возрастает шероховатость формируемой поверхности, так как при воздействии более мощных разрядов увеличиваются размеры эрозионных кратеров на поверхностях электродов.

Для обеспечения непрерывности процесса необходимо, чтобы зазор между электродом–инструментом и заготовкой поддерживался близким к пробойному, а непосредственный механический контакт электродов отсутствовал. Поэтому результирующая скорость движения электрода–инструмента должна точно соответствовать скорости удаления припуска. Это требует применения следящей системы в приводе электрода–инструмента, автоматически связывающей скорость его подачи и скорость съема материала. Следящие системы могут быть реализованы на основе различных принципов управления. На станке модели 57М в качестве управляющего сигнала этой системы используют напряжение на межэлектродном промежутке, изменяющееся при электрическом разряде (рис. 1.55).

vunivere.ru

вырезной и проволочный своими руками

В направлении металлообработки широкое распространение получил метод электроэрозионной обработки (ЭЭО). Электроэрозионный метод обработки был открыт советскими учеными в 1947 году.

Электроэрозионный метод обработки

Электроэрозионный метод обработки

Эта технология смогла значительно облегчить процесс обработки металла, особенно это помогло при обработке металлов высокой прочности, при изготовлении деталей сложной конструкции, а также в других направлениях.

Суть и применение методики

 Работа метода основана на воздействии на деталь электрическими разрядами в диэлектрической среде, вследствие чего происходит разрушение металла или изменение его физических свойств.

Применение метода ЭЭО:

  • При обработке деталей из металлов со сложными физико-химическими свойствами;
  • При изготовлении деталей сложных геометрических параметров, со сложно выполнимой механической обработкой;
  • При легировании поверхности для повышения показателей износоустойчивости и придания деталям требуемых качеств;
  • Повышение характеристик верхнего слоя металлической поверхности (упрочнение) за счет окисления материала под воздействием электрического разряда;
  • Высокоточная шлифовка детали;
  • Маркирование изделий без вредоносного влияния, что присутствует при механическом клеймлении.
Высокоточная шлифовка детали

Высокоточная шлифовка детали

Для выполнения различных операций применяются разные виды электроэрозионной обработки. На промышленных станках устанавливаются устройства числового программного управления (ЧПУ), что значительно упрощает применение любого вида обработки.

Виды электроэрозионной обработки материала:

  • Электроискровой вид обработки применяется при резке твердосплавных материалов, фигурной резке и для проделывания отверстий в металлах высокой прочности. Дает высокую точность, но скорость работы невелика. Применяется в прошивных станках.
  • Электроконтактный способ обработки основан на местном расплавлении металла дуговыми разрядами с последующим удалением отработанного материала. Метод имеет более низкую точность, но более высокую скорость работы, чем электроискровой способ. Применяется при работе с большими деталями из чугуна, легированной стали, тугоплавких и других металлов.
  • Электроимпульсный метод сродни электроискровому, но применяются дуговые разряды продолжительностью до 0.01 секунды. Это дает высокую производительность при относительно хорошем качестве.
  • Анодно-механический метод основан на сочетании электрического и механического воздействия на металл. Рабочий инструмент – диск, а рабочая среда – жидкое стекло или сходное по характеристикам вещество. На обрабатываемую деталь и диск подают определенное напряжение, при разряде металл расплавляется, а шлам удаляется диском механически.
Электроконтактный способ обработки

Электроконтактный способ обработки

В промышленности применяются станки, работающие на основе метода электроэрозионной обработки металла. Они классифицируются по нескольким параметрам: принцип работы, управление, наличие ЧПУ и т.д.

Виды станков, работающих на принципе ЭЭО:

  • Электроэрозионный вырезной станок;
  • Электроэрозионный проволочный станок;
  • Электроэрозионный проволочно-вырезной станок;
  • Электроэрозионный проволочный с ЧПУ;
  • Электроэрозионный прошивной станок.
Электроэрозионный проволочный с ЧПУ

Электроэрозионный проволочный с ЧПУ

Станок ЭЭО в связи со своей многофункциональностью в хозяйстве нужен, а порой и вовсе не заменим. Заиметь такой аппарат в своем гараже хотел бы каждый. К сожалению, купить такой станок заводской сборки очень накладно и зачастую не представляется возможным. Выход из такой ситуации есть – собрать своими руками.

Вырезной и прошивной станок

Вопреки предвзятому мнению о сложности и невыполнимости такой задачи это не так. Это вполне посильная задача для простого обывателя, хотя все не так просто. Самый простой вид станка – это вырезной станок, предназначается для обработки деталей из легированных, тугоплавких и других прочных металлов.

Электроэрозионный вырезной станок

Электроэрозионный вырезной станок

В электрической схеме присутствуют: источник питания, диодный мост, лампочка и набор конденсаторов, соединенных в параллельную цепь. На выход подключаются электрод и обрабатываемая деталь. Отметим еще раз, что это принципиальная схема для образного понятия принципа работы устройства. На практике схема дополнена различными элементами, позволяющими отрегулировать прошивной станок под требуемые параметры.

Общие требования к электрической схеме вырезного станка:

  • Учитывайте необходимую мощность станка при выборе трансформатора;
  • Напряжение на конденсаторе должно быть больше 320 В;
  • Общая емкость конденсаторов должна быть не меньше значения в 1000 мкФ;
  • Кабель, идущий от схемы к контактам, должен быть только медным и сечением не меньше 10 мм;

Один из примеров рабочей схемы:

Как сразу видно, схема значительно отличается от принципиальной, но в то же время не является чем-то сверхъестественным. Все детали электрической схемы можно найти в специализированных магазинах или просто в старых электронных приборах, давно пылящихся где-нибудь в гараже. Отличное решение – применить ЧПУ для управления станком, но такой способ управления стоит немало, да и подключение его на самодельный станок требует определенных навыков и знаний.

Конструкция станка

Все элементы электрической схемы необходимо надежно закрепить в корпусе из диэлектрика, в качестве материала желательно использовать фторопласт или другой с похожими характеристиками. На панель можно вывести необходимые тумблеры, регуляторы и измерительные приборы.

На станине нужно закрепить держатель для электрода (должен быть закреплен подвижно) и обрабатываемой детали, а также ванночку для диэлектрика, в которой и будет проходить весь процесс. Как дополнение можно поставить автоматическую подачу электрода, это будет очень удобно. Процесс работы такого станка очень медленный, и для проделывания глубокого отверстия уходит много времени.

Проволочный станок своими руками

Электрическая схема проволочного станка та же, что и на вырезном станке, за исключением некоторых нюансов. Рассмотрим другие отличия проволочного станка. Конструктивно проволочный станок тоже похож на вырезной, но есть отличие – это рабочий элемент станка. На проволочном станке, в отличие от вырезного, – это тонкая медная проволока на двух барабанах, и в процессе работы проволока перематывается с одного барабана на другой.

Сделано это для снижения износа рабочего инструмента. Неподвижная проволока быстро придет в негодность. Это усложняет конструкцию механизмом движения проволоки, который необходимо установить на станину для удобной обработки деталей. В то же время дает станку дополнительный функционал. При вырезании сложных элементов оптимальным вариантом будет поставить ЧПУ, но, как сказано выше, это обусловлено некоторыми сложностями.

metall.trubygid.ru