Всё о химии. Гелий из чего состоит


Гелий — Циклопедия

Гелий

Химический элемент

Инертный газ без цвета, вкуса и запаха
Символ, номер He, 2
Атомная масса 4,002602 а.е.м.
Электронная конфигурация 1s2
Степени окисления 0
Плотность 0,00017846 (при 20 °C) г/см³
Температура плавления 0,95 K
Температура кипения 4,215 K
Структура кристаллической решетки гексагональная
Теплопроводность (300 K) 0,152 Вт/(м·К)

Гелий — химический элемент c атомным номером 2, инертный газ. Обозначается символом He.

Гелий нетоксичен, не имеет цвета, запаха и вкуса. При нормальных условиях является одноатомным газом. Его точка кипения (T = 4,216 K) наименьшая среди всех элементов. При атмосферном давлении он не переходит в твердую фазу даже при абсолютном нуле. Твердый гелий получен лишь при давлении более 25 атмосфер. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при стандартной температуре и давлении. Природный гелий состоит из двух стабильных изотопов: 4He (изотопная распространенность — 99,99986 %), и гораздо более редкого 3He (0,00014 %, содержание гелия-3 в различных природных источниках может варьировать в достаточно широких пределах). Известны еще шесть искусственных радиоактивных изотопов гелия.

Гелий занимает второе место по распространенности в Вселенной (после водорода). Однако на Земле гелий является редким элементом. В современной Вселенной почти весь новый гелий создается в результате термоядерного синтеза из водорода в звездах. На Земле он создается в результате альфа-распада тяжелых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфе-распаде и просачивался сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объема. Гелий добывается из природного газа процессом низкотемпературного разделения, что называется фракционной перегонкой.

Открытие гелия началось с 1868 года, когда при наблюдении солнечного затмения астрономы француз П. Ж. Жансан и англичанин Норман Локьер независимо друг от друга обнаружили в спектре солнечной короны желтую линию, которую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил ее происхождение присутствием на Солнце нового элемента. В 1895 году англичанин Уильям Рамзай выделил из природной радиоактивной руды клевеита газ, в спектре которого наблюдалась D3-линия.

[править] Происхождение названия

Локьер дал гелию название, отражающее историю его открытия (от греч. Helios — солнце). Поскольку Локьер считал, что обнаруженный элемент — металл, он использовал в латинском названии элемента окончание «ium», которое обычно употребляется в названиях металлов. Таким образом, гелий задолго до своего открытия на Земле получил название, которое окончанием отличает его от названий остальных инертных газов.

[править] Распространение

[править] Во Вселенной

Среди всех элементов гелий занимает второе место по распространенности во Вселенной после водорода — около 23 % по массе.[1] Однако на планетах земной группы (Меркурий, Венера, Земля, Марс) гелия мало. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва в ходе реакций первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звезд. На Земле он образуется в результате альфа-распада тяжелых элементов — урана и тория. Часть гелия, возникшего в результате альфа-распада и мигрирует через породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 8-16 % об.

[править] В земной коре

Среди элементов восьмой группы гелий по количеству в земной коре занимает второе место (после аргона).[2] Содержание гелия в атмосфере Земли (образуется в результате радиоактивного распада Ac, Th, U) — 5,27×10−4 % об. и 7,24×10−5 % по массе. Запасы гелия в атмосфере, литосфере и гидросфере Земли оцениваются в 5×1014 м³.

Гелий в природном газе содержится в концентрациях как правило до 2 % об. Очень редко встречаются скопления природных газов, в которых содержание гелия достигает 8-16 % об. Максимальная концентрация гелия отмечается в уран- и торийсодержащих песках в Индии и Бразилии), торианите — от 0,8 до 10,5 л/кг. Все природные газы, содержащие гелий в концентрациях превышающих 0,02 % делятся на четыре группы:

  • а) бедные — концентрация гелия 0,02-0,05 %;
  • б) богатые — 0,05-0,30 %;
  • в) очень богатые — 0,30-1,0 %;
  • г) уникально богатые — > 1,0 %.

Часто при оценке запасов и ресурсов гелия группы «В» и «Г» объединяют в одну. В России, Казахстане и других странах бывшего СССР запасы гелия классифицируют по категориям А, B, C1, С2, а ресурсы — по категориям С3, Д1 и Д2.

В настоящее время гелий выделяют из природных газов, пользуясь методом глубокого охлаждения (гелий сжижается труднее остальных газов). Месторождения таких газов есть в России, США, Канаде и ЮАР. Гелий содержится также в некоторых минералах (монацит, торианит и других), при этом с 1 кг минерала при нагревании можно выделить до 10 литров гелия.

Качественно гелий определяют с помощью эмиссионного спектрального анализа, основные характеристические линии 587,56 и 388,56 нм. Для количественного определения пользуются масс-спекрометрией и газовой хроматографией.

[править] Сверхтекучесть

При температуре 2,1768 K жидкий гелий переходит в состояние, в котором теряет вязкость. Такое состояние называется сверхтекучим. В сверхтекучем состоянии гелий имеет ряд интересных особенностей, например, он ползет вверх по стенкам сосуда, тянется к источнику тепла и тому подобное.

Гелий используют для создания инертной и защитной атмосферы при сварке, резке и плавке металлов, при перекачке ракетного топлива, для наполнения дирижаблей и аэростатов, как компонент среды гелий-неоновых лазеров, как газ-носитель в газовой хроматографии. Гелий-3 используется для наполнения газовых нейтронных детекторов, как рабочее тело гелиевых течеискателей. Жидкий гелий — уникальный хладагент в экспериментальной физике, что позволяет использовать сверхнизкие температуры в научных исследованиях (например, при изучении электрической сверхпроводимости). Благодаря тому, что гелий очень плохо растворяется в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам. Замена азота на гелий предотвращает кессонную болезнь (при вдыхании обычного воздуха азот под повышенным давлением растворяется в крови, а затем выделяется из нее в виде пузырьков, которые закупоривают мелкие сосуды).

  • Глоссарий терминов по химии // Й.Опейда, О.Швайка. Ин-т физико-органической химии и углехимии им .. Л. М. Литвиненка НАН Украины, Донецкий национальный университет — Донецк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0
  • Химическая энциклопедия: В 5 т.: т. 1: А-Дарзана // Ред. кол.: Кнунянц И. Л. и др. — Москва: Сов. энциклопедия, 1988. — 623 с., с 513—514.

cyclowiki.org

Ответы@Mail.Ru: Люди : что такое ГЕЛИЙ (Состав)?

Ге&#769;лий (He) — 2 элемент периодической системы элементов, газ. Гелий — практически инертный химический элемент. Возглавляет группу инертных газов в периодической таблице. Нетоксичен, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,216 K) наименьшая среди всех элементов; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при абсолютном нуле. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при стандартных температуре и давлении. Природный гелий состоит из двух стабильных изотопов: 4He (изотопная распространённость — 99,99986 %) и гораздо более редкого 3He (0,00014 %; содержание гелия-3 в разных природных источниках может варьировать в довольно широких пределах) . Известны ещё шесть искусственных радиоактивных изотопов гелия. Гелий занимает второе место по распространённости во Вселенной и лёгкости (после водорода) . Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд. На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма. Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. Фракционная дистилляция в статье Дистилляция) . <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Гелий" target="_blank" >подробнее</a>

он из гелия и состоит.. это газ такой инертный.. второй в таблице после водорода

Гелий - простое вещество, инертный газ. Состоит из атомов гелия<br>Атом гелия состоит из ядра - альфа-частицы и двух электронов (второй в табл.Менделеева после водорода)

Это элемент. Значит, из себя самого. Химию учить надо...

Гелий - простое вещество, инертный газ. Состоит из атомов гелия Атом гелия состоит из ядра - альфа-частицы и двух электронов (второй в табл. Менделеева после водорода)

touch.otvet.mail.ru

Что такое ГЕЛИЙ - Энциклопедия Кольера - Словари

ГЕЛИЙ ГЕЛИЙ He (helium), химический элемент из семейства благородных (инертных) газов He, Ne, Ar, Kr, Xe, Rn, составляющих VIIIA подгруппу в периодической системе элементов, или, как ее еще называют, нулевую группу. История открытия. Гелий впервые был идентифицирован как химический элемент в 1868 П.Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж.Локьер и П.Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э.Франкленд назвали новый элемент гелием от греч. "гелиос", что означает солнце. В то время не знали, что гелий - инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У.Рамзай и почти одновременно шведские химики П.Клеве и Н.Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г.Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э.Резерфорд и Т.Ройдс установили, что ?-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия. Распространенность в природе. Содержание гелия в мировом пространстве составляет 28% (второе место после водорода). Гелий - основной компонент звездной материи. В результате углеродного цикла (сложная цепь ядерных реакций), впервые изученного Х.Бете в 1939, водород в звездном веществе превращается в гелий, при этом происходит значительное выделение энергии (см. также ЯДЕРНЫЙ СИНТЕЗ). В земной атмосфере гелий составляет всего 0,0005% об., так как он чрезвычайно легок и слабо удерживается гравитационным полем земли. Гелий образуется при распаде тяжелых радиоактивных элементов, находящихся в расплавленном земном ядре, и медленно диффундирует через земную мантию. Тепловая энергия, выделяющаяся при ядерных процессах, поддерживает ядро земли в расплавленном состоянии. Природный метан, добываемый из скважин, содержит ок. 1,75% гелия и 0,5% CO2. После удаления CO2, глубокого охлаждения природного газа до -185? C и сжатия образуется жидкий метан, а в газовой фазе остаются гелий и азот. Метод глубокого охлаждения позволяет получать гелий чистотой 98% и выше. Свойства. Гелий имеет одну-единственную электронную оболочку, занятую двумя электронами, т.е. его оболочка полностью заполнена электронами, которые испытывают сильное притяжение ядра, а значит, очень устойчивы; поэтому гелий не вступает в химические реакции, не образует химические соединений и не имеет степеней окисления. Гелий - бесцветный одноатомный газ без запаха; он не вступает в реакции ни с одним химическим элементом, и его атомы не соединяются даже между собой. Наиболее распространенный изотоп 4He содержит в ядре два протона и два нейтрона, поэтому его массовое число равно 4. Более редкий изотоп 3He с одним нейтроном был открыт в 1939 Л.Альваресом и Р.Кернегом. Содержание 3He составляет 10-5% гелия, находящегося в природном газе, добываемом из скважин. 3He получается в ядерных реакциях при распаде трития (3H-изотоп водорода). Гелий - необычное вещество, по свойствам он близок к состоянию идеального газа. Жидкий и твердый гелий. Жидкий гелий обладает рядом уникальных свойств; он имеет самую низкую температуру кипения: 4He кипит при 4,22 K, а 3He - 3,19 K. Это свойство гелия используют для создания низких температур. Гелий - единственное вещество на земле, которое при нормальном давлении не кристаллизуется вблизи абсолютного нуля, что объясняется слабым межатомным взаимодействием и квантовыми свойствами. Жидкий гелий бесцветен, очень текуч и имеет очень низкое поверхностное натяжение. Изотопы гелия в жидком состоянии сильно различаются. Так, 4He имеет две формы: при температурах выше 2,18 K существует 4He, а ниже 2,18 K происходит необычный переход (фазовый переход второго рода) в 4He-II. Если пустой стеклянный сосуд погрузить в 4He-II, то жидкость будет медленно подниматься вверх по стенкам и перетекать внутрь до выравнивания уровней жидкости снаружи и внутри. Если сосуд приподнять, то процесс пойдет обратно до нового выравнивания уровней жидкостей. Это - пленочное движение; оно характерно только для 4He-II. Другое аномальное свойство 4He-II - способность жидкости перетекать из области более низких температур в область более высоких. 4He-II обладает сверхтекучестью (явление сверхтекучести открыл П.Л.Капица в 1938) - свойством, известным только для жидкого гелия. Явление сверхтекучести объясняется на основе двухжидкостной модели. Согласно ей, 4He-II состоит из двух полностью взаимопроникающих жидкостей - нормальной и сверхтекучей; последняя является идеальной жидкостью и не испытывает сопротивления при протекании через узкие капилляры. Согласно теории, в 4He-II существуют необычные температурные волны (второй звук). Объяснение аномалий 4He-II дается на основе представлений квантовой механики. Жидкие 3He и 4He называются квантовыми жидкостями. 4He не имеет ядерного спина, а у 3He он равен 1/2 в единицах постоянной Планка. Удивительное различие состоит также в том, что 4He-II - сверхтекучая жидкость, а сопротивление текучести 3He резко возрастает с уменьшением температуры. Гелий-3 становится, однако, сверхтекучим при температуре примерно 0,001 К, как было открыто в 1972. Это явление аналогично явлению сверхпроводимости, которая рассматривается как сверхтекучесть "электронной жидкости" (см. также СВЕРХПРОВОДИМОСТЬ). В 3He обнаружен новый тип звука при очень низких температурах, нулевой звук, предсказанный Л.Д.Ландау и относящийся к волнам, характерным для ионизованных газов (плазмы). См. также СВЕРХТЕКУЧЕСТЬ. Растворы изотопов гелия также необычны. Ниже 0,9 K раствор спонтанно делится на две части, образуя раствор, обогащенный 3He и текущий над раствором, обогащенным 4He. 6% 3He растворимы в 4He, но 4He не растворяется в 3He при абсолютном нуле. Твердый гелий можно получить сжатием 4He до 25 атм или 3He до 34 атм при низких температурах. Твердый гелий - кристаллическое прозрачное вещество, причем границу между твердым и жидким гелием трудно обнаружить, так как их рефракции близки. Применение. Гелий является важным источником низких температур. При температуре жидкого гелия тепловое движение атомов и свободных электронов в твердых телах практически отсутствует, что позволяет изучать многие новые явления, например сверхпроводимость в твердом состоянии. Газообразный гелий используют как легкий газ для наполнения воздушных шаров. Поскольку он негорюч, его добавляют к водороду для заполнения оболочки дирижабля. Так как гелий хуже растворим в крови, чем азот, большие количества гелия применяют в дыхательных смесях для работ под давлением, например при морских погружениях, при создании подводных тоннелей и сооружений. При использовании гелия декомпрессия (выделение растворенного газа из крови) у водолаза протекает менее болезненно, менее вероятна кессонная болезнь, исключается такое явление, как азотный наркоз, - постоянный и опасный спутник работы водолаза. Смеси He-O2 применяют, благодаря их низкой вязкости, для снятия приступов астмы и при различных заболеваниях дыхательных путей. Гелий используют как инертную среду для дуговой сварки, особенно магния и его сплавов, при получении Si, Ge, Ti и Zr, для охлаждения ядерных реакторов. Другие применения гелия - для газовой смазки подшипников, в счетчиках нейтронов (гелий-3), газовых термометрах, рентгеновской спектроскопии, для хранения пищи, в переключателях высокого напряжения. В смеси с другими благородными газами гелий используется в наружной неоновой рекламе (в газоразрядных трубках). Жидкий гелий выгоден для охлаждения магнитных сверхпроводников, ускорителей частиц и других устройств. Необычным применением гелия в качестве хладагента является процесс непрерывного смешения 3He и 4He для создания и поддержания температур ниже 0,005 K. См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; ФИЗИКА НИЗКИХ ТЕМПЕРАТУР.

www.slovopedia.com

ВСЕ ДЛЯ ХИМИИ - Все о гелии

Внешний вид простого веществаСвойства атомаИмя, символ, номерАтомная масса(молярная масса)Электронная конфигурацияРадиус атомаХимические свойстваКовалентный радиусРадиус ионаЭлектроотрицательностьЭлектродный потенциалСтепени окисленияЭнергия ионизации(первый электрон)Термодинамические свойства простого веществаПлотность (при н. у.)Температура плавленияТемпература кипенияТеплота испаренияМолярная теплоёмкостьМолярный объёмКристаллическая решётка простого веществаСтруктура решёткиПараметры решёткиОтношение c/aПрочие характеристикиТеплопроводность
Инертный газ без цвета, вкуса и запаха

Ге́лий/Helium (He), 2

4,002602 а. е. м. (г/моль)

1s2

(31) пм

28 пм

93 пм

4,5 (шкала Полинга)

0

0

2361,3(24,47) кДж/моль (эВ)

0,147 (при −270 °C) 0,00017846 (при +20 °C) г/см³

0,95 (при 2,5 МПа)

4,215 (для 4He)

0,08 кДж/моль

20,79 Дж/(K·моль)

31,8 см³/моль

гексагональная

a=3,570; c=5,84 Å

1,633

(300 K) 0,152 Вт/(м·К)

Ге́лий — второй элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 2. Расположен в главной подгруппе восьмой группы, первом периоде периодической системы. Возглавляет группу инертных газов в периодической системе Менделеева. Обозначается символом He (лат. Helium). Простое вещество гелий (CAS-номер: 7440-59-7) — инертный одноатомный газ без цвета, вкуса и запаха.

Гелий — один из наиболее распространённых элементов во Вселенной, он занимает второе место после водорода. Также гелий является вторым по лёгкости (после водорода) химическим веществом.

Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. Фракционная дистилляция в статье Дистилляция).

История гелия

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия. Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D3, так как она была очень близко расположена к Фраунгоферовым линиям D1 (589,59 нм) и D2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» (от др.-греч. ἥλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной стороне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор.

В 1881 году итальянец Луиджи Пальмиери опубликовал сообщение об открытии им гелия в вулканических газах (фумаролах). Он исследовал светло-желтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмиери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Ученые круги встретили это сообщение с недоверием, так как свой опыт Пальмиери описал неясно. Спустя многие годы в составе фумарол действительно были найдены небольшие количества гелия и аргона.

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому ученому-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло.

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента.

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а еще через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере.

Еще до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию. Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома.

График зависимости теплоёмкости жидкого гелия от температуры

Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий дросселированием (см. Эффект Джоуля — Томсона), после того как газ был предварительно охлажден в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий еще долго оставались безуспешными даже при температуре в 0,71 K, которых достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы.

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 K медленный и плавный подъём теплоёмкости сменяется резким падением и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка». Более точное значение температуры в этой точке, установленное позднее — 2,172 K. В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причем без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I, а ниже её — гелий-II.

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения. Вот что он писал в одном из своих докладов про открытие этого явления:

… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим. …… Если вязкость воды равняется 10−2 П, то это в миллиард раз более текучая жидкость, чем вода …

Происхождение названия гелия

От греч. ἥλιος — «Солнце» (см. Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

Распространённость гелия

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе. Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Содержание гелия в атмосфере (образуется в результате распада Ac, Th, U) — 5,27·10−4 % по объёму, 7,24·10−5 % по массе. Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5·1014 м³. Гелионосные природные газы содержат как правило до 2 % гелия по объёму. Исключительно редко встречаются скопления газов, гелиеносность которых достигает 8 — 16 %.

Среднее содержание гелия в земном веществе — 0,003 мг/кг или 0,003 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 — 3,5 л/кг, а в торианите оно достигает 10,5 л/кг. Этот гелий является радиогенным и содержит лишь изотоп 4He, он образуется из альфа-частиц, излучаемых при альфа-распаде урана, тория и их дочерних радионуклидов.

Определение гелия

Качественно гелий определяют с помощью анализа спектров испускания (характеристические линии 587,56 нм и 388,86 нм), количественно — масс-спектрометрическими и хроматографическими методами анализа, а также методами, основанными на измерении физических свойств (плотности, теплопроводности и др.).

Физические свойства гелия

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 K для 4He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Химические свойства гелия

Гелий — наименее химически активный элемент восьмой группы таблицы Менделеева (инертные газы) . Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He2+, фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или ультрафиолетового излучения на смесь гелия с фтором или хлором).

Энергия связи молекулярного иона гелия He2+ составляет 58 ккал/моль, равновесное межъядерное расстояние 1,09 Å.

Известно химическое соединение гелия LiHe (возможно, имелось в виду соединение LiHe7).

Свойства в газовой фазе гелия

Спектральные линии гелия

При нормальных условиях гелий ведёт себя практически как идеальный газ. При всех условиях гелий является моноатомным веществом. При нормальных условиях, плотность составляет 0,17847 кг/м³, обладает тепло­проводностью 0,1437 Вт⁄(м·К) — бо́льшей, чем у всех других газов за исключением водорода, а его удельная теплоёмкость чрезвычайно высока (ср = 5,23 кДж⁄(кг·К), для сравнения — 14,23 кДж⁄(кг·К) для Н2).

Символ элемента, выполненный из газоразрядных трубок, наполненных гелием

При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов — розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52 нм и 447,14 нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с бо́льшей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.

Хорошо изученный спектр гелия имеет два резко различных набора серий линий — единичных (1S0) и триплетных (3S1), поэтому в конце 19 века Локьер, Рунге и Пашен предположили, что гелий состоит из смеси двух газов; один из них имел в спектре жёлтую линию 587,56 нм, другой — зелёную 501,6 нм. Этот второй газ они предложили назвать астерием (Asterium) от греч. звёздный. Однако Рамзай и Траверс показали, что спектр гелия зависит от условий: при давлении газа 7—8 мм рт.ст. наиболее ярка жёлтая линия; при уменьшении давления увеличивается интенсивность зелёной линии. Спектры атома гелия были объяснены Гейзенбергом в 1926 г. (см. Обменное взаимодействие). Спектр зависит от взаимного направления спинов электронов в атоме — атом с противоположно направленными спинами (дающий зелёную линию в оптических спектрах) получил название парагелия, с сонаправленными спинами (с жёлтой линией в спектре) назван ортогелием. Линия парагелия — одиночки, линии ортогелия — весьма узкие триплеты. Атом гелия в нормальных условиях находится в одиночном (синглетном) состоянии. Чтобы атом гелия перевести в триплетное состояние, нужно затратить работу в 19,77 эВ. Переход атома гелия из триплетного состояния в синглетное сам по себе осуществляется чрезвычайно редко. Такое состояние, из которого переход в более глубокое сам по себе маловероятен, носит название метастабильного. Вывести атом из метастабильного состояния в стабильное можно, подвергая атом внешнему воздействию, например, электронным ударом или при столкновении с другим атомом с передачей последнему непосредственно энергии возбуждения. В атоме парагелия (синглетного состояния гелия) спины электронов направлены противоположно, и суммарный спиновый момент равен нулю. В триплетном состоянии (ортогелий) спины электронов сонаправлены, суммарный спиновый момент равен единице. Принцип Паули запрещает двум электронам находиться в состоянии с одинаковыми квантовыми числами, поэтому электроны в низшем энергетическом состоянии ортогелия, имея одинаковые спины, вынуждены иметь различные главные квантовые числа: один электрон находится на 1s-орбитали, а второй — на более удалённой от ядра 2s-орбитали (состояние оболочки 1s2s). У парагелия оба электрона находятся в 1s-состоянии (состояние оболочки 1s2).

Спонтанный интеркомбинационный (то есть сопровождающийся изменением суммарного спина) переход с излучением фотона между орто- и парагелием чрезвычайно сильно подавлен, однако возможны безызлучательные переходы при взаимодействии с налетающим электроном или другим атомом.

В бесстолкновительной среде (например, в межзвёздном газе) спонтанный переход из нижнего состояния ортогелия 23S1 в основное состояние парагелия 10S1 возможен путём излучения одновременно двух фотонов или в результате однофотонного магнитно-дипольного перехода (M1). В этих условиях расчётное время жизни атома ортогелия за счёт двухфотонного распада 23S1 → 10S1 + 2γ составляет 2,49·108 с, или 7,9 года. Первые теоретические оценки показывали, что время жизни за счёт магнитно-дипольного перехода на порядки больше, то есть что доминирует двухфотонный распад. Лишь через три десятилетия, после неожиданного открытия запрещённых триплетно-синглетных переходов некоторых гелиеподобных ионов в спектрах солнечной короны было обнаружено, что однофотонный магнитно-дипольный распад 23S1-состояния значительно более вероятен; время жизни при распаде по этому каналу составляет «всего» 8·103 с.

Следует отметить, что время жизни первого возбуждённого состояния атома парагелия 20S1 также крайне велико по атомным масштабам. Правила отбора для этого состояния запрещают однофотонный переход 20S1 → 10S1 + γ, а для двухфотонного распада время жизни составляет 19,5 мс.

Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле — 2,8 мл/л (15 °C), 3,2 мл/л (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода.

Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля — Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля — Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.

Свойства конденсированных фаз гелия

Основные статьи: Жидкий гелий,Твёрдый гелий

В 1908 году Х.Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1 К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия-4 (4He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17 K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026 К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия (т. н. эффект суперсолид) при исследовании его в торсионном осцилляторе. Однако многие исследователи сходятся во мнении, что обнаруженный в 2004 году эффект не имеет ничего общего со сверхтекучестью кристалла. В настоящее время продолжаются многочисленные экспериментальные и теоретические исследования, целью которых является понимание истинной природы данного явления.

Изотопы

Основная статья: Изотопы гелия

Природный гелий состоит из двух стабильных изотопов: 4He (изотопная распространённость — 99,99986 wacko и гораздо более редкого 3He (0,00014 %; содержание гелия-3 в разных природных источниках может варьироваться в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Получение гелия

В промышленности гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1 % гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его от CO2 и углеводородов. В результате получается смесь гелия, неона и водорода. Эту смесь, т. н. сырой гелий, (He — 70-90 % об.) очищают от водорода (4-5 wacko с помощью CuO при 650—800 К. Окончательная очистка достигается охлаждением оставшейся смеси кипящим под вакуумом N2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N2. Производят гелий технической чистоты (99,80 % по объёму гелий) и высокой чистоты (99,985 %).

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург» в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (0,15-1 % об.), что позволит намного снизить его себестоимость.

По производству гелия лидируют США (140 млн м³ в год), затем — Алжир (16 млн м³). Россия занимает третье место в мире — 6 млн м³ в год. Мировые запасы гелия составляют 45,6 млрд м³.

В 2003 г. производство гелия в мире составило 110 млн м³, в том числе в США — 87 млн м³, Алжире — 16 млн м³, России — более 6 млн м³, Польше — около 1 млн м³.

Транспортировка гелия

Два сосуда Дьюара по 250 л с жидким гелием.

Для транспортировки газообразного гелия используются стальные баллоны (ГОСТ 949-73) коричневого цвета, помещаемые в специализированные контейнеры. Для перевозки можно использовать все виды транспорта при соблюдении соответствующих правил перевозки газов.

Для перевозки жидкого гелия применяются специальные транспортные сосуды типа СТГ-10, СТГ-25 и т. п. светло-серого цвета объёмом 10, 25, 40, 250 и 500 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение гелия

Уникальные свойства гелия широко используются в промышленности и народном хозяйстве:

  • в металлургии в качестве защитного инертного газа для выплавки чистых металлов
  • в пищевой промышленности зарегистрирован в качестве пищевой добавки E939, в качестве пропеллента и упаковочного газа
  • используется в качестве хладагента для получения сверхнизких температур (в частности, для перевода металлов в сверхпроводящее состояние)
  • для наполнения воздухоплавающих судов (дирижабли и аэростаты) — при незначительной по сравнению с водородом потере в подъемной силе гелий в силу негорючести абсолютно безопасен
  • в дыхательных смесях для глубоководного погружения (см. Баллон для дайвинга)
  • для наполнения воздушных шариков и оболочек метеорологических зондов
  • для заполнения газоразрядных трубок
  • в качестве теплоносителя в некоторых типах ядерных реакторов
  • в качестве носителя в газовой хроматографии
  • для поиска утечек в трубопроводах и котлах (см. Гелиевый течеискатель)
  • как компонент рабочего тела в гелий-неоновых лазерах
  • нуклид 3He активно используется в технике нейтронного рассеяния в качестве поляризатора и наполнителя для позиционно-чувствительных нейтронных детекторов
  • нуклид 3He является перспективным топливом для термоядерной энергетики

В геологии

Гелий — удобный индикатор для геологов. При помощи гелиевой съёмки можно определять на поверхности Земли расположение глубинных разломов. Гелий, как продукт распада радиоактивных элементов, насыщающих верхний слой земной коры, просачивается по трещинам, поднимается в атмосферу. Около таких трещин и особенно в местах их пересечения концентрация гелия более высокая. Это явление было впервые установлено советским геофизиком И. Н. Яницким во время поисков урановых руд. Эта закономерность используется для исследования глубинного строения Земли и поиска руд цветных и редких металлов.

В астрономии

В честь гелия назван астероид (895) Гелио, открытый в 1918 году.

Биологическая роль гелия

На данный момент биологическая роль не выяснена.

Физиологическое действие гелия

  • Хотя инертные газы обладают наркозным действием, это воздействие у гелия и неона при атмосферном давлении не проявляется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД).
  • Вдыхание гелия вызывает кратковременное повышение тембра голоса (обратное эффекту вдыхания ксенона).

Стоимость гелия

  • В 2009 г. цены частных компаний на газообразный гелий находились в пределах 2,5—3 $/м³.
  • В 2010 г. цена в Европе на сжиженный гелий была около 11 евро за литр. В 2012 году — 23 евро за литр

Интересные факты о гелии

  • Гелий — вещество с самой низкой температурой кипения. Гелий кипит при температуре −269 °C.

chem9.ucoz.ru

Все о химии - Гелий

Периодическая система элементов Менделеева - Гелий

He 2

Гелий

to кип. (oС) 268,935 Степ.окис. -

4,002602

to плав.(oС) 271,15 Плотность 178,47
1s2 ОЭО 5,5 в зем. коре 0,0015 %

Гелий — подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По Легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали:. Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Ка-мерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученьге.

...Мы перечислили эти факты лишь с одной целью: показать, что элемент № 2 — элемент весьма необычный.

Земной гелий.

Гелий — элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле *. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая .линия D, а что за ней скрывалось, стало достоверно- известно лишь после того, как гелии извлекли из земных минерале»,-содержащих радиоактивные элементы.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа-частицы — высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия — ''Не, чьи атомы можно рассматривать как останки альфа-частиц, захороненные в оболочке из двух спаренных электронов — в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементе», насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за-4,52 миллиарда лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна, тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия — половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико—несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве .гелия близка к нулю, так как они очень редки.

В 1881 году об открытии гелия в вулканически газах, сообщил италь-яиский ученый Пальмиери. Однако его сообщение (впоследствии подтвержденное) мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в, 1895 году.

Природные соединения, в составе которых есть альфа-активные итотопы, это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой — самородные металлы, магнетит, гранат, апатит, циркон и другие,— прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергается процессам выветривания, перекристаллизации и т. д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняют газом. Ложем для таких газовых коллекторов обычно служат вода или нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом — метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко — десятых долей процента. Большая (1,5—10%) гелиеносность метано-азотных месторождений — явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5 • 1014 м3; судя же по вычислениям, его образовалось в земной коре за два миллиарда лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий — легкий газ и, подобно водороду (хотя и медленнее), он улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся — старый улетучивался в космос, а вместо него в атмосферу поступал свежий — «выдыхаемый» Землей.

В земной коре гелия приблизительно в 20 миллионов раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли — в альфа-активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий — редкий и рассеянный газ. На килограмм земного материала приходится всего 0,003 миллиграмма гелия, а содержание его в воздухе— 0,00052 объемного процента.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все црочие элементы остается только один процент! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента . главенствуют в звездах, планетарных туманностях и межзвездном газе.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа-распаде) гелий, а крупные — и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33 %, по другим — 97 %. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования — план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты — Юпитер V — армады кибернетических машин на криотронах (о них — ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость — необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 году немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 миллионов киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона — конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма-кванта. Наконец, реагируют два ядра 3Не, преобразуясь в альфа-частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом, гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико» но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складываеся из шести ступеней—реакций. Углерод играет здесь р<ль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих вреаращений, такая же, как и при протонно-протонном щикле — 26,7 Мэв на один атом гелия.

Реакция синтеза гелия—основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепяа и метеорологических явлений на Земде.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д. А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 8Be, 12С, 16O, 20Ne, 24Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхиовых» звездах.

Известный советский химик А. Ф. Капустинский называл водород и гелий протоэлементами — элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый…

Атом гелия (он же молекула) — прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию 78,61 эв. Отсюда — феноменальная химическая пассивность гелия.

В последние пять лет химикам удалось получить химические соединения тяжелых инертных газов. Однако благородство гелия остается, как и прежде, вне подозрений. Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики — меньше, чем в любом другом веществе. Отсюда—самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него не действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно в полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в сто раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и метадаы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-вторых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172° абсолютной шкалы происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 миллионов разлучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью — способностью вытекать без трения через капилляры сколь угодно малого диаметра. Очень интересно, что способность переходить в состояние с нулевой вязкостью присуща только одному изотопу — 4Не. Другой изотоп гелия — 3Не в сверхтекучее состояние не переходит.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком — жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 году), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента № 2.

Первыми гелий применили немцы. В 1915 году они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды, и нет для этих целей более подходящего таза, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий — идеальное средство для передавливания изодной емкости в другую легковоспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов. С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения — при более высоких температурах тонкие детали энергетических спектров маскируются тепловым! движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тысяч эрстед) при ничтожных затратах энергии. При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле — криотроны— всё шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без пего никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намно большие, количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,1%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена — частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Гелий в скафандре.

У космобиологов уже давно сложилось убеждение, что нет и не может быть газовой среды, которая была бы в равной степени хороша для любых условии космического полета. «Земной» воздух — не исключение. Его достоинства самоочевидны, именно они — причина того, что атмосфера во всех наших «Востоках», «Восходах» и «Союзах» состояла из обычного воздуха. Но в некоторых условиях обычный и привычный земной воздух может из друга превратиться во врага или не очень надежного друга...

Уже при полете к Луне на космический корабль воздействуют три источника радиации: излучение радиационных поясов Земли, галактическое космическое излучение и корпускулярное излучение солнечных вспышек. Предусмотреть интенсивность последнего практически невозможно. Даже при надежной защите корабля обычный воздух в этих условиях может стать источником вторичной — наведенной радиации. Точнее, источником станут атомы азота, из которого атмосфера корабля состоит почти на 80%. Из этой ситуации может быть лишь два выхода: или намного усложнять и утяжелять средства радиационной защиты, или создавать внутри корабля атмосферу, в которой невозможно возникновение наведенной радиации.

В аварийной ситуации может проявиться и другой «минус» обычного воздуха. Космический полет проходит в условиях глубокого вакуума. При случайной непредвиденной разгерметизации корабля космонавт подвергнется сразу нескольким опасностям. От многих из них, в том числе и от острого кислородного голодания, его защитит скафандр. Но будут ли участники длительных космических полетов постоянно находиться в скафандрах?!

Наконец, третий недостаток обычного воздуха как среды обитания космонавтов состоит в том, что эта газовая смесь — далеко не самая легкая. Собственно, не так тяжел сам воздух. От замены его даже водородом (представим на минуту, что это возможно) вес корабля заметно не изменится. Но ведь воздух, которым дышат космонавты, надо постоянно регенерировать. Циркуляция и вентиляция требуют затрат энергии. Чем легче газ, тем легче вентиляционные устройства, тем меньше вес источников энергии.

Конечно, естественные достоинства земного воздуха с лихвой перекрывают эти минусы, но не считаться с ними нельзя — вопрос-то гамлетовский: быть или не быть. Поэтому не прекращаются поиски и исследования других вариантов воздушной среды, пригодной для жизни в космосе. И если без кислорода никак не обойдешься, то азот воздуха, не играющий в жизненно важных процессах большой роли, может быть изъят или заменен.

В отечественной и зарубежной научной литературе фигурируют пять реальных вариантов газовой среды для кабин космических кораблей. Первый — обычный воздух:

78% Na, 21% Oz; 1% — все остальное: водород, инертные газы, СОа и другие. Второй, третий и четвертый варианты предполагают полное или частичное удаление из обычного воздуха балластного азота. Но, как известно, чистым кислородом долго дышать нельзя. Чтобы избежать кислородного отравления, давление в кабине снижается (человеку в космическом скафандре это снижение давления, естественно, ничем не грозит), так что парциальное давление кислорода остается таким же, как в нормальных условиях.

Газовая среда, освобожденная от азота, позволяет существенно уменьшить вес кабин. Именно такая среда была в кабинах американских космических кораблей «Меркурий», «Джемини», «Аполлон».

В опытах, поставленных в нашей стране, были подтверждены почти все достоинства атмосферы пониженного давления. Ей действительно не свойственны недостатки естественной воздушной среды. Но у нее свои минусы. Во-первых, в сильно разреженной атмосфере нельзя находиться без скафандра или с открытым скафандром. Во-вторых, и при низком давлении чистый кислород все-таки раздражает верхние дыхательные пути. В-третьих, в атмосфере чистого кислорода, да еще при пониженном давлении, намного увеличивается вероятность пожара. Значит, нужно предусматривать на борту какую-то технику пожарной безопасности, а она тоже что-то весит...

И, наконец, пятый вариант—атмосфера, в которой весь азот заменен гелием.

Теоретически предпосылки для такой замены были обнадеживающими. Феноменальная химическая пассивность гелия должна была гарантировать неизменность направления и характера биохимических реакций организма.

Однако все эти выкладки нужно было подтвердить опытами.

В камеру, заполненную гелио-кислородной смесью, поместили несколько белых мышей. Животные получали нормальный корм, воду; необычный воздух тщательно регенерировался. За мышами вели постоянное наблюдение. Эксперимент длился больше пятидесяти дней. Никаких существенных изменений в поведении и жизнедеятельности животных не наблюдалось. В ходе опыта не погибла ни одна мышь, напротив, у одной из них родились мышата, и население камеры увеличилось. После окончания опыта исследовали ткани и органы животных, долгое время находившихся или даже родившихся в гелио-кислородной среде, но никаких изменений, причиной которых мог быть гелий, обнаружено не было.

Другое важное свойство гелия как заменителя азота — прочность и компактность его молекул. Есть все основания считать, что в гелио-кислородной среде опасность наведенной радиации практически исключена. Растворимость гелия в крови, моче, лимфе и особенно жирах намного меньше, чем азота. Это уменьшает опасность декомпрессионных расстройств при резких перепадах давления. Не случайно гелио-кислородные смеси стали надежным средством профилактики кессонной болезни и дали большой выигрыш по времени при подъеме водолазов.

И плюс ко всему гелий намного легче азота.

Данные многих опытов на животных и с участием человека были за гелиевый воздух. Но все опыты на людях были кратковременны. Как скажется на человеке долгое пребывание в гелио-кислородной среде? Точный ответ на этот вопрос дали проведенные несколько лет назад опыты советских биологов профессора А. Г. Кузнецова и кандидата медицинских наук А. Г. Дианова. Было проведено два эксперимента продолжительностью один—22, другой—30 дней, в которых участвовали молодые, абсолютно здоровые люди. Первые два дня герметическая камера была заполнена обыкновенным воздухом. За это время медики сняли фоновые данные. На третий день произошла смена среды обитания. Сначала камеру провентилировали чистым медицинским кислородом, который не только вытеснил азот, но и «вымыл» этот газ из организма участника опыта. Когда концентрация кислорода в воздухе камеры достигла 97%, его подачу прекратили и начали подавать гелий. В этот жедень в камере установилась атмосфера примерно такого состава: 22,5% O2,76% Не и 1,5% N2. Все остальное—питание, режим, одежда — осталось неизменным.

В первые же часы пребывания испытателя в гелио-кислородной среде было зарегистрировано интересное явление. Сообщая о самочувствии он сказал, что все в порядке. Речь его была вполне разборчивой, но голос неузнаваемо изменился. Вместо привычного баритона слышался высокий, почти мальчишеский тенорок.

Подобные изменения голоса, правда не столь резкие, наблюдались и у водолазов. Объясняется это разницей в скорости распространения звуковых колебаний в разных средах, в результате чего звуковой спектр может сместиться почти на целую октаву.

Прошло еще несколько часов и испытатель сообщил, что в камере похолодало. Однако термометр не показывал изменения температуры — изменились теплоощущения испытателя. Высокая теплопроводность гелия сдвинула зону температурного комфорта. В условиях обычного воздуха эта зона— 18—24°С; в «гелиевом» воздухе— 24,5—27,5°С днем, когда испытатель бодрствует, и 26—29° С ночью. В дальнейшем опыт проходил в условиях комфортной температуры. Все дни ни на минуту не прекращались наблюдения, брались пробы, но никаких существенных отклонений в самочувствии, поведении, работоспособности испытателя, кроме тех двух, что были замечены в самом начале опыта, обнаружить не удалось.

Главным недостатком гелиевого воздуха оказалась все та же повышенная теплопроводность. В условиях разогрева оболочки корабля гелиевый воздух может не охлаждать, а перегревать организм (при температуре среды выше 36— 37° С. При меньших же температурах вентилировать космический скафандр гелиевым воздухом технически выгоднее, чем обыкновенным.

Во время полетов всех советских космонавтов в их кораблях поддерживалась «атмосфера № I» — обычный воздух, земное давление, нормальная влажность. Но это не значит, что во всех дальнейших полетах будет использоваться только такая атмосфера. У гелиевого воздуха есть хорошие шансы слетать в космос.

Назад    На главную страницу

himya.ucoz.ru